Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra

Größe: px
Ab Seite anzeigen:

Download "Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra"

Transkript

1 A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 1 /27 Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra 8. Das Skalarprodukt, metrische Geometrie von Geraden und Ebenen A. Filler Humboldt-Universität zu Berlin, Institut für Mathematik Sommersemester 2016 Internetseite zur Vorlesung: oder über: filler/

2 Das Skalarprodukt, metrische Geometrie A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 2 /27 Das Skalarprodukt, metrische Geometrie von Geraden und Ebenen Abstand zweier Punkte/ Länge (Betrag) eines Vektors Das Skalarprodukt Wege zum Skalarprodukt Ein geometrisch orientierter Weg zum Skalarprodukt Metrische Geometrie von Geraden und Ebenen Normalengleichungen Abstand eines Punktes von einer Ebene Hesse sche Normalform Weitere Abstände im Raum Winkelberechnungen

3 Abstand zweier Punkte A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 3 /27 Bereits in der Sekundarstufe I mit dem Satz des Pythagoras herleitbar: Abstand zweier Punkte in der Ebene Abstand zweier Punkte des Raumes Abstand zweier Punkte P 1 (x 1 ; y 1 ) und P 2 (x 2 ; y 2 ) der Ebene: P 1 P 2 = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. Abstand zweier Punkte P 1 (x 1 ; y 1 ; z 1 ), P 2 (x 2 ; y 2 ; z 2 ) des Raumes: P 1 P 2 = (x 2 x 1 ) 2 + (y 2 y 1 ) 2 + (z 2 z 1 ) 2.

4 Betrag eines Vektors a = bzw. Länge (Betrag) eines Vektors ( ) a1 : a 2 a 3 a = a a2 2 + a2 3 a 2 = a 1 a 1 + a 2 a 2 + a 3 a 3 Eigenschaften: a 0 a = 0 a = o λ a = λ a A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 4 /27

5 Das Skalarprodukt, metrische Geometrie A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 5 /27 Abstand zweier Punkte/ Länge (Betrag) eines Vektors Das Skalarprodukt Wege zum Skalarprodukt Ein geometrisch orientierter Weg zum Skalarprodukt Metrische Geometrie von Geraden und Ebenen Normalengleichungen Abstand eines Punktes von einer Ebene Hesse sche Normalform Weitere Abstände im Raum Winkelberechnungen

6 Wege zum Skalarprodukt A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 6 /27 1. Geometrisch orientierte Zugänge: Im Mittelpunkt steht, dass sich das Skalarprodukt u v zweier Vektoren als Produkt ihrer Beträge (Längen) und des Kosinus des von ihnen eingeschlossenen Winkels ergibt: u v = u v cos ( u, v). 2. Arithmetrisch orientierte Zugänge: Skalarprodukt zweier als u 1 v 1 u 2 n-tupel aufgefasster Vektoren u =. v 2 und v =.. als Summe. der Produkte der einander entsprechenden Komponenten: n u v = u 1 v 1 + u 2 v u n v n = u i v i. 3. Strukturorientierte, axiomatische Zugänge: Skalarprodukt als positiv definite symmetrische Bilinearform auf einem beliebigen (reellen) Vektorraum V. u n i=1 v n

7 Ein geometrisch orientierter Weg zum Skalarprodukt A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 7 /27 Bekannt: Länge (Betrag) eines Vektors a = ( a1 a 2 a 3 ) : a = a a2 2 + a2 3 Gesucht: Maß eines Winkels α = (UOV) mit ( x1 ) OU = x 2 x 3 und ( y1 ) OV = y 2 y 3

8 A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 8 /27 Ein geometrisch orientierter Weg zum Skalarprodukt Kosinussatz a 2 = b 2 + c 2 2 b c cos α b 2 = a 2 + c 2 2 a c cos β c 2 = a 2 + b 2 2 a b cos γ Beweis: Betrachten die Höhe h auf die Seite c, die c in die Strecken d und e teilt (analoges Vorgehen, wenn der Fußpunkt von h außerhalb der Seite c liegt). Es gilt: h 2 = b 2 d 2 e 2 = (c d) 2 = c 2 2cd + d 2 a 2 = h 2 + e 2 = b 2 d 2 + c 2 2cd + d 2 = c 2 + b 2 2cd Wegen cos α = d b, also d = b cos α, folgt die Behauptung.

9 Ein geometrisch orientierter Weg zum Skalarprodukt A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 9 /27 Winkelberechnung: Setzen u = OU, v = OV, w = UV Kosinussatz: w 2 = u 2 + v 2 2 u v cos α Nach cos α auflösen: cos α = u2 + v 2 w 2 2 u v Zähler des obigen Bruchs durch die Koordinaten von U und V ausdrücken: u 2 + v 2 w 2 = ( x1 2 + x2 2 + ( 3) x2 + y y ) y2 3 [(y 1 x 1 ) 2 + (y 2 x 2 ) 2 + (y 3 x 3 ) 2] Erhalten: cos α = x 1 y 1 + x 2 y 2 + x 3 y 3 u v = 2 (x 1 y 1 + x 2 y 2 + x 3 y 3 ) = x 1 y 1 + x 2 y 2 + x 3 y 3 x x2 2 + x2 3 y y2 2 + y2 3

10 Ein geometrisch orientierter Weg zum Skalarprodukt A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 10 /27 Winkelberechnung: cos α = x 1 y 1 + x 2 y 2 + x 3 y 3 x x2 2 + x2 3 y y2 2 + y2 3 Diese Formel berechnet den unorientierten Winkel: Sind β = 180 α und γ = 360 α, so gilt cos β = cos α und cos γ = cos α. α = (AOB) und γ = (BOA) haben denselben Kosinuswert. Um β zu berechnen, muss man z. B. die Vektoren a und b benutzen.

11 Ein geometrisch orientierter Weg zum Skalarprodukt A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 11 /27 Zusammenfassung/ Einführung des Skalarprodukts Winkelberechnung: cos α = x 1 y 1 + x 2 y 2 + x 3 y 3 x x2 2 + x2 3 y y2 2 + y2 3 Wir definieren: a b = x 1 y 1 + x 2 y 2 + x 3 y 3 Dabei sind x 1, x 2, x 3 und y 1, y 2, y 3 die Koordinaten von a bzw. b bezüglich eines kartesischen Koordinatensystems. Damit ist: Wichtiger Spezialfall: cos α = a b a b a b = 0 ( a, b) = 90.

