EXASOL Anwendertreffen 2012

Größe: px
Ab Seite anzeigen:

Download "EXASOL Anwendertreffen 2012"

Transkript

1 EXASOL Anwendertreffen 2012 EXAPowerlytics

2 Feature-Architektur EXAPowerlytics In-Database Analytics Map / Reduce Algorithmen Skalare Fkt. Aggregats Fkt. Analytische Fkt. Hadoop Anbindung R LUA Python 2

3 Erweiterte Möglichkeiten durch EXAPowerlytics Scripting Focus: Funktionen, M/R Analysen, Statistik, Data Mining Sprachen: LUA, R, Python Laufen auf allen Knoten parallel Aufrufbar innerhalb von SQL Rückgabewert: jeglicher Datentyp oder Tabelle Bibliotheken: String, Math, Table, XML, HTTP, JSON, Numeric Verarbeitung unstrukturierter Daten inkl. Hadoop-Anbindung Verarbeitung externer Daten: direkt Skalare Funktionen, Aggregats- und analytische Funktionen mit Scripting-Sprachen 3

4 Vorteile, Möglichkeiten und Bausteine Verlagerung der Algorithmen zu den Daten Weniger Requests Client/Datenbank Massive Parallelisierung der Algorithmen Mit SQL nur schwer zu lösen: Text Tokenisierung, Indizierung und Suche Erstellen bestimmter Datenstrukturen, z.b. Graphen Data Mining und Machine Learning 4 verschiedene Funktionstypen: CREATE LUA/R/PYTHON SCALAR SCRIPT RETURNS (1 IN, 1 OUT) CREATE LUA/R/PYTHON SET SCRIPT RETURNS (* IN, 1 OUT) CREATE LUA/R/PYTHON SCALAR SCRIPT EMITS (1 IN, * OUT) CREATE LUA/R/PYTHON SET SCRIPT EMITS (* IN, * OUT) 4

5 5

6 Herausforderungen bei der Analyse von Online-Daten 1. Integration externer unstrukturierter Datenquellen a. Struktur einer Web-Site o. eines Blogs ermitteln b. Die einzelnen Seiten einlesen 2. Häufigkeit gewünschter Begriffe ermitteln a. Metadaten (HTML o.ä.) entfernen b. Nutzdaten in einzelne Begriffe (Wörter o. Wortgruppen) zerlegen c. Stopwords ( und, der, die ) filtern d. Begriffe normieren ( Bayern München = FC Bayern ) 3. Begriffsfrequenzen in Zusammenhang mit klassischen Kennzahlen bringen a. Begriffe auf Produkte abbilden ( Bayern München Trikots von FC Bayern München ) 4. Auswertungen über gewohntes Werkzeug (BI-Tool ) 7

7 Ergebnisse Automatisierte Prozesse zur Auswertung von Online- Publikationen laufen regelmäßig Die Daten werden mit Zeitstempel archiviert Über reguläre Reports werden entsprechende Zusammenhänge visuell aufbereitet Unterschiedlichste Kennzahlen können abgebildet werden Auch historische Auswertungen sind möglich Ausblick: Semantische Analyse der Publikationen (positiv, neutral, negativ etc.) Integration von Facebook, Google+, Twitter etc. 8

8 Beispiel: Erstellung einer interaktiven Tag Cloud 9

9 Powerlytics: Anwendungsbeispiel Begriffe Quelle: Medizinische Artikel aus 2011 (Pubmed) Ziel: Welche Themen beschäftigten Medizinforscher

10 Herausforderung Lädt man die Artikel in eine Datenbank, stehen in einer Zeile Titel und Description 11

11 Herausforderung Um die Frequenzen für die Begriffe zu berechnen, geht man in folgenden Schritten vor: 1. Titel muss auf einzelne Wörter aufgesplittet werden. Diese Wörter müssen als eine Tabelle dargestellt werden. D.h., aus einer Zeile in der Datenbank müssen mehrere erstellt werden. 2. zusätzlich will man auch sog. Stopwords wie as, while usw. herausfiltern und 3. die Begriffe normieren, d.h. cell und cells, b-catenin und beta-catenin als einen denselben Begriff erkenntlichen machen Im Unterschied zu den Aufgaben 2 und 3, ist die Aufgabe 1 mit Hilfe von SQL nicht lösbar. 12

12 Lösung: EXAPowerlytics Die Aufgabe 1 wird mit Hilfe von einer user-defined skalaren Funktion (in LUA) gelöst, die den MAP-Schritt implementiert 13

13 Weitere Verarbeitung Die erstellte Funktion kann in die SELECT-Liste von einer Query einfach verwendet werden: Um die Aufgabe 2 und 3 zu lösen benötigen wir 2 Tabellen. Die erste enthält sog. Stopwords Die zweite enthält Übersetzungen : 14

14 View erstellen Nun haben wir alles, um eine View zu erstellen, die einen Begriff mit dem dazugehörigen ID zurückliefert. Die so erstellte View können wir in jedem BI-Tool weiter verarbeiten, so dass die meisten Nutzer die Vorteile von EXAPowerlytics nutzen können, ohne sich mit der Komplexität der Materie beschäftigen zu müssen 15

