Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Vektorrechnung 1. l P= x y = z. Polarkoordinaten eines Vektors Im Polarkoordinatensystem weist der Ortsvektor vom Koordinatenursprung zum Punkt"

Transkript

1 Vektoechnung Vektoen Vektoechnung 1 Otsvekto Feste Otsvektoen sind mit dem Anfangspunkt an den Koodinatenuspung gebunden und weisen im äumlichen, katesischen Koodinatensstem um Punkt P,, ( ) Das katesische Koodinatensstem ist ein Rechtssstem = Dem Otsvekto um Punkt P wid das mbol ugeodnet Dann lautet die vollständige Vektobeeichnung in katesischen Koodinaten mit den Einheitsvektoen, und = + + = + + Eine hochgestellte Null beeichnet den Vekto als Einheitsvekto mit de Länge 1 Vaiable weden duch kusive chifteichen, Konstante und Indies duch steile chifteichen gekenneichnet P(,, ) l P= 6 b g= l = 36 a c a Polakoodinaten eines Vektos Im Polakoodinatensstem weist de Otsvekto vom Koodinatenuspung um Punkt P( c,, ) In Anlehnung an die Beeichnungen de Astonomie und de eologie hat de Vekto folgende Polakoodinaten absolute Länge des Vektos ode Betag c Aimut, Lagewinkel in de (,)-Ebene wischen -Achse und senkechte Pojektion des Vektos in die (,)-Ebene Zenitwinkel, Neigungswinkel des Vektos u -Achse 9 Deklination, Neigungswinkel des Vektos u Äquatoebene De eidian (ittagskeis) geht duch den Zenit und den Nadi und liegt bei dem Aimut c = In de katesischen cheibweise lassen sich folgende Kenngößen des Vektos definieen a Winkel wischen -Komponente und äumlichen Vekto b g Winkel wischen -Komponente und äumlichen Vekto Winkel wischen -Komponente und äumlichen Vekto De Winkel g wischen de -Komponente und dem äumlichen Vekto im katesischen stem entspicht dem Zenitwinkel g = Die Umechnung de Polakoodinaten in katesische Koodinaten egibt die folgenden Komponenten = cosa = sin cosc 1454 Vektoechnungdoc

2 Vektoechnung = cosb= sin sinc = cosg = cos cos a+ cos b+ cos g = 1 Feie Vekto Feie Vektoen sind nicht unmittelba an den Koodinatenuspung angebunden, sonden sind je nach Vewendungsat und phsikalische Hekunft in ihe Richtung und paallel dau veschiebba ie weden duch die Koodinaten des Endpunktes gegenübe dem Anfangspunkt festgelegt, dh duch ihe Komponenten ode duch ihen Betag und die beiden Richtungswinkel Aimut c und Zenitwinkel ebundene Vekto De gebundene Vekto kann mit seinem Anfangspunkt unmittelba an den Koodinatenuspung angebunden sein ode übe einen festen Otsvekto, dessen Anfangspunkt unmittelba im Koodinatenuspung liegt De gebundene Vekto benötigt also dei Paamete fü seinen Anfangspunkt und auch dei Paamete fü seinen Endpunkt Auch de Koodinatenuspung ist duch dei Wete gekenneichnet Im Koodinatenuspung sind die -, - und -Koodinate gleich Null Ein Vekto kann auch übe ein Hilfssstem an den Koodinatenuspung eines globalen Koodinatensstem angebunden sein Fü den Vekto s in de ( hv, ) -Ebene eines Hilfssstem mit den Richtungsvektoenvektoen h und v sowie den Komponenten s h und sv gilt die Beiehung s = h sh + v s v Das Hilfssstem wid duch den u ( hv, ) -Ebene senkechten Richtungsvekto n um äumlichen ( hv,, n) -stem vevollständigt Das Hilfssstem ist ein Rechtssstem h v = n Das Hilfssstem ist in einem globalen (, -Koodinatensstem, ) eingebettet De Koodinatenuspung des Hilfssstem wid duch einen Otsvekto im globalen (,, ) s - Koodinatensstem festgelegt Die Lage de ( hv, ) -Ebene, in de sich de Vekto befindet, wid duch den u Ebene senkechten (nomalen) Einheitsvekto n vogegeben De Einheitsvekto h des Hilfssstems soll paallel (hoiontal) u (, ) -Ebene liegen und wid duch das folgende Vektopodukt bestimmt o n h = n Den um Einheitsvekto h senkechten (vetikalen) Einheitsvekto v ehält man duch die Beiehung v = n h Das Poblem titt bei de Beechnung de Bechung eines Lichtstahls an eine bechenden Fläche auf De Hilfsvekto n ist de Einheitsnomalenvekto u bechenden Fläche im Aufteffpunkt des Lichtstahls Das Poblem wid bei de Beechnung von tahlengängen noch ausgiebig behandelt Vaiable Vekto it Hilfe von Vektoen können Linien, Ebenen, Flächen und Obeflächen von geometischen Köpen im Raum dagestellt weden De Vekto eade stellt eine eade im Raum da De Vekto ist ein Otsvekto, de einen Punkt de eaden festlegt De Richtungsvekto s ode s und de Paamete a legen de Velauf de eaden fest eade = + as Um eine Ebene festulegen, baucht man neben dem Otsvekto E wei Richtungsvektoen t und u ode deen Einheitsvektoen t und u, die usammen mit den Paameten a und b eine Ebene aufspannen 1454 Vektoechnungdoc