12 Das Skalarprodukt, metrische Geometrie A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 12 /27 Abstand zweier Punkte/ Länge (Betrag) eines Vektors Das Skalarprodukt Wege zum Skalarprodukt Ein geometrisch orientierter Weg zum Skalarprodukt Metrische Geometrie von Geraden und Ebenen Normalengleichungen Abstand eines Punktes von einer Ebene Hesse sche Normalform Weitere Abstände im Raum Winkelberechnungen

13 Normalengleichungen A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 13 /27 Normalengleichungen von Geraden in der Ebene Alle Punkte P der Ebene, deren Verbindungsvektoren P 0 P mit einem Punkt P 0 zu einem Vektor n ( n o) orthogonal sind, liegen auf einer Geraden. Ein zu einer Geraden g orthogonaler Vektor n (mit n o) heißt Normalenvektor der Geraden g. Ist g eine Gerade, P 0 ein Punkt und n ein Normalenvektor von g, so ist die Gleichung n P 0 P = 0 eine Normalengleichung der Geraden g.

14 Normalengleichungen Normalengleichungen von Geraden in der Ebene Beispiel: Eine Gerade g ist durch die Parametergleichung g: x = gegeben. Gesucht ist eine Normalengleichung von g. Normalengleichung Koordinatengleichung ( ) ( ) 56 + t 34 A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 14 /27

15 Normalengleichungen A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 15 /27 Normalengleichungen von Ebenen Alle Punkte P des Raumes, deren Verbindungsvektoren P 0 P mit einem Punkt P 0 zu einem Vektor n ( n o) orthogonal sind, liegen in einer Ebene. Vektor n, der zu einer Ebene ε senkrecht ist: Normalenvektor von ε. Die Lage einer Ebene ε im Raum ist durch einen Punkt P 0 ε und einen Normalenvektor n eindeutig bestimmt. Ein Punkt P liegt genau dann in ε, wenn P 0 P zu n orthogonal ist, also n P 0 P = 0. Ist ε eine Ebene, P 0 ein Punkt und n ein Normalenvektor von ε, so heißt n P 0 P = 0 Normalengleichung der Ebene ε.

16 Normalengleichungen A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 16 /27 Normalengleichungen von Ebenen Beispiel: Bestimmung einer Normalengleichung aus einer Parametergleichung einer Ebene Gegeben ist die Parametergleichung einer Ebene ( ) ( ) ( ε: p = + s + t 3 ), gesucht eine Normalengleichung. Mit oder ohne Vektorprodukt? Satz: Ist a x ( + ) b y + c z = d eine Gleichung einer Ebene ε, so ist der ab Vektor n = ein Normalenvektor von ε. c

17 Abstand eines Punktes von einer Ebene A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 17 /27 Wie würde man den Abstand eines Punktes von einer Ebene messen? Normalengleichung einer Ebene: E : n PX = 0 Das Lot von Q auf E schneidet E in einem Punkt R. Damit ist d (Q, E) = RQ der gesuchte Abstand. Es gilt QR = λ n, also d (Q, E) = QR = λ n. Da R in der Ebene E liegt, gilt 0 = n ( ) PR = PQ + λ n n = PQ n + λ n 2, also λ = PQ n n 2 Damit folgt für den gesuchten Abstand: d (Q, E) = QR = λ n = λ n = PQ n n = PQ n n 2 n

18 A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 18 /27 Hesse sche Normalform Abstand eines Punktes von einer Ebene: d (Q, E) = PQ n n Hesse sche Normalform der Ebenengleichung Besonders einfach wird die Formel für den Abstand eines Punktes von einer Ebene, mit einem Einheitsvektor als Normalenvektor, d. h. n = 1: Normaleneinheitsvektor. Damit heißt die Normalengleichung n P 0 P = 0 Ebenengleichung in Hesse scher Normalform. Die Abstandsformel vereinfacht sich damit zu d (Q, E) = PQ n In der Hesse schen Normalform muss man also nur die Koordinaten von Q in die Gleichung einsetzen und erhält (eventuell bis auf das Vorzeichen) den Abstand d (Q, E)).

19 Weitere Abstände im Raum A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 19 /27 Weitere Abstandsberechnungen im Raum lassen sich mithilfe anschaulich-geometrischer Überlegungen auf Abstände von Punkten zu Ebenen zurückführen. Abstand zweier paralleler Ebenen

20 Weitere Abstände im Raum A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 20 /27 Abstand einer Geraden von einer parallelen Ebene

21 A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 21 /27 Weitere Abstände im Raum Abstand eines Punktes von einer Geraden im Raum Abstand d(q, g) eines Punktes Q von einer Geraden g: Länge QL des Lotes von Q auf g Um den Fußpunkt L des Lotes von Q auf g zu bestimmen, ermittelt man die Gleichung derjenigen Ebene E, die Q enthält sowie zu g senkrecht ist.

22 Weitere Abstände im Raum A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 22 /27 Abstand zweier windschiefer Geraden

23 Winkelberechnungen A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 23 /27 Winkel zweier sich schneidender Geraden in der Ebene oder im Raum Zwei sich schneidende Geraden g und h schließen zwei Winkel miteinander ein, die sich zu 180 ergänzen. Derjenige dieser beiden Winkel, der nicht größer als 90 ist, heißt Schnittwinkel der Geraden g und h.

24 Winkelberechnungen A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 24 /27 Winkel zweier sich schneidender Geraden in der Ebene oder im Raum g: x = cos α = ( 0, 5 2 3, 5 ) + t ( ) ( ) 1,25 0,5 0,5, h: x = 1 + s 1 0 ( ) 0,75 1 0,75 1,25 0,75 0, ,75 0, 1278 α 97, 3 1, ,5 +1 0, ,752 (g, h) ,3 = 82,7.