15 Ergebnis 16

16 Contact EXASOL AG Neumeyerstr Nürnberg Fon: Fax: Johannes Meier Presales Consultant 18

Advanced Analytics mit EXAPowerlytics. Technisches Whitepaper

Advanced Analytics mit EXAPowerlytics. Technisches Whitepaper Advanced Analytics mit EXAPowerlytics Technisches Whitepaper Inhalt 1. Zusammenfassung... 3 2. Einführung... 4 3. Fachliche Einführung... 5 4. Beispiel: Zeichen zählen... 7 5. Fazit... 9 6. Anhang... 10-2

Mehr

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution

EXASOL @ Symposium on Scalable Analytics. www.exasol.com. Skalierbare Analysen mit EXASolution EXASOL @ Symposium on Scalable Analytics Skalierbare Analysen mit EXASolution EXASOL AG Wer sind wir R&D: + seit 2000 + laufend Forschungsprojekte Produkt: Analytische Datenbank EXASolution Focus auf Komplexität

Mehr

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor

Das Zettabyte. CeBIT 2011. Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zettabyte CeBIT 2011 Dr. Wolfgang Martin Analyst, ibond Partner und Ventana Research Advisor Das Zetabyte: analytische Datenbanken Die Datenflut. Analytische Datenbanken: Was ist neu? Analytische Datenbanken:

Mehr

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI

In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI In-Memory Datenbanken im Kontext komplexer Analytics Pojekte am Beispiel der Otto Group BI Hanau, 25.02.2015 1 Titel der Präsentation, Name, Abteilung, Ort, xx. Monat 2014 Der Aufbau der Group BI Plattform

Mehr

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016

Citizen Data Science. Balázs Bárány. 29. April 2016. Linuxwochen Wien 2016 Citizen Data Science Balázs Bárány Linuxwochen Wien 2016 29. April 2016 Inhalt Einführung: Data Science Werkzeuge und Methoden Citizen Data Science Daten holen Daten verstehen Daten-Vorverarbeitung Prädiktive

Mehr

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen

Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Big Data Plattformen für polystrukturierte Daten neue Chancen und Herausforderungen Oracle DWH-Konferenz 21. März 2012 Dr. Carsten Bange Gründer & Geschäftsführer BARC Big Data bietet Methoden und Technologien

Mehr

NoSQL mit Postgres 15. Juni 2015

NoSQL mit Postgres 15. Juni 2015 Tag der Datenbanken 15. Juni 2015 Dipl.-Wirt.-Inform. Agenda l Vorstellung l Marktübersicht l Warum PostgreSQL? l Warum NoSQL? l Beispielanwendung Seite: 2 Vorstellung Dipl.-Wirt.-Inform. [1990] Erste

Mehr

Advanced Analytics mit der analytischen In-Memory Datenbank EXASolution

Advanced Analytics mit der analytischen In-Memory Datenbank EXASolution Advanced Analytics mit der analytischen In-Memory Datenbank EXASolution Sebastian Klenk, Stefan Mandl, Simon Zentgraf, Mathias Golombek EXASOL AG Neumeyerstraße 48 90411 Nürnberg sebastian.klenk@exasol.com

Mehr

CouchDB & CouchApps. Strukturlose Speicherung von Daten und Anwendungen. B1 Systems GmbH. March 18, 2012. http://www.b1-systems.de

CouchDB & CouchApps. Strukturlose Speicherung von Daten und Anwendungen. B1 Systems GmbH. March 18, 2012. http://www.b1-systems.de CouchDB & CouchApps Strukturlose Speicherung von Daten und Anwendungen B1 Systems GmbH http://www.b1-systems.de March 18, 2012 c B1 Systems GmbH 2004 2012 Chapter -1, Slide 1 CouchDB Grundlagen CouchDB

Mehr

Self Service BI mit Office 2013 Raúl B. Heiduk

Self Service BI mit Office 2013 Raúl B. Heiduk 1 Self Service BI mit Office 2013 Raúl B. Heiduk Partner: 2 Agenda Begrüssung Vorstellung Referent Inhalt F&A Weiterführende Kurse 3 Vorstellung Referent Name: Raúl B. Heiduk Ausbildung: Dipl. Ing. (FH),

Mehr

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke?

Hans-Peter Zorn Inovex GmbH. Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? Hans-Peter Zorn Inovex GmbH Wer gewinnt das SQL-Rennen auf der Hadoop-Strecke? War nicht BigData das gleiche NoSQL? Data Lake = Keine Struktur? flickr/matthewthecoolguy Oder gar ein Hadump? flickr/autohistorian

Mehr

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013

Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien. Berlin, Mai 2013 Prozessoptimierung in der Markt- und Medienforschung bei der Deutschen Welle (DW) mit Big Data Technologien Berlin, Mai 2013 The unbelievable Machine Company? 06.05.13 The unbelievable Machine Company

Mehr

MySQL Queries on "Nmap Results"

MySQL Queries on Nmap Results MySQL Queries on "Nmap Results" SQL Abfragen auf Nmap Ergebnisse Ivan Bütler 31. August 2009 Wer den Portscanner "NMAP" häufig benutzt weiss, dass die Auswertung von grossen Scans mit vielen C- oder sogar