3 Vektoechnung 3 Ebene = E + at + bu Die Paamete a und b sind eine Folge von negativen ode positiven Zahlen mit konstantem Unteschied tahleneinheitsvekto Die tahleneinheitsvektoen (Richtungseinheitsvektoen) in Richtung de u untesuchenden I Lichtstahlen weden in de Optik mit s bw s beeichnet Die hoch gestellte Null deutet an, dass de Betag des Vektos gleich 1 ist De hoch gestellte tich gibt an, dass die Lichtichtung unmittelba hinte de bechenden Fläche gemeint ist Die cheibweise ohne den hochgestellten tich bedeutet, dass es sich um die Lichtichtung vo de bechenden Fläche handelt Nomaleneinheitsvekto Nomaleneinheitsvektoen weden mit n beeichnet ie stehen im Aufteffpunkt des Lichtstahls auf de ugehöigen bechenden Fläche senkecht ie spielen bei de Anwendung des nelliusschen Bechungsgesetes bei de Bestimmung de Bechungswinkel eine Rolle Vektopodukt a = a + a + a b = b + b + b a b= ( ab ab ) + ( ab ab ) + ( ab ab ) a b = b a a b = a b sin( a/b) = = = = = = De Vekto a b, de duch die vektoielle ultiplikation u tande kommt, steht auf de Fläche, die duch die Vektoen a und b aufgespannt wid, senkecht kalaes Podukt a = a + a + a Die Definition eines Vektos kann mit Hilfe des skalaen Podukts ausgedückt weden Die Wuel aus dem skalaen Podukt eines Vektos mit sich selbst ist gleich seinem absoluten Betag a = a a = a + a + a b = b + b + b b = b b = b + b + b ab= ab + ab + ab ab = a b cos( a/ b) = = 1 = = = = Entwicklungssat a ( b c) = ( ac) b ( ab) c Vektoielle eadengleichung Paametefom de eadengleichung eade = + as De feste Otsvekto weist um Punkt P auf de eaden De Paamete a kann Wete wischen und + annehmen Die Richtung de eaden wid duch den Richtungsvekto angegeben De Richtungsvekto s kann auch duch den Richtungseinheitsvekto s esett s 1454 Vektoechnungdoc