25 Winkelberechnungen Winkel zweier sich schneidender Geraden in der Ebene oder im Raum Alternative: Absolutbetrag des Skalarproduktes für die Berechnung nutzen: Für den Schnittwinkel (g, h) zweier sich schneidender Geraden g: X = P 1 + t a und h: X = P 2 + s b gilt: cos (g, h) = cos ( a, b) = a b a b A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 25 /27

26 Winkelberechnungen Schnittwinkel zweier Ebenen Schnittwinkel zweier Ebenen E 1 und E 2 mit der Schnittgeraden g: Winkel zwischen zwei sich schneidenden Geraden g 1 und g 2, die in E 1 bzw. E 2 liegen und auf der Schnittgeraden g senkrecht stehen Für den Schnittwinkel α zweier sich schneidender Ebenen E 1 und E 2 mit den Normalenvektoren n 1 und n 2 gilt: cos α = n 1 n 2 n 1 n 2. A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 26 /27

27 Winkelberechnungen Schnittwinkel zwischen einer Geraden g und einer Ebene E: Winkel α zwischen g und derjenigen Geraden h in der Ebene E, die von allen in E liegenden Geraden den kleinsten Winkel mit g einschließt α ergänzt sich mit dem Winkel β zwischen g und einer zu E senkrechten Geraden zu 90. Falls eine Gerade g mit dem Richtungsvektor a eine Ebene E mit dem Normalenvektor n schneidet, so gilt für den Winkel α zwischen g und ε: sin α = n a n a. A. Filler[-3mm] Didaktik der Analysis und der Analytischen Geometrie/ Linearen Algebra, Teil 8 Folie 27 /27

Ebenen in Normalenform

Ebenen in Normalenform Ebenen in Normalenform Normalenvektoren und Einheitsvektoren Definition Normalenvektor Ein Normalenvektor einer Ebene ist ein Vektor, der senkrecht auf einer Ebene steht (siehe Seite 12). Berechnung eines

Mehr

Abstände und Zwischenwinkel

Abstände und Zwischenwinkel Abstände und Zwischenwinkel Die folgenden Grundaufgaben wurden von Oliver Riesen, KS Zug, erstellt und von Stefan Gubser, KS Zug, überarbeitet. Aufgabe 1: Bestimme den Abstand der beiden Punkte P( 3 /

Mehr

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2

(x 1. Vektoren. g: x = p + r u. p r (u1. x 2. u 2. p 2 Vektoren Mit der Vektorrechnung werden oft geometrische Probleme gelöst. Wenn irgendwelche Aufgabenstellungen geometrisch darstellbar sind, z.b. Flugbahnen oder Abstandsberechnungen, dann können sie mit

Mehr

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren

5. Geraden und Ebenen im Raum 5.1. Lineare Abhängigkeit und Unabhängigkeit von Vektoren 5 Geraden und Ebenen im Raum 5 Lineare Abhängigkeit und Unabhängigkeit von Vektoren Definition: Die Vektoren a,a,,a n heißen linear abhängig, wenn mindestens einer dieser Vektoren als Linearkombination

Mehr

entspricht der Länge des Vektorpfeils. Im R 2 : x =

entspricht der Länge des Vektorpfeils. Im R 2 : x = Norm (oder Betrag) eines Vektors im R n entspricht der Länge des Vektorpfeils. ( ) Im R : x = x = x + x nach Pythagoras. Allgemein im R n : x x = x + x +... + x n. Beispiele ( ) =, ( 4 ) = 5, =, 4 = 0.

Mehr

Das Wichtigste auf einen Blick

Das Wichtigste auf einen Blick Das Wichtigste auf einen Blick Zusammenfassung Geometrie.Parameterform einer Geraden Eine Gerade ist wie auch in der Analysis durch zwei Punkte A, B im Raum eindeutig bestimmt einer der beiden Punkte,

Mehr

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt:

Geometrie. Bei der Addition von Vektoren erhält man einen Repräsentanten des Summenvektors +, indem man die Repräsentanten von aneinanderfügt: Geometrie 1. Vektoren Die Menge aller zueinander parallelen, gleich langen und gleich gerichteten Pfeile werden als Vektor bezeichnet. Jeder einzelne Pfeil heißt Repräsentant des Vektors. Bei Ortsvektoren:

Mehr

Zusammenfassung der Analytischen Geometrie

Zusammenfassung der Analytischen Geometrie Zusammenfassung der Analytischen Geometrie 1. Rechnen mit Vektoren (Addition, Subtraktion, S-Multiplikation, Linearkombinationen) 1. Gegeben sind die Punkte A(2-6 ) und B(-1 14-4), 4 4 sowie die Vektoren

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 )

n n x a 1 a 2 = 0 n 1 x 1 + n 2 x 2 + ( n 1 a 1 n 2 a 2 ) IX. Normalformen ================================================================== 9.1 Die Normalenform einer Geradengleichung im 2-dimensionalen Punktraum ----------------------------------------------------------------------------------------------------------------

Mehr

03. Vektoren im R 2, R 3 und R n

03. Vektoren im R 2, R 3 und R n 03 Vektoren im R 2, R 3 und R n Unter Verwendung eines Koordinatensystems kann jedem Punkt der Ebene umkehrbar eindeutig ein Zahlenpaar (x, y) zugeordnet werden P (x, y) Man nennt x und y die kartesischen

Mehr

Mathematik Analytische Geometrie

Mathematik Analytische Geometrie Mathematik Analytische Geometrie Grundlagen:. Das -Dimensionale kartesische Koordinatensystem: x x x. Vektoren und Ortsvektoren: a x = x x ist ein Vektor, der eine Verschiebung um x -Einheiten in x-richtung,

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 16. April 2016 Stefan Ruzika 1: Schulstoff 16. April 2016 1 / 32 Übersicht Ziel dieses Kapitels

Mehr

Vektoren, Vektorräume

Vektoren, Vektorräume Vektoren, Vektorräume Roman Wienands Sommersemester 2010 Mathematisches Institut der Universität zu Köln Roman Wienands (Universität zu Köln) Mathematik II für Studierende der Chemie Sommersemester 2010