Mehr

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP

Seminar WS 2012/13. S. Chaudhuri et al, CACM, Aug. 2011. Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP Seminar WS 2012/13 S. Chaudhuri et al, CACM, Aug. 2011 Parallel DBS vs. Open Platforms for Big Data, e.g. HaDoop Near-Realtime OLAP 2 Vorkonfigurierte, komplette Data Warehouse-Installation Mehrere Server,

Mehr

Oracle Big Data Technologien Ein Überblick

Oracle Big Data Technologien Ein Überblick Oracle Big Data Technologien Ein Überblick Ralf Lange Global ISV & OEM Sales NoSQL: Eine kurze Geschichte Internet-Boom: Erste Ansätze selbstgebauter "Datenbanken" Google stellt "MapReduce"

Mehr

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS

WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST? BERNADETTE FABITS WEBINAR@LUNCHTIME THEMA: WAS MACHT EIGENTLICH EIN DATA SCIENTIST?" BERNADETTE FABITS HINEIN GEHÖRT DATA SCIENTIST, STATISTIKER, DATA MINER, ANALYST,. Gibt es noch mehr von denen. die arbeiten mit Big Data

Mehr

APEX: from past to present

APEX: from past to present APEX: from past to present Neues in APEX 4.2... und nützliche, kaum bekannte Features aus älteren Releases. Carsten Czarski ORACLE Deutschland B.V. & Co KG Anwendungsentwicklung Erwartungen...

Mehr

MapReduce in der Praxis

MapReduce in der Praxis MapReduce in der Praxis Rolf Daniel Seminar Multicore Programmierung 09.12.2010 1 / 53 Agenda Einleitung 1 Einleitung 2 3 Disco Hadoop BOOM 4 2 / 53 1 Einleitung 2 3 Disco Hadoop BOOM 4 3 / 53 Motivation

Mehr

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft

Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Business Intelligence und Geovisualisierung in der Gesundheitswirtschaft Prof. Dr. Anett Mehler-Bicher Fachhochschule Mainz, Fachbereich Wirtschaft Prof. Dr. Klaus Böhm health&media GmbH 2011 health&media

Mehr

Web Data Mining. Albert Weichselbraun

Web Data Mining. Albert Weichselbraun Web Data Mining Albert Weichselbraun Vienna University of Economics and Business Department of Information Systems and Operations Augasse 2-6, 1090 Vienna albert.weichselbraun@wu.ac.at May 2011 Agenda

Mehr

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh

SQL on Hadoop für praktikables BI auf Big Data.! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh SQL on Hadoop für praktikables BI auf Big Data! Hans-Peter Zorn und Dr. Dominik Benz, Inovex Gmbh War nicht BigData das gleiche NoSQL? 2 Wie viele SQL Lösungen für Hadoop gibt es mittlerweile? 3 ! No SQL!?

Mehr

Prof. Dr.-Ing. Rainer Schmidt 1

Prof. Dr.-Ing. Rainer Schmidt 1 Prof. Dr.-Ing. Rainer Schmidt 1 Business Analytics und Big Data sind Thema vieler Veröffentlichungen. Big Data wird immer häufiger bei Google als Suchbegriff verwendet. Prof. Dr.-Ing. Rainer Schmidt 2

Mehr

Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG

Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG Social Business Intelligence Text Mining und Hadoop bei DB Fernverkehr AG DB Fernverkehr AG Dr.-Ing. Axel Schulz, Dr. Matthias Platho P.FMB 2, DB Fernverkehr AG Frankfurt, 22.05.2015 Motivation An meinem

Mehr

Chancen und Wachstumsfelder für PostgreSQL

Chancen und Wachstumsfelder für PostgreSQL Chancen und Wachstumsfelder für PostgreSQL Harald Armin Massa by Deutschsprachige PostgreSQL Konferenz 2013 Oberhausen Harald Armin Massa 2ndQuadrant Datenbanken seit 1984 Position Value Datenbank auf

Mehr

Datenanalyse im Web. Einführung in das Thema. Prof. Dr. Ingo Claÿen. Beispiele für Daten im Web. Extraktion und Aggregation von Informationen

Datenanalyse im Web. Einführung in das Thema. Prof. Dr. Ingo Claÿen. Beispiele für Daten im Web. Extraktion und Aggregation von Informationen Datenanalyse im Web Einführung in das Thema Prof. Dr. Ingo Claÿen Hochschule für Technik und Wirtschaft Berlin Beispiele für Daten im Web Extraktion und Aggregation von Informationen Datenanalyse im Web

Mehr

Social Media Analytics Aktuelle Herausforderungen

Social Media Analytics Aktuelle Herausforderungen Lehrstuhl für Informatik 5 Informationssysteme RWTH Aachen Social Media Analytics Aktuelle Herausforderungen Ralf Klamma RWTH Aachen I5-KL-111010-1 Gesellschaft für Informatik Regionalgruppe Köln Themenabend

Mehr

PHP und MySQL. Integration von MySQL in PHP. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (michael.kluge@tu-dresden.