4 weden eade = + a s Vektoechnung 4 Paametefeie eadengleichung Die paametefeie eadengleichung egibt sich duch vektoielle ultiplikation de Paametefom von links mit dem Richtungsvekto s Unte Beachtung von s s = lautet die paametefeie eadengleichung s eade = s, s ( ) = eade it dem Richtungseinheitsvekto s egibt sich die folgende Fom de eadengleichung s ( eade ) = Die Vektoen s und s untescheiden sich nu duch einen skalaen Fakto Vektoielle Ebenengleichung im Raum De feste Otsvekto E weist um Punkt PE( E, E, E) in de Ebene, die duch die Richtungsvektoen t und u aufgespannt wid Ebene = E+ at + bu Die Paamete a und b sind eine Folge von negativen ode positiven Zahlen mit konstantem Unteschied Paametefeie Ebenengleichung im Raum Die paametefeie Ebenengleichung egibt sich duch skalae ultiplikation de Paametefom mit dem Vektopodukt ( t u) Unte Beachtung von ( t u) t = ( t u) u = lautet die paametefeie Ebenengleichung ( t u) Ebene = ( t u) E, ( t u)( Ebene E ) = Fü die Richtungsvektoen in de Ebene können auch die entspechenden Einheitsvektoen t und u gesett weden ( t u )( ) = Ebene E Nomalenfom de Ebenengleichung im Raum Da die Richtungsvektoen t und u in de Ebene liegen, ist de Vekto n = t u Nomalenvekto de Ebene, dahe kann die Ebenengleichung auch in de folgende Fom geschieben weden n( ) = Ebene E Vektofeie Ebenengleichung im Raum nebene = ne = k Das skalae Podukt n E wid gleich einem kala k gesett, so dass sich die cheibweise nebene = k egibt In katesischen Koodinaten können die Vektoen n und Ebene in folgende Fom geschieben weden n = n + n + n Ebene = + + k = n + n + n E E E k = n + n + n Die Funktion f(,,) = n + n +n mit den vogegebenen konstanten Weten n, n und n ist fü die in de Ebene liegenden -, Vektoechnungdoc

5 Vektoechnung 5 und -Wete konstant und gleich k Auch de Punkt P E( E, E, E) ist ein Punkt diese Ebene Vektoielle Keisgleichung in de Ebene = Keis it Hilfe des skalaen Podukts lässt sich die Aussage, dass alle Punkte des Keises und damit auch die Endpunkte alle den Keis bildende Vektoen den gleichen Abstand vom ittelpunkt haben, in eine vektoielle Keisgleichung umwandeln Keis = Keis = + Keis = ( + )( + ) Keis = + = + Liegt de ittelpunkt des Keises nicht im Koodinatenuspung und ist de ittelpunktsvekto gleich = +, so lautet die Keisgleichung Keis =, = ( ) Keis Damit ehält man die katesische Fom de Keisgleichung = ( ) + ( ) Vektoielle Keisgleichung im Raum Um die vektoielle leichung eines Keises im (,, ) -Raum mit dem ittelpunktsvekto = + +, dem Nomaleneinheitsvekto de Keisfläche n und dem Radius aufstellen u können, muss im ittelpunkt des Keises ein Hilfssstem mit den Einheitsvektoen h, v und n eingeichtet weden Die h -Achse des Hilfssstems soll paallel u (,) -Ebene velaufen it diese Bedingung und mit Hilfe des Nomalenvektos n lässt sich dann de Einheitsvekto de h -Achse beechnen n h = n Das ( hv,, n) -stem ist ein katesisches Rechtssstem, so dass sich fü die v -Achse folgende Einheitsvekto egibt v = n h Um die einelnen Punkte des Keises in de ( hv, )-Ebene beeichnen u können, wid mit Hilfe des Paametes l l = l und dem Teilwinkel d p d = l ma ma eine Vaiable d definiet l d= ld = p lma chließlich bekommt man fü die leichung des Keises im Raum den folgenden Ausduck Keis= + hcosd+ vsind Vektoielle Kugelgleichung im Raum 1454 Vektoechnungdoc