Mehr

Kapitel VI. Euklidische Geometrie

Kapitel VI. Euklidische Geometrie Kapitel VI. Euklidische Geometrie 1 Abstände und Lote Wiederholung aus Kapitel IV. Wir versehen R n mit dem Standard Skalarprodukt x 1 y 1.,. := x 1 y 1 +... + x n y n x n y n Es gilt für u, v, w R n und

Mehr

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung

Vorkurs Mathematik Intensiv. Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung Prof. Dr. J. Dorfmeister und Tutoren Vorkurs Mathematik Intensiv TU München WS 06/07 Geraden, Ebenen und lineare Gleichungssysteme - Musterlösung. Gegeben seien die Gerade G und die Ebene E : G : x (0,

Mehr

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 )

Geraden und Ebenen. 1 Geraden. 2 Ebenen. Thérèse Tomiska 2. Oktober Parameterdarstellung (R 2 und R 3 ) Geraden und Ebenen Thérèse Tomiska 2. Oktober 2008 1 Geraden 1.1 Parameterdarstellung (R 2 und R 3 ) a... Richtungsvektor der Geraden g t... Parameter X = P + t P Q P Q... Richtungsvektor der Geraden g

Mehr

Analytische Geometrie II

Analytische Geometrie II Analytische Geometrie II Rainer Hauser März 212 1 Einleitung 1.1 Geradengleichungen in Parameterform Jede Gerade g in der Ebene oder im Raum lässt sich durch einen festen Punkt auf g, dessen Ortsvektor

Mehr

GRUNDLAGEN MATHEMATIK

GRUNDLAGEN MATHEMATIK Mathematik und Naturwissenschaften Fachrichtung Mathematik, Institut für Numerische Mathematik GRUNDLAGEN MATHEMATIK 1. Vektorrechnung und Geometrie Prof. Dr. Gunar Matthies Wintersemester 2015/16 G. Matthies

Mehr

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015

Grundsätzliches Produkte Anwendungen in der Geometrie. Vektorrechnung. Fakultät Grundlagen. Juli 2015 Vektorrechnung Fakultät Grundlagen Juli 205 Fakultät Grundlagen Vektorrechnung Übersicht Grundsätzliches Grundsätzliches Vektorbegriff Algebraisierung der Vektorrechnung Betrag 2 Skalarprodukt Vektorprodukt

Mehr

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1

d 2 b 2 c 2 d 3 b 3 c 3 , D a 1 d 1 c 1 v 3 Definiton (Verbindungsvektor): Zwei Punkte A(a 1 a 2 a 3 ) und B(b 1 b 2 b 3 ) legen den Vektor b 1 a 1 2008/2009 Das Wichtigste in Kürze Klasse 3 Lineare Gleichungssysteme und Determinanten Definiton (Lineare Gleichungssysteme: Lineare Gleichungssysteme löst man entweder mit dem Gauß-Algorithmus oder nach

Mehr

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren

Zusammenfassung Mathe III. Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Zusammenfassung Mathe III Themenschwerpunkt 3: Analytische Geometrie / lineare Algebra (ean) 1. Rechenregeln mit Vektoren Definition: (1) anschaulich: Ein Vektor ist eine direkt gerichtete Verbindung zweier

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik für Informatik Inhalt: Lineare Algebra Rechnen mit Vektoren und Matrizen Lineare Gleichungssysteme, GauÿAlgorithmus Vektorräume, Lineare Abbildungen Eigenwerte und Eigenvektoren Literatur

Mehr

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01

13. Klasse TOP 10 Grundwissen 13 Geradengleichungen 01 . Klasse TOP 0 Grundwissen Geradengleichungen 0 Punkt-Richtungs-Form Geraden sind gegeben durch einen Aufpunkt A (mit Ortsvektor a) auf der Geraden und einen Richtungsvektor u: x = a + λ u, λ IR. (Interpretation:

Mehr

Abiturprüfung Mathematik 200 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, 2 Gegeben sind der Punkt A(,/6/,) sowie die Gerade g: x = 0 + t. a) Bestimmen Sie den Schnittpunkt

Mehr

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden

Analytische Geometrie - Schnittwinkel. u 1, u 2 Richtungsvektoren der Geraden Analytische Geometrie - Schnittwinkel. Möglichkeiten und Formeln Gerade / Gerade: cos( ) = u u 2 u u 2 Gerade / Ebene: sin( ) = n u n u Ebene / Ebene: cos( ) = n n 2 n n 2 u, u 2 Richtungsvektoren der

Mehr

Das Skalarprodukt zweier Vektoren

Das Skalarprodukt zweier Vektoren Beim Skalarprodukt zweier Vektoren werden die Vektoren so multipliziert, dass sich ein Skalar eine Zahl ergibt. Die Berechnung des Skalarproduktes ist ziemlich einfach, aber die weiteren Eigenschaften

Mehr

Lösung Arbeitsblatt Vektoren

Lösung Arbeitsblatt Vektoren Fachhochschule Nordwestschweiz FHNW Hochschule für Technik Institut für Mathematik und Naturwissenschaften IMN Dozent: - Brückenkurs Mathematik Lösung Arbeitsblatt Vektoren Modul: Mathematik Datum:. Aufgabe

Mehr

Analytische Geometrie, Vektorund Matrixrechnung

Analytische Geometrie, Vektorund Matrixrechnung Kapitel 1 Analytische Geometrie, Vektorund Matrixrechnung 11 Koordinatensysteme Eine Gerade, eine Ebene oder den Anschauungsraum beschreibt man durch Koordinatensysteme 111 Was sind Koordinatensysteme?

Mehr

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07

Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C /07 Übungsblatt Analytische Geometrie - Geraden und Ebenen - 6C - 6/7. Gegenseitige Lage von Geraden Gesucht ist die gegenseitige Lage der Geraden g durch die beiden Punkte A( ) und B( 5 9 ) und der Geraden

Mehr

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60

3 Vektoren. 3.1 Kartesische Koordinaten in Ebene und Raum. Höhere Mathematik 60 Kartesische Koordinaten in Ebene und Raum 3 Vektoren 3.1 Kartesische Koordinaten in Ebene und Raum In der Ebene (mathematisch ist dies die Menge R 2 ) ist ein kartesisches Koordinatensystem festgelegt

Mehr

Zusammenfassung Vektorrechnung und Komplexe Zahlen

Zusammenfassung Vektorrechnung und Komplexe Zahlen Zusammenfassung Vektorrechnung und Komplexe Zahlen Michael Goerz 8. April 006 Inhalt Vektoren, Geraden und Ebenen. Länge eines Vektors.......................... Skalarprodukt..............................