PHP und MySQL. Integration von MySQL in PHP. Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424. Michael Kluge (michael.kluge@tu-dresden. Zentrum für Informationsdienste und Hochleistungsrechnen (ZIH) PHP und MySQL Integration von MySQL in PHP Zellescher Weg 12 Willers-Bau A109 Tel. +49 351-463 - 32424 (michael.kluge@tu-dresden.de) MySQL

Mehr

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik

ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE. NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik ARFA ANALYTICS, RISK MANAGEMENT & FINANCE ARCHITECTURE NoSQL Datenbanksysteme Übersicht, Abgrenzung & Charakteristik Ralf Leipner Domain Architect Analytics, Risk Management & Finance 33. Berner Architekten

Mehr

on Azure mit HDInsight & Script Ac2ons

on Azure mit HDInsight & Script Ac2ons Willkommen beim #GAB 2015! on Azure mit HDInsight & Script Ac2ons Lokale Sponsoren: HansPeter Grahsl Netconomy Entwickler & Berater FH CAMPUS 02 Twi9er: @hpgrahsl Überblick Inhalte Was ist HDInsight? Wozu

Mehr

Web APIs auf dem Prüfstand Volle Kontrolle oder fertig mit den Azure Mobile Services?

Web APIs auf dem Prüfstand Volle Kontrolle oder fertig mit den Azure Mobile Services? Web APIs auf dem Prüfstand Volle Kontrolle oder fertig mit den Azure Mobile Services? Web APIs Wo kommen wir her? Remote Procedure Calls (RPC) Verben/Aktionen im Endpunkt enthalten GetCustomer InsertInvoice

Mehr

SOLISYON GMBH CHRISTIAN WOLF, BENJAMIN WEISSMAN. Optimierung von Abfragen in MS SQL Server DWH-Umgebungen

SOLISYON GMBH CHRISTIAN WOLF, BENJAMIN WEISSMAN. Optimierung von Abfragen in MS SQL Server DWH-Umgebungen WEITER BLICKEN. MEHR ERKENNEN. BESSER ENTSCHEIDEN. Optimierung von Abfragen in MS SQL Server DWH-Umgebungen SOLISYON GMBH CHRISTIAN WOLF, BENJAMIN WEISSMAN VERSION 1.0 OPTIMIERUNG VON ABFRAGEN IN MS SQL

Mehr

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023

Kapitel 33. Der xml-datentyp. In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 Kapitel 33 Der xml-datentyp In diesem Kapitel: Der xml-datentyp 996 Abfragen aus xml-datentypen 1001 XML-Indizierung 1017 Zusammenfassung 1023 995 996 Kapitel 33: Der xml-datentyp Eine der wichtigsten

Mehr

Analysen sind nur so gut wie die Datenbasis

Analysen sind nur so gut wie die Datenbasis Analysen sind nur so gut wie die Datenbasis Datenaufbereitung und Sicherung der Datenqualität durch den kontextbasierten MIOsoft Ansatz. Daten gelten längst als wichtiger Produktionsfaktor in allen Industriebereichen.

Mehr

Social Media Management Die Schaltzentrale für moderne Kundenbeziehungen

Social Media Management Die Schaltzentrale für moderne Kundenbeziehungen Social Media Management Die Schaltzentrale für moderne Kundenbeziehungen FACEBOOK TWITTER GOOGLE+ BLOGS/FOREN YOUTUBE SOCIALCOM MARKETING/PR KUNDENSERVICE FINANZ- BUCHHALTUNG VERTRIEB BESCHWERDEN- MANAGEMENT

Mehr

R Statistik im Oracle Produktstack

R Statistik im Oracle Produktstack R Statistik im Oracle Produktstack Matthias Fuchs DWH Architect ISE Information Systems Engineering GmbH ISE Information Systems Engineering Gegründet 1991 Mitarbeiteranzahl: 50 Hauptsitz in Gräfenberg,

Mehr

Neuerungen Analysis Services

Neuerungen Analysis Services Neuerungen Analysis Services Neuerungen Analysis Services Analysis Services ermöglicht Ihnen das Entwerfen, Erstellen und Visualisieren von Data Mining-Modellen. Diese Mining-Modelle können aus anderen

Mehr

MCP Managing Conference Proceedings

MCP Managing Conference Proceedings Projekt Workshop zur Global Info SFM WEP, 19-20. Juli 2000, Braunschweig MCP Managing Conference Proceedings Paper Submission und Review bei der EUROGRAPHICS 2000 Resultate und Ausblick bmb+f Global Info

Mehr

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce

MapReduce und Datenbanken Thema 15: Strom bzw. Onlineverarbeitung mit MapReduce MapReduce Jan Kristof Nidzwetzki MapReduce 1 / 17 Übersicht 1 Begriffe 2 Verschiedene Arbeiten 3 Ziele 4 DEDUCE: at the intersection of MapReduce and stream processing Beispiel 5 Beyond online aggregation:

Mehr

Buildfrei skalieren für Big Data mit Z2

Buildfrei skalieren für Big Data mit Z2 Buildfrei skalieren für Big Data mit Z2 Henning Blohm ZFabrik Software KG 5.6.2013 1 Teil 1: Buildfrei entwickeln und skalieren Teil 2: Big Data, Cloud, und wie es zusammenpasst 2 1. Teil BUILDFREI ENTWICKELN