6 Vektoechnung 6 Fü alle Punkte eine Kugel ist de Abstand vom Kugelmittelpunkt konstant und gleich dem Kugeladius = Kugel Die vektoielle leichung eine Kugelobefläche mit dem ittelpunktsvekto lautet bei Vewendung des skalaen Podukts ( Kugel ) = = + + = + + Kugel it Hilfe de leichung ( ) = Kugel ehält man die katesische Fom de Kugelgleichung ( ) + ( ) + ( ) = chnittpunkt wischen eade und Ebene und dem Radius Die leichung eine eaden mit dem Ausgangspunkt P(,, ) dem Paamete a und dem Richtungsvekto s lautet = + eade as Die Bedingung fü den chnittpunkt de eaden mit de Ebene n ( ) = lautet Ebene E Ebene = eade Im chnittpunkt P,, Abstand e des Punktes s eingesett wid a = e ( P Fü den Abstand e ehält man somit n ( E ) e = ( ns) Fü den Otsvekto des chnittpunktes P ehält man = +es = + + ) de eaden mit de Ebene entspicht de Paamete a dem vom chnittpunkt P, wenn als Richtungsvekto de Einheitsvekto = + es = + es = + es it Hilfe des Otsvektos des Punktes P(,, ) und des Otsvektos des chnittpunktes P(,, ) egibt sich de Abstand duch folgende Beiehung e = ( ) ( ) ( e = + + Fü den Richtungseinheitsvekto de eaden s egibt sich unte diesen Umständen de folgende Ausduck s = s + s + s s = s = s = e e e ) 1454 Vektoechnungdoc

7 Vektoechnung v 1 14 Nomale n eade P h d P l= 36 chnittpunkt wischen eade und Ebene Die folgenden Daten sind gegeben Die Ebene wid duch eine Keis mit dem Radius = 3 mm smbolisiet bw duch das den Keis umscheibende Quadat im ( hvn,, ) -Hilfssstem Die Koodinaten des Keismittelpunktes P im katesischen (, -Koodinatensstem, ) sind auch de Koodinatenuspung des Hilfssstems = mm = 3 mm = 4 mm De Neigungswinkel (Zenitwinkel) wischen dem Nomaleneinheitsvektos n im Punkt P und de -Achse betägt = 8 De Lagewinkel (Aimut) wischen de Pojektion des Vektos Achse betägt c = 65 n in die (, ) -Ebene und de - Die Koodinaten des Punktes P weden im ( hv, ) -Hilfssstem festgelegt, das in de faglichen Ebene liegt und dessen Koodinatenuspung mit dem Punkt usammenfällt h =, 4 v =, De Ausgangspunkt P de eaden hat folgende Koodinaten = 5 mm = 1 mm = 4 mm Rechnungsgang 1 Katesischen Koodinaten des Nomaleneinheitsvektos n Die katesischen Koodinaten des Nomaleneinheitsvektos de Ebene n betagen n = n sin cosc n =,416 n = n sin sinc n =,893 n = n cos n =,174 Die h -Achse des Hilfssstems ist paallel u (, ) -Ebene Aus diese Vogabe lässt sich de Einheitsvekto h des Hilfssstems beechnen P 1454 Vektoechnungdoc