Mehr

Lernkarten. Analytische Geometrie. 6 Seiten

Lernkarten. Analytische Geometrie. 6 Seiten Lernkarten Analytische Geometrie 6 Seiten Zum Ausdrucken muss man jeweils eine Vorderseite drucken, dann das Blatt wenden, nochmals einlegen und die Rückseite drucken. Am besten druckt man die Karten auf

Mehr

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1

Geometrie 3. Lagebeziehung zwischen geometrischen Objekten. 28. Oktober Mathe-Squad GbR. Lagebeziehung zwischen geometrischen Objekten 1 Geometrie 3 Lagebeziehung zwischen geometrischen Objekten Mathe-Squad GbR 28. Oktober 2016 Lagebeziehung zwischen geometrischen Objekten 1 Lage zweier Geraden Geraden g : #» X = #» A + λ #» u mit λ R h

Mehr

Basistext Geraden und Ebenen

Basistext Geraden und Ebenen Basistext Geraden und Ebenen Parameterdarstellung Geraden Eine Gerade ist durch zwei Punkte P und Q, die auf der Geraden liegen, eindeutig festgelegt. Man benötigt zur Darstellung den Vektor. Dieser wird

Mehr

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt.

einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 6 4. Darstellung der Ebene 4. Die Parametergleichung der Ebene einführendes Beispiel: In der Skizze ist die durch die Punkte A(2, 4, 3) B(2, 6, 2) C(4, 4, 2) festgelegte Ebene ε dargestellt. 0 2 r uuur

Mehr

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth

Lineare Algebra. Mathematik II für Chemiker. Daniel Gerth Lineare Algebra Mathematik II für Chemiker Daniel Gerth Überblick Lineare Algebra Dieses Kapitel erklärt: Was man unter Vektoren versteht Wie man einfache geometrische Sachverhalte beschreibt Was man unter

Mehr

Vorkurs: Mathematik für Informatiker

Vorkurs: Mathematik für Informatiker Vorkurs: Mathematik für Informatiker Teil 4 Wintersemester 2017/18 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler Wintersemester 2017/18 Inhaltsverzeichnis Teil 1 Teil

Mehr

1.1. Geradengleichung aus Steigung und y-achsenabschnitt

1.1. Geradengleichung aus Steigung und y-achsenabschnitt Version vom 4. Januar 2007 Gleichungen von Geraden in der Ebene 1999 Peter Senn * 1.1. Geradengleichung aus Steigung und y-achsenabschnitt In dieser Form lautet die Gleichung der Geraden wie folgt: g:

Mehr

Abitur 2013 Mathematik Geometrie V

Abitur 2013 Mathematik Geometrie V Seite 1 http://www.abiturloesung.de/ Seite Abitur 1 Mathematik Geometrie V Teilaufgabe b ( BE) Ein auf einer horizontalen Fläche stehendes Kunstwerk besitzt einen Grundkörper aus massiven Beton, der die

Mehr

Lösungen der 1. Lektion

Lösungen der 1. Lektion Lektionen der Vektorrechnung in Aufgaben Lösungen Schickt mir bei Entdeckung eines Fehlers oder Unklarheiten bitte eine e-mail! Lösungen der 1. Lektion Es ist hier unerheblich, wie Vektoren definiert werden.

Mehr

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie

Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Jürgen Roth Didaktik der Linearen Algebra und Analytischen Geometrie Modul 12a: Fachdidaktische Bereiche juergen-roth.de/lehre/did_linalg_anageo/ Kapitel 5: Skalarprodukt 5.1 Inhalte Didaktik der Linearen

Mehr

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ

Vektorprodukt. Satz: Für a, b, c V 3 und λ IR gilt: = a b + a c (Linearität) (Linearität) b = λ Vektorprodukt Satz: Für a, b, c V 3 und λ IR gilt: 1 a b = b a (Anti-Kommutativität) ( ) 2 a b + c ( 3 a λ ) b = λ = a b + a c (Linearität) ( a ) b (Linearität) Satz: Die Koordinatendarstellung des Vektorprodukts

Mehr

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene

Geometrie. 1 Vektoren, Vektorielle analytische Geometrie der Ebene Geometrie Geometrie W. Kuhlisch Brückenkurs 207. Vektoren, Vektorrechnung und analytische Geometrie der Ebene 2. Vektorrechnung und analytische Geometrie des Raumes 3. Anwendungen in der Geometrie, Lagebeziehungen

Mehr

Grundwissen Abitur Geometrie 15. Juli 2012

Grundwissen Abitur Geometrie 15. Juli 2012 Grundwissen Abitur Geometrie 5. Juli 202. Erkläre die Begriffe (a) parallelgleiche Pfeile (b) Vektor (c) Repräsentant eines Vektors (d) Gegenvektor eines Vektors (e) Welcher geometrische Zusammenhang besteht

Mehr

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif

Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof. Dr. Ulrich Reif 14 Oktober 2008 1 Kurzskript zur Vorlesung Mathematik I für MB, WI/MB und andere Prof Dr Ulrich Reif Inhalt: 1 Vektorrechnung 2 Lineare Gleichungssysteme 3 Matrizenrechnung 4 Lineare Abbildungen 5 Eigenwerte

Mehr

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene

5. Gegenseitige Lage von Geraden und Ebenen. 5.1 Gegenseitige Lage zweier Geraden (siehe Kap. 3.2) 5.2: Schnittpunkt einer Geraden mit einer Ebene 5 5. Gegenseitige Lage von Geraden und Ebenen 5. Gegenseitige Lage zweier Geraden (siehe Kap..) 5.: Schnittpunkt einer Geraden mit einer Ebene Beispiel: : x + y + 4z - 4 = g = P(6, -, )Q(, 6, 4) geometrisch:

Mehr

Skalarprodukt. Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor. Ganz einfache Erklärung der Grundlagen:

Skalarprodukt. Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor. Ganz einfache Erklärung der Grundlagen: Vektorgeometrie ganz einfach Teil 5 Skalarprodukt Anwendung auf die Berechnung von einfachen Abständen und Winkeln sowie Normalenvektor Ganz einfache Erklärung der Grundlagen: Die wichtigsten Aufgabenstellungen

Mehr

1 Vorlesungen: und Vektor Rechnung: 1.Teil

1 Vorlesungen: und Vektor Rechnung: 1.Teil 1 Vorlesungen: 4.10.005 und 31.10.005 Vektor Rechnung: 1.Teil Einige in der Physik auftretende Messgrößen sind durch eine einzige Zahl bestimmt: Temperatur T K Dichte kg/m 3 Leistung P Watt = J/s = kg

Mehr

3. Übungsblatt Aufgaben mit Lösungen

3. Übungsblatt Aufgaben mit Lösungen . Übungsblatt Aufgaben mit Lösungen Aufgabe : Gegeben sind zwei Teilmengen von R : E := {x R : x x = }, und F ist eine Ebene durch die Punkte A = ( ), B = ( ) und C = ( ). (a) Stellen Sie diese Mengen

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester 9 Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Vektorprodukte und analytische Geometrie

Vektorprodukte und analytische Geometrie KAPITEL 4 Vektorprodukte und analytische Geometrie 4. Vektorprodukte.................................... 8 4. Skalarprodukt für Vektoren im R n.......................... 8 4. Anwendung des Skalarprodukts..........................

Mehr

Übungsblatt 1: Lösungswege und Lösungen

Übungsblatt 1: Lösungswege und Lösungen Übungsblatt : Lösungswege und Lösungen 5..6 ) Hier geht es weniger um mathematisch-strenge Beweise als darum, mit abstrakten Vektoren ohne Komponenten) zu hantieren und damit die Behauptungen plausibel

Mehr

Abitur 2011 G8 Musterabitur Mathematik Geometrie V

Abitur 2011 G8 Musterabitur Mathematik Geometrie V Seite http://www.abiturloesung.de/ Seite Abitur G Musterabitur Mathematik Geometrie V In einem kartesischen Koordinatensystem beschreibt die x x -Ebene eine flache Landschaft, in der sich ein Flughafen

Mehr

Mathematik für Naturwissenschaftler II SS 2010

Mathematik für Naturwissenschaftler II SS 2010 Mathematik für Naturwissenschaftler II SS 2010 Lektion 6 4. Mai 2010 Definition 69. Der Vektor f 3 x 2 (x 1, x 2, x 3 ) f 2 x 3 (x 1, x 2, x 3 ) f 1 x 3 (x 1, x 2, x 3 ) f 3 x 1 (x 1, x 2, x 3 ) f 2 x

Mehr

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1

Vektoren. Kapitel 13 Vektoren. Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren Kapitel 13 Vektoren Mathematischer Vorkurs TU Dortmund Seite 114 / 1 Vektoren 131 Denition: Vektoren im Zahlenraum Ein Vektor (im Zahlenraum) mit n Komponenten ist ein n-tupel reeller Zahlen,

Mehr

Formelsammlung Analytische Geometrie

Formelsammlung Analytische Geometrie Formelsammlung Analytische Geometrie http://www.fersch.de Klemens Fersch 6. August 6 Inhaltsverzeichnis 6 Analytische Geometrie 6. Vektorrechung in der Ebene......................................... 6..

Mehr

Theorie 1 1 / 2 Grundbegriffe

Theorie 1 1 / 2 Grundbegriffe Theorie 1 1 / 2 Grundbegriffe Was ist ein Vektor? Wie lassen sich Vektoren darstellen? Theorie 1 2 / 2 Grundbegriffe Antwort : Ein Vektor ist die Menge aller gleichlangen, gleichgerichteten und gleichorientierten

Mehr

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)?

Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/1) und B(-5/8)? Übungsbeispiel / 2 Gerade durch 2 Punkte Wie lautet die Gleichung der Geraden, durch die beiden Punkte A(4/) und B(-5/8)? Maturavorbereitung 8. Klasse ACDCA 999 Vektorrechnung Übungsbeispiel 2 / 2 Gerade

Mehr

Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung

Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung Lehrplan 2013: Klassenstufe 11: 2015/16 Klassenstufe 12: 2016/17 Analytische Geometrie und Vektorrechnung Erfurt, 05.03.2015 Wolfgang Häfner Analytische Geometrie und Vektorrechnung Änderungen im Lehrplan

Mehr

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV

Übung Elementarmathematik im WS 2012/13. Lösung zum Klausurvorbereitung IV Technische Universität Chemnitz Fakultät für Mathematik Dr. Uwe Streit Jan Blechschmidt Aufgabenkomplex 7 - Vektoren Übung Elementarmathematik im WS 202/3 Lösung zum Klausurvorbereitung IV. (5 Punkte -

Mehr

Teil II. Geometrie 19

Teil II. Geometrie 19 Teil II. Geometrie 9 5. Dreidimensionales Koordinatensystem Im dreidimensionalen Koordinatensystem gibt es acht Oktanten, oben I bis VI und unten VI bis VIII. Die Koordinatenachsen,x 2 und stehen jeweils

Mehr

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h.