Mehr

Interaktive Visualisierung der Projektmanagement-Prozesse

Interaktive Visualisierung der Projektmanagement-Prozesse Interaktive Visualisierung der Projektmanagement-Prozesse Abschlussvortrag zur Bachelorarbeit Dimitar Kosakov Inhaltsverzeichnis Rückblick Ziel Technologien Konzept View Webinterface Datenstruktur Umsetzung

Mehr

Text Mining. Joachim Schole. Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg. Grundseminar, WS 2014

Text Mining. Joachim Schole. Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg. Grundseminar, WS 2014 Text Mining Joachim Schole Fakultät Technik und Informatik Hochschule für angewandte Wissenschaften Hamburg Grundseminar, WS 2014 Joachim Schole (HAW Hamburg) Text Mining Grundseminar, WS 2014 1 / 26 Agenda

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 Trends im Markt für Business Intelligence Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 18.03.2016 BARC 2016 2 IT Meta-Trends 2016 Digitalisierung Consumerization Agilität Sicherheit und Datenschutz

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

SINT Rest App Documentation

SINT Rest App Documentation SINT Rest App Documentation Release 1.0 Florian Sachs September 04, 2015 Contents 1 Applikation 3 2 Rest Service 5 3 SOAP Service 7 4 Technologiestack 9 5 Deployment 11 6 Aufgabe 1: Google Webservice

Mehr

DataManagement. smcdatamanagement - SQL-Tabellen verwalten für jedermann

DataManagement. smcdatamanagement - SQL-Tabellen verwalten für jedermann DataManagement smcdatamanagement ermöglicht Ihnen ohne jegliche SQL- Kenntnisse, Datenbanken und Tabellen zu erstellen und diese im Anschluss zu bearbeiten. Durch den integrierten Verbindungsserver-Manager

Mehr

Oracle und LDAP. Zugriff auf LDAP-Daten aus einer Oracle-DB. Martin Busik busik@wlp-systems.de

Oracle und LDAP. Zugriff auf LDAP-Daten aus einer Oracle-DB. Martin Busik busik@wlp-systems.de Oracle und LDAP Zugriff auf LDAP-Daten aus einer Oracle-DB Martin Busik busik@wlp-systems.de Lightweight Directory LDAP Access Protocol LDAP dc=de dc=wlp Systems dc=drucker cn=lj4100d cn=canon photo ou=mitarbeiter

Mehr

Apache HBase. A BigTable Column Store on top of Hadoop

Apache HBase. A BigTable Column Store on top of Hadoop Apache HBase A BigTable Column Store on top of Hadoop Ich bin... Mitch Köhler Selbstständig seit 2010 Tätig als Softwareentwickler Softwarearchitekt Student an der OVGU seit Oktober 2011 Schwerpunkte Client/Server,

Mehr

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator

eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator eevolution Business Intelligence Oliver Rzeniecki COMPRA GmbH Programmierer & Datenbankadministrator Agenda Was ist Business Intelligence? Was ist OLAP? Unterschied zwischen OLAP und OLTP? Bestandteile

Mehr

Steht in der ersten Zeile #!/usr/bin/python und hat man die Ausführungsrechte gesetzt kann man es direkt ausführen.

Steht in der ersten Zeile #!/usr/bin/python und hat man die Ausführungsrechte gesetzt kann man es direkt ausführen. Python Unter Windows empfiehlt sich der Download von Python unter folgender URL, http:// www.python.org/download/. Linux Distributionen wie z.b. Ubuntu liefern Python direkt in Ihrer Paketverwaltung mit:

Mehr

Cloud Data Management

Cloud Data Management 1 Cloud Data Management Dr. Martin Grund 2 Die Evolution des Web Web 1.0: Entstehung des World Wide Web 1989 (CERN) Tim Berners-Lee. 1991 weltweite Verbreitung Navigation zwischen statischen Seiten Keine

Mehr

Entwurf und Prototypische Implementierung einer Data Mashup Plattform. Abschlussvortrag Projekt-INF

Entwurf und Prototypische Implementierung einer Data Mashup Plattform. Abschlussvortrag Projekt-INF Entwurf und Prototypische Implementierung einer Data Mashup Plattform Abschlussvortrag Projekt-INF Daniel Del Gaudio, Johannes Bohn, Nikolas Paparoditis Gliederung Data Mashups Einführung Motivationsszenario

Mehr

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004)

Nachtrag: Farben. Farbblindheit. (Light und Bartlein 2004) Nachtrag: Farben Farbblindheit (Light und Bartlein 2004) 1 Vorgeschlagene Farbskalen (Light and Bartlein 2004) Farbkodierung metrisch skalierter Daten Unterscheide: 1. Sequential Data (ohne Betonung der

Mehr

AJAX SSL- Wizard Referenz

AJAX SSL- Wizard Referenz AJAX SSL- Wizard Referenz Version 1.0.2+ - 04.04.2011 Präambel Die vorliegende Dokumentation beschreibt den AJAX basierten SSL- Wizard der CertCenter AG. Der SSL- Wizard kann mit wenigen Handgriffen nahtlos

Mehr

Schwerpunkte von SQL Server 2005

Schwerpunkte von SQL Server 2005 3K05 Business Intelligence mit SQL Server 2005 Steffen Krause Technologieberater Microsoft Deutschland GmbH http://blogs.technet.com/steffenk Schwerpunkte von SQL Server 2005 Mission Ready Developer Ready

Mehr

Integration, Migration und Evolution

Integration, Migration und Evolution 14. Mai 2013 Programm für heute 1 2 Quelle Das Material zu diesem Kapitel stammt aus der Vorlesung Datenintegration & Datenherkunft der Universität Tübingen gehalten von Melanie Herschel im WS 2010/11.