8 h = n n h =,96 h =,43 h = Katesische Koodinaten des Nomaleneinheitsvektos v Aus de Beiehung v = n h egeben sich fü den Einheitsvekto v folgende Wete v =,73 v =,157 =,98 Vektoechnung 8 3 Koodinaten des chnittpunktes P De Vekto des chnittpunktes P eechnet sich aus de folgenden Beiehung = + hh + vv = + + = 13,43 mm = 34,1 mm = 36,81 mm 4 Abstand e wischen den Punkten P und P De Abstand e wischen dem Punkt P auf de eaden und dem chnittpunkt P in de Ebene betägt ( ) ( ) ( ) e = + + e = 5,66 mm De Dastellung de eaden und de Ebene, die mit Hilfe eines Keises und des diesen Keis umscheibenden Quadats vedeutlicht wid, liegt die schäge Paallelpojektion u unde chnittpunkt wischen eade und Kugel Die leichung eine eaden mit dem Ausgangspunkt P(,, ) dem Paamete a und dem Richtungsvekto s lautet eade = + as Die Bedingung fü den chnittpunkt de eaden mit de Kugel = lautet ( ) Kugel Kugel = eade Im chnittpunkt P(,, ) de eaden mit de Kugel entspicht de Paamete a dem Abstand des Punktes P vom chnittpunkt P, wenn als Richtungsvekto de Einheitsvekto s e eingesett wid a = e eadengleichung, Kugelgleichung, und chnittbedingung fühen u de leichung (( ) + es) = Daaus lässt sich de Abstand e emitteln e = s ( ) ± ( s ( )) ( ) + Die beiden skalaen Podukte lassen sich in folgende Weise auflösen s ( ) = s( ) + s( ) + s( ) ( ) = ( ) + ( ) + ( ) Fü den Otsvekto des chnittpunktes P ehält man = +es, = + +,, v 1454 Vektoechnungdoc

9 Vektoechnung 9 = + es = + es = + es,h P eade P 1 Kugel P P chnittpunkt wischen eade und Kugel Die folgenden Daten sind gegeben Die Kugel hat den Radius = 3 mm Die Koodinaten des ittelpunktes de Kugel P im katesischen Koodinatensstem(,, ) lauten = 3 mm = 3 mm = mm De Ausgangspunkt P de eaden hat folgende Koodinaten = mm = mm = 1 mm, De Richtungsvekto de eaden wid duch den Neigungswinkel (Zenitwinkel) Lagewinkel (Aimut) c angegeben und den = 7 c = esucht ist de Richtungsvekto de eaden und die Abstände e und e wischen den Punkten P und P sowie P und P 1 s 1 Rechnungsgang 1 Richtungsvekto de eaden s = sin cos c s =,883 mm s = sin sin c s =,31 mm s = cos c s =,34 mm 1 e 1 P Abstände e und de Punkte P und vom Punkt P auf de eaden e = s ( ) ± ( s ( )) ( ) + 1, e 1 = 31,57 mm e = 47,579 mm 3 Koodinaten des chnittpunktes P 1 = + s 1 1 = + e sin cos c 1 = 7,839 mm 1 1 = + e sin sin c 1 = 1,133 mm 1 1 = + e cos c 1 =,783 mm Koodinaten des chnittpunktes P = +e s = + e sin cos c = 4,13 mm = + e sin sin c = 15,91 mm 1454 Vektoechnungdoc

10 Vektoechnung 1 = + e cos = 6,73 mm De Dastellung de eaden und de Kugel liegt die schäge Paallelpojektion u unde Die Beechnung de Bildkoodinaten wid im Kapitel Paallelpojektion behandelt 1454 Vektoechnungdoc

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie

Übungsaufgaben zum Prüfungsteil 1 Lineare Algebra /Analytische Geometrie Übungsaufgaben zum Püfungsteil Lineae Algeba /Analytische Geometie Aufgabe Von de Ebene E ist folgende Paametefom gegeben: 3 E: x= 4 + 0 + s 3 ;,s 0 3 4 a) Duch geeignete Wahl de Paamete und s ehält man

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

Abstandsbestimmungen

Abstandsbestimmungen Abstandsbestimmungen A) Vektoechnungsmethoden (mit Skalapodukt): ) Abstand eines Punktes P von eine Ebene IE im Raum (eine Geade g in de Ebene ): Anmekung: fü Geaden im Raum funktioniet diese Vektomethode

Mehr

Experimentalphysik II (Kip SS 2007)

Experimentalphysik II (Kip SS 2007) Epeimentalphysik II (Kip SS 7) Zusatzvolesungen: Z- Ein- und mehdimensionale Integation Z- Gadient, Divegenz und Rotation Z-3 Gaußsche und Stokessche Integalsatz Z-4 Kontinuitätsgleichung Z-5 Elektomagnetische