Definition von R n. Parallelverschiebungen in R n. Definition 8.1 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R... R (n-mal), d.h. 8 Elemente der linearen Algebra 81 Der euklidische Raum R n Definition von R n Definition 81 Unter dem Raum R n (n N) versteht man das kartesische Produkt R R R (n-mal), dh R n = {(x 1, x 2,, x n ) : x

Mehr

Lösungen der Übungsaufgaben III

Lösungen der Übungsaufgaben III Mathematik für die ersten Semester (. Auflage): Lösungen der Übungsaufgaben III C. Zerbe, E. Ossner, W. Mückenheim 6. Man konstruiere die Winkelhalbierende eines beliebigen Winkels analog zur Konstruktion

Mehr

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN

8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 8 SKALARPRODUKT VON VEKTOREN BERECHNEN GEOMETRISCHER GRÖSSEN 7 7. a) s = ; s = 5, 5, 5 Über den Satz des Pythagoras ist die Länge der Vektoren bestimmbar. Die Länge von = ist = + +. s 6,9 m und s 6,97

Mehr

Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren

Geometrie / Lineare Algebra. Rechenregeln. Geometrische Deutung. Vektoren Vektoren Geometrie / Lineare Algebra Vektoren und Rechenregeln Länge, Winkel, Abstand Darstellung von Geraden und Ebenen Umformungen Abstandsbestimmungen Lage, Schnitte, Schnittwinkel Spiegelungen E-Mail:

Mehr

Lineare Algebra: Theorie und Anwendungen

Lineare Algebra: Theorie und Anwendungen Lineare Algebra: Theorie und Anwendungen Sommersemester 2012 Bernhard Burgeth Universität des Saarlandes c 2010 2012, Bernhard Burgeth 1 VEKTOREN IN DER EBENE UND IM RAUM 2 1 Vektoren in der Ebene und

Mehr

Einführung in das Skalarprodukt

Einführung in das Skalarprodukt Die Homepage von Joachim Mohr Start Mathematik Einführung in das Skalarprodukt in Aufgaben Alle Lektionen und Texte der Delphi-Ecke sind in der gepackten Zip-Datei Delphi-Ecke (ohne Urlaubsbilder) (Stand:

Mehr

Lineare Algebra in der Oberstufe

Lineare Algebra in der Oberstufe Lineare Algebra in der Oberstufe Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. April 2016 Stefan Ruzika 1: Schulstoff 11. April 2016 1 / 21 Übersicht Ziel dieses Kapitels

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 6 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform

Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Lagebeziehungen zwischen Geraden und Ebenen mit Hilfe der Normalenform Bernhard Scheideler Albrecht-Dürer-Gymnasium Hagen Hilfen zur Analytischen Geometrie (). Dezember 0 Inhalt: Die Lagebeziehungen zwischen

Mehr

Inhalt der Lösungen zur Prüfung 2011:

Inhalt der Lösungen zur Prüfung 2011: Inhalt der Lösungen zur Prüfung : Pflichtteil Wahlteil Analysis 7 Wahlteil Analysis Wahlteil Analysis 6 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 6 Pflichtteil Lösungen zur Prüfung

Mehr

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg

Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Pflichtteilaufgaben zu Gegenseitige Lage, Abstand, Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz wwwmathe-aufgabencom September 7 Abituraufgaben (Haupttermin) Aufgabe

Mehr

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie

Mathematische Grundlagen für die Vorlesung. Differentialgeometrie Mathematische Grundlagen für die Vorlesung Differentialgeometrie Dr. Gabriele Link 13.10.2010 In diesem Text sammeln wir die nötigen mathematischen Grundlagen, die wir in der Vorlesung Differentialgeometrie

Mehr

Brückenkurs Mathematik. Mittwoch Freitag

Brückenkurs Mathematik. Mittwoch Freitag Brückenkurs Mathematik Mittwoch 5.10. - Freitag 14.10.2016 Vorlesung 4 Dreiecke, Vektoren, Matrizen, lineare Gleichungssysteme Kai Rothe Technische Universität Hamburg-Harburg Montag 10.10.2016 0 Brückenkurs

Mehr

Lehrskript Mathematik Q12 Analytische Geometrie

Lehrskript Mathematik Q12 Analytische Geometrie Lehrskript Mathematik Q1 Analytische Geometrie Repetitorium der analytischen Geometrie Eine Zusammenfassung der analytischen Geometrie an bayerischen Gymnasien von Markus Baur, StR Werdenfels-Gymnasium

Mehr

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans

Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans Sollten sich (Flüchtigkeits )Fehler eingeschlichen haben, bitte ich um eine kurze Nachricht an hans josef.coenen@web.de Abitour Analytische Geometrie Leistungskurs Aufgaben 1. Welche Lagebeziehungen zwischen

Mehr

14 Skalarprodukt Abstände und Winkel

14 Skalarprodukt Abstände und Winkel 4 Skalarprodukt Abstände und Winkel Um Abstände und Winkel zu definieren benötigen wir einen neuen Begriff. Zunächst untersuchen wir die Länge eines Vektors v. Wir schreiben dafür v und sprechen auch von

Mehr

Übungsblatt 5 : Lineare Algebra

Übungsblatt 5 : Lineare Algebra Mathematik I Übungsblatt 5 WS /5 Dr. A. Schmitter Übungsblatt 5 : Lineare Algebra Aufgabe 5. Gegeben sind die folgenden Vektoren: u = v = 8 w = 6 a) Bestimmen Sie die Komponenten von u v, 6u + w, v + u,

Mehr

c) Am Punkt R( ) ändert das U-Boot seine Fahrtrichtung und fährt in Richtung des Vektors w = 13

c) Am Punkt R( ) ändert das U-Boot seine Fahrtrichtung und fährt in Richtung des Vektors w = 13 Lineare Algebra / Analytische Geometrie Grundkurs Aufgabe 9 U-Boot Während einer Forschungsfahrt tritt ein U-Boot am Punkt P(100 0 540) alle Angaben in m in den Überwachungsbereich seines Begleitschiffes

Mehr

Fit in Mathe. Februar Klassenstufe 12 Winkel in der Linearen Algebra (Taschenrechner erlaubt) Musterlösungen 1. Thema. Tabelle mit Kosinuswerten

Fit in Mathe. Februar Klassenstufe 12 Winkel in der Linearen Algebra (Taschenrechner erlaubt) Musterlösungen 1. Thema. Tabelle mit Kosinuswerten Thema Musterlösungen Februar Klassenstufe Winkel in der Linearen Algebra (Taschenrechner erlaubt) Ermittle zeichnerisch mit Hilfe nebenstehender Tabelle, welche Winkel α ( α 36 ) erster zweiter Vektor

Mehr

Gleiche Vorgehensweise wie beim Einheitsvektor in der Ebene (also wie bei 2D).Beispiel:

Gleiche Vorgehensweise wie beim Einheitsvektor in der Ebene (also wie bei 2D).Beispiel: VEKTOREN Vektoren im Raum (3D) Länge/Betrag eines räumlichen Vektors Um die Länge eines räumlichen Vektors zu bestimmen, berechnen wir dessen Betrag. Auch hier rechnet man genauso wie bei einem zweidimensionalen

Mehr

Übungsblatt 5 : Lineare Algebra

Übungsblatt 5 : Lineare Algebra Aufgabe 5.1 Übungsblatt 5 : Lineare Algebra Gegeben sind die folgenden Vektoren: Bestimmen Sie die Komponenten von Aufgabe 5.2 Gegeben seien die Vektoren Berechnen Sie (a) (b) (c) Aufgabe 5.3, d.h. der

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 6 Vektoren Aufgabe 6 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

00. Einiges zum Vektorraum R n

00. Einiges zum Vektorraum R n 00. Einiges zum Vektorraum R n In diesem einleitenden Kapitel werden die in der LV Einführung in die mathematischen Methoden erwähnten Konzepte über Vektoren (im R 2 und R 3 ) im Rahmen des n-dimensionalen

Mehr

4. Übungsblatt zur Mathematik I für Maschinenbau

4. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 4. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-7.. Aufgabe G (Geraden im R ) Bestimmen

Mehr

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k

~ v 2. Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k 1. i=1. v k = w k v 1 v 1 v 2 v 2 W 2 -v (v, v ) 1 1 2 Abbildung 3: Zweiter Schritt des Gram-Schmidt-Verfahrens. k. Schritt: Subtraktion der Komponenten von ṽ k in Richtung von v 1,v 2,...,v k 1 und Normierung von w k auf

Mehr

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte

Geometrie. 1 Vektorielle analytische Geometrie der Ebene, Kegelschnitte Geometrie Geometrie W. Kuhlisch Brückenkurs 206. Vektorrechnung und analytische Geometrie der Ebene, Kegelschnitte 2. Vektorrechnung und analytische Geometrie des Raumes, Anwendungen in der Geometrie,

Mehr

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor!

Grundwissen. 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! Grundwissen 1.Aufstellen eines Vektors: Merkregel: Spitze minus Fuß! 2.Aufstellen von Geradengleichungen: Man nimmt einen Startvektor und bildet aus 2 Punkten einen Richtungsvektor! 3.Aufstellen von Ebenengleichungen

Mehr

M Lernzusammenfassung - Vektoren -

M Lernzusammenfassung - Vektoren - Christian Voigt M-Lernzusammenfassung 1 ABI M Lernzusammenfassung - Vektoren - Christian Voigt Version: 1.11 Christian Voigt M-Lernzusammenfassung 2 Inhaltsübersicht Allgemein... Namen... Addition... Vervielfachen...

Mehr

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen.

Analytische Geometrie Seite 1 von 6. Die Addition von Vektoren kann veranschaulicht werden durch das Aneinanderhängen von Pfeilen. Analytische Geometrie Seite 1 von 6 1. Wichtige Formeln AB bezeichnet den Vektor, der die Verschiebung beschreibt, durch die der Punkt A auf den Punkt B verschoben wird. Der Vektor, durch den die Verschiebung

Mehr

Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren

Wiederholung Winkel. Berechnung des Winkels zwischen zwei Vektoren Wiederholung Winkel Das entscheidende Mittel zur Bestimmung von Winkeln ist das Skalarprodukt. Das Skalarprodukt lässt sich nämlich sehr komfortabel koordinatenweise berechnen, zugleich hängt es aber mit

Mehr

Aufgabenskript. Lineare Algebra

Aufgabenskript. Lineare Algebra Dr Udo Hagenbach FH Gießen-Friedberg Sommersemester Aufgabenskript zur Vorlesung Lineare Algebra 7 Vektoren Aufgabe 7 Gegeben sind die Vektoren a =, b =, c = Berechnen Sie die folgenden Vektoren und ihre

Mehr

Mögliche Lösung. Ebenen im Haus

Mögliche Lösung. Ebenen im Haus Lineare Algebra und Analytische Geometrie XX Ebenen im Raum Ebenen im Haus Ermitteln Sie die Koordinaten aller bezeichneten Punkte. Erstellen Sie für die Dachflächen E und E jeweils eine Ebenengleichung

Mehr

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen?

Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Welche Lagen können zwei Geraden (im Raum) zueinander haben? Welche Lagen können zwei Ebenen (im Raum) zueinander haben? Welche Lagen kann eine Gerade bezüglich einer Ebene im Raum einnehmen? Wie heiÿt

Mehr

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek

Lineare Algebra I. Eine Vorlesung von Prof. Dr. Klaus Hulek Lineare Algebra I Eine Vorlesung von Prof. Dr. Klaus Hulek hulek@math.uni-hannover.de c Klaus Hulek Institut für Mathematik Universität Hannover D 30060 Hannover Germany E-Mail : hulek@math.uni-hannover.de

Mehr

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales.

Kreis - Tangente. 2. Vorbemerkung: Satz des Thales Eine Möglichkeit zur Bestimmung der Tangente benutzt den Satz des Thales. Kreis - Tangente 1. Allgemeines 2. Satz des Thales 3. Tangente an einem Punkt auf dem Kreis 4. Tangente über Analysis (an einem Punkt eines Ursprungkreises) 5. Tangente von einem Punkt (Pol) an den Kreis

Mehr

Abiturprüfung Mathematik 8 Baden-Württemberg (ohne CAS) Wahlteil Aufgaben Analytische Geometrie II, Aufgabe II. Die Punkte A(//), B(//), C(//), F(//), G(//) und H(//) sind die Ecken eines dreiseitigen

Mehr

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel

Aufgaben mit Ebenen. Parameterform Normalenform Koordinatenform. Darstellung = + r + s =0 ax 1 + bx 2 + cx 3 = d. Beispiel Aufgaben mit Ebenen Parameterform Normalenform Koordinatenform Spurpunkte Zur grafischen Darstellung der Ebene die Spurpunkt berechnen. Zwei Koordinaten gleich 0 setzen und jeweils die dritte ausrechnen.

Mehr