Mehr

Cognos Business Intelligence V10.2.2 ermöglicht IT unterstützten BI Self Service. 2015 IBM Corporation

Cognos Business Intelligence V10.2.2 ermöglicht IT unterstützten BI Self Service. 2015 IBM Corporation Cognos Business Intelligence V10.2.2 ermöglicht IT unterstützten BI Self Service V A L U E Unsere Reise bis heute IBM Cognos 8.4 IBM Cognos 8 BI ReportNet Einheitliche Informationsversorgung Rolenbasierte

Mehr

SAP Integration von Business Objects am Beispiel von SAP Student Lifecycle Management. Anke Noßmann Syncwork AG

SAP Integration von Business Objects am Beispiel von SAP Student Lifecycle Management. Anke Noßmann Syncwork AG SAP Integration von Business Objects am Beispiel von SAP Student Lifecycle Management Anke Noßmann Syncwork AG SAP HERUG Partnertag, Berlin 06. November 2009 Inhalt 1. Ausgangssituation 2. Alternative

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

Big Data in der Forschung

Big Data in der Forschung Big Data in der Forschung Dominik Friedrich RWTH Aachen Rechen- und Kommunikationszentrum (RZ) Gartner Hype Cycle July 2011 Folie 2 Was ist Big Data? Was wird unter Big Data verstanden Datensätze, die

Mehr

Whitepaper. Produkt: combit List & Label 16. List & Label Windows Azure. combit GmbH Untere Laube 30 78462 Konstanz

Whitepaper. Produkt: combit List & Label 16. List & Label Windows Azure. combit GmbH Untere Laube 30 78462 Konstanz combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit List & Label 16 List & Label Windows Azure List & Label Windows Azure - 2 - Inhalt Softwarevoraussetzungen 3 Schritt 1: Neues Projekt

Mehr

Whitepaper. Produkt: combit Relationship Manager / address manager. Integration der Ansicht "Adressen" in eigene Solution

Whitepaper. Produkt: combit Relationship Manager / address manager. Integration der Ansicht Adressen in eigene Solution combit GmbH Untere Laube 30 78462 Konstanz Whitepaper Produkt: combit Relationship Manager / address manager Integration der Ansicht "Adressen" in eigene Solution Integration der Ansicht "Adressen" in

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011

arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan Edge V.2.7 in 30 min von 0 auf 100 Stefan Koch VP Product Management 31. März 2011 arcplan 2011 Agenda Was ist arcplan Edge? Komponenten von arcplan Edge arcplan Edge Roadmap Live Demo arcplan

Mehr

Überblick und Vergleich von NoSQL. Datenbanksystemen

Überblick und Vergleich von NoSQL. Datenbanksystemen Fakultät Informatik Hauptseminar Technische Informationssysteme Überblick und Vergleich von NoSQL Christian Oelsner Dresden, 20. Mai 2011 1 1. Einführung 2. Historisches & Definition 3. Kategorien von

Mehr

Dokumentation QuickHMI-Schnittstelle für Oracle Datenbanken

Dokumentation QuickHMI-Schnittstelle für Oracle Datenbanken Dokumentation QuickHMI-Schnittstelle für Oracle Datenbanken Version 2.0 D-28359 Bremen info@indi-systems.de Tel + 49 421-989703-30 Fax + 49 421-989703-39 Inhaltsverzeichnis Was ist die QuickHMI-Schnittstelle

Mehr

BI around the world - Globale Reporting Lösungen bei Continental Automotive

BI around the world - Globale Reporting Lösungen bei Continental Automotive BI around the world - Globale Reporting Lösungen bei Continental Automotive Stefan Hess Trivadis GmbH Stuttgart Herbert Muckenfuss Continental Nürnberg Schlüsselworte: Oracle BI EE, Business Intelligence,

Mehr

NESTOR Workshop, 16.10.13 in Baden-Baden

NESTOR Workshop, 16.10.13 in Baden-Baden NESTOR Workshop, 16.10.13 in Baden-Baden Dominik Frey HA Information, Dokumentation und Archive des Südwestrundfunks und des Saarländischen Rundfunks dominik.frey@swr.de Agenda Webarchiv Wayback Integration

Mehr

Funktionale Programmierung bringt s! Ein Ausflug mit Haskell in die Praxis

Funktionale Programmierung bringt s! Ein Ausflug mit Haskell in die Praxis Funktionale Programmierung bringt s! Ein Ausflug mit Haskell in die Praxis Stefan Wehr (wehr@factisresearch.com) factis research GmbH, Freiburg im Breisgau 17. Juli 2013 Developer MeetUp Freiburg Funktionale

Mehr

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com

Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick. Volker.Hinz@microsoft.com Die Microsoft-Komplettlösung für Datawarehousing, Big Data und Business Intelligence im Überblick Volker.Hinz@microsoft.com Was sagt der Markt? Fakten Meinung der Analysten zu Microsofts Angeboten Nutzen

Mehr

LINQ to SQL. Proseminar Objektorientiertes Programmieren mit.net und C# Christoph Knüttel. Institut für Informatik Software & Systems Engineering

LINQ to SQL. Proseminar Objektorientiertes Programmieren mit.net und C# Christoph Knüttel. Institut für Informatik Software & Systems Engineering LINQ to SQL Proseminar Objektorientiertes Programmieren mit.net und C# Christoph Knüttel Institut für Informatik Software & Systems Engineering Agenda 1. LINQ allgemein Vorteile Bausteine und Varianten

Mehr

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 12 (8. Juli 12. Juli 2013)

Tutorübung zur Vorlesung Grundlagen Rechnernetze und Verteilte Systeme Übungsblatt 12 (8. Juli 12. Juli 2013) Technische Universität München Lehrstuhl Informatik VIII Prof. Dr.-Ing. Georg Carle Dipl.-Ing. Stephan Günther, M.Sc. Nadine Herold, M.Sc. Dipl.-Inf. Stephan Posselt Tutorübung zur Vorlesung Grundlagen

Mehr

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm Open Source BI Trends 11. Dezember 2009 Wien Konstantin Böhm Profil Folie 2 JAX 2009 11.12.2009 Gründung 2002, Nürnberg 50 Mitarbeiter Innovative Kunden Spezialisiert auf Open Source Integration Open Source

Mehr

Social Media trifft Business

Social Media trifft Business Social Media trifft Business Intelligence Social Media Analysis als Teil der Unternehmenssteuerung Tiemo Winterkamp, VP Global Marketing Agenda Social Media trifft Business Intelligence Business Intelligence

Mehr

Oracle Endeca Information Discovery für Financial Services - Risk Management & Risk Controlling

Oracle Endeca Information Discovery für Financial Services - Risk Management & Risk Controlling Oracle Endeca Information Discovery für Financial Services - Risk Management & Risk Controlling Anforderungen Die Anforderungen an das Risk Management von Banken sind in den letzten Jahren nicht zuletzt

Mehr

XML und Datenbanken

<Trainingsinhalt> XML und Datenbanken XML und Datenbanken i training Inhaltsverzeichnis Vorwort 11 Kapitel 1 XML 13 1.1 Voraussetzungen für XML 14 1.2 Allgemeines 14 1.3 Migration von HTML zu XML 16 1.4 Argumente für XML

Mehr

Industrie 4.0 und Smart Data

Industrie 4.0 und Smart Data Industrie 4.0 und Smart Data Herausforderungen für die IT-Infrastruktur bei der Auswertung großer heterogener Datenmengen Richard Göbel Inhalt Industrie 4.0 - Was ist das? Was ist neu? Herausforderungen

Mehr

Big Data als Ökosystem datengetriebener Unternehmen

Big Data als Ökosystem datengetriebener Unternehmen Big Data als Ökosystem datengetriebener Unternehmen Präsentation im CINIQ Center for Data and Information Intelligence, Fraunhofer Heinrich-Hertz-Institut in Berlin 10.09.2013 von Dr. Peter Lauf Zur Person

Mehr

Oracle OLAP 11g: Performance für das Oracle Data Warehouse

Oracle OLAP 11g: Performance für das Oracle Data Warehouse Oracle OLAP 11g: Performance für das Oracle Data Warehouse Marc Bastien Oracle BI Presales Agenda Performanceprobleme in Oracle DWH: gibt s das überhaupt? Mögliche Gründe und Lösungen

Mehr

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar

SQL für Trolle. mag.e. Dienstag, 10.2.2009. Qt-Seminar Qt-Seminar Dienstag, 10.2.2009 SQL ist......die Abkürzung für Structured Query Language (früher sequel für Structured English Query Language )...ein ISO und ANSI Standard (aktuell SQL:2008)...eine Befehls-

Mehr

Was eine WAF (nicht) kann. Ausgabe 2013

Was eine WAF (nicht) kann. Ausgabe 2013 Was eine WAF (nicht) kann. Ausgabe 2013 Mirko Dziadzka http://mirko.dziadzka.de/ @MirkoDziadzka OWASP Stammtisch München - 19.11.2013 1 / 27 Inhalt Worum soll es heute gehen Meine (subjektive) Meinung

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Foreign Data Wrappers

Foreign Data Wrappers -Angebot Foreign Data Wrappers Postgres ITos GmbH, CH-9642 Ebnat-Kappel Swiss Postgres Conference 26. Juni 2014 Foreign Data Wrapper Postgres -Angebot Foreign Data Wrapper? Transparente Einbindung (art-)fremder

Mehr

Xtract EXA. Plug n Play mit SAP und EXASolution

Xtract EXA. Plug n Play mit SAP und EXASolution Xtract EXA Plug n Play mit SAP und EXASolution Xtract EXA garantiert eine nahtlose Integration zwischen Ihrem SAP ERP- bzw. SAP BW-System und EXASolution. Mit nur wenigen Mausklicks extrahieren Sie Massendaten

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

Extending tl_member. Andreas Fieger (@fiedschmuc) 2015-10-08

Extending tl_member. Andreas Fieger (@fiedschmuc) 2015-10-08 Extending tl_member Andreas Fieger (@fiedschmuc) 2015-10-08 Übersicht Was wollen wir? Wie könnten wir es erreichen? Aufwand/Folgekosten? Was wollen wir? Felder in der Mitgliederverwaltung hinzufügen (z.b.

Mehr

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil - Isix

Softwaremanufaktur AW-SYSTEMS Kompetenzprofil - Isix Softwaremanufaktur AW-SYSTEMS Kompetenzprofil - Isix Ansprechpartner/in: Frau Nadine Fend Tel. +49 (5341) 29359-13 E-Mail: n.fend@aw-systems.net Website: www.aw-systems.net AW-SYSTEMS GmbH Moränenweg 90

Mehr

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten

Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Star-Schema-Modellierung mit ERwin - eine kritische Reflexion der Leistungspotentiale und Anwendungsmöglichkeiten Michael Hahne T&I GmbH Workshop MSS-2000 Bochum, 24. März 2000 Folie 1 Worum es geht...

Mehr

IV. Datenbankmanagement

IV. Datenbankmanagement Wirtschaftsinformatik 2 (PWIN) IV. Datenbankmanagement Kapitel 2: Datenmanipulationssprache SQL Wirtschaftsinformatik 2 (PWIN) SS 2009, Professur für Mobile Business & Multilateral Security 1 Agenda 1.

Mehr

Inhalt. 1. PHP-Einführung 1

Inhalt. 1. PHP-Einführung 1 Inhalt 1. PHP-Einführung 1 1.1 Geschichte von PHP... 1 1.2 Allgemeine Funktionsweise von PHP... 2 1.2.1 Statische Webseiten... 2 1.2.2 Dynamische Webseiten... 4 1.2.3 Komponenten einer Webanwendung...

Mehr

Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013

Forschunsprojekte und Independent Coursework. Prof. Dr. Christian Herta 29. Januar 2013 Forschunsprojekte und Independent Coursework Prof. Dr. Christian Herta 29. Januar 2013 Forschungsgebiete Suchtechnologie, Text- und Webmining Verarbeitung unstrukturierter Daten, insbesondere Text Large

Mehr

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language)

Einführung in SQL. 1. Grundlagen SQL. Structured Query Language. Viele Dialekte. Unterteilung: i. DDL (Data Definition Language) Einführung in SQL 1. Grundlagen Structured Query Language Viele Dialekte Unterteilung: i. DDL (Data Definition Language) ii. iii. DML (Data Modifing Language) DRL (Data Retrival Language) 1/12 2. DDL Data

Mehr

Anfragesprachen für Big Data

Anfragesprachen für Big Data OS: Datenbanksysteme - Aktuelle Trends 1 nosql is really cosql Im folgenden wird Versucht den Unterschied zwischen SQL und nosql auf mathematischer Basis zu finden. Durch diese betrachtung auf niederer

Mehr

EPOKO.net. Frank Schwichtenberg. SourceTalk 2009 Göttingen, 1.10.2009

EPOKO.net. Frank Schwichtenberg. SourceTalk 2009 Göttingen, 1.10.2009 EPOKO.net Frank Schwichtenberg SourceTalk 2009 Göttingen, 1.10.2009 2 Real SOA Wenn Services (zusammen )wachsen. Historisches Der Wunsch nach Integration von Terminen in eine Webseite Ohne ein Content

Mehr

XML IDML. InDesign Roboter. Satz. Automatisierung. Workflows. Templates XSLT. XML-Rules. 16. September 2011 Swiss Publishing Week

XML IDML. InDesign Roboter. Satz. Automatisierung. Workflows. Templates XSLT. XML-Rules. 16. September 2011 Swiss Publishing Week XSLT Automatisierung IDML Workflows Satz Templates -Rules InDesign Roboter 16. September 2011 Swiss Publishing Week Kontakt: Folien: gregor.fellenz@publishingx.de http://www.publishingx.de/dokumente und

Mehr

Datenanalyse und Predictive Analytics IBM SPSS Statistics IBM Modeler

Datenanalyse und Predictive Analytics IBM SPSS Statistics IBM Modeler Wiener Biometrische Sektion (WBS) der Internationalen Biometrischen Gesellschaft Region Österreich Schweiz (ROeS) WBS Herbst Seminar Statistische Software für Biometrische Auswertungen Datenanalyse und

Mehr

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1

Algorithmen. Consistent Hashing Bloom Filter MapReduce. Distributed Hash Tables. Einführung 1 Algorithmen Consistent Hashing Bloom Filter MapReduce Distributed Hash Tables Einführung 1 Consistent Hashing Problem: Wie finde ich den Speicherort für ein Objekt in einem verteilten System mit n Knoten?

Mehr