Mehr

Vektoranalysis Teil 1

Vektoranalysis Teil 1 Skiptum zu Volesung Mathematik 2 fü Ingenieue Vektoanalysis Teil Pof. D.-Ing. Nobet Höptne (nach eine Volage von Pof. D.-Ing. Tosten Benkne) Fachhochschule Pfozheim FB2-Ingenieuwissenschaften, Elektotechnik/Infomationstechnik

Mehr

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen

Aufgaben zur Bestimmung des Tangentenwinkels von Spiralen Aufgabenblatt-Spialen Tangentenwinkel.doc 1 Aufgaben zu Bestimmung des Tangentenwinkels von Spialen Gegeben ist die Spiale mit de Gleichung = 0,5 φ, φ im Bogenmaß. (a) Geben Sie die Gleichung fü Winkel

Mehr

Mathematik für Ingenieure 2

Mathematik für Ingenieure 2 Mathematik fü Ingenieue Doppelintegale THE SERVICES Mathematik PROVIDER fü Ingenieue DIE - Doppelintegale Anschauung des Integals ingenieusmäßige Intepetation des bestimmten Integals Das bestimmte Integal

Mehr

Kreisbewegungen (und gekrümmte Bewegungen allgemein)

Kreisbewegungen (und gekrümmte Bewegungen allgemein) Auf den folgenden Seiten soll anhand de Gleichung fü die Zentipetalbeschleunigung, a = v 2 / 1, dagelegt weden, dass es beim Ekläen physikalische Sachvehalte oftmals veschiedene Wege gibt, die jedoch fühe

Mehr

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en):

Mathematische Hilfsmittel der Physik Rechen-Test I. Markieren Sie die richtige(n) Lösung(en): Technische Betiebswitschaft Gundlagen de Physik D. Banget Mat.-N.: Mathematische Hilfsmittel de Physik Rechen-Test I Makieen Sie die ichtige(n) Lösung(en):. Geben Sie jeweils den Wahheitswet (w fü wah;

Mehr

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt.

Lichtbrechung 1. Der Verlauf des Strahlenbündels wird in diesem Beispiel mit Hilfe der Vektorrechnung ermittelt. Lichtbechung Veau eines kegeömigen Stahenbündes in eine Sammeinse Bei de Beechnung von Daten optische Ssteme untescheidet man ogende Veahen: Optikechnen tigonometische Beechnung ü Stahen in de Meidionaebene

Mehr

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet

Analytische Geometrie Übungsaufgaben 2 Gesamtes Stoffgebiet Analytische Geometie Übungsaufgaben Gesamtes Stoffgebiet Pflichtteil (ohne Fomelsammlung und ohne GTR): P: a) Püfe, ob das Deieck ABC gleichschenklig ist: A(/7/), B(-//), C(//) b) Püfe, ob das Deieck ABC

Mehr

Polar-, Zylinder-, Kugelkoordinaten, Integration

Polar-, Zylinder-, Kugelkoordinaten, Integration Pola-, Zlinde-, Kugelkoodinaten, Integation Die Substitutionsegel b a f()d = t t f(g(t)) g (t)dt mit g(t ) = a und g(t ) = b lässt sich auf mehdimensionale Beeiche eweiten, z. B. B f(,) dd = f((u,v),(u,v))

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Elastostatik Statik elastischer Körper

Elastostatik Statik elastischer Körper FS 1 Elastostatik Statik elastische Köpe Die Elastostatik enthält Elemente de Festigkeitslehe und hat die Aufgabe, Beanspuchungen und Defomationen an Stuktuen u emitteln. Duch die Beücksichtigung de Vefomungen

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008

Übungen zur Kursvorlesung Physik II (Elektrodynamik) Sommersemester 2008 Übungsblatt 4 zu Physik II Von Patik Hlobil (38654), Leonhad Doeflinge (496) Übungen zu Kusvolesung Physik II (Elektodynamik) Sommesemeste8 Übungsblatt N. 4 Aufgabe 3: Feldstäke im Innen eines Ladungsinges

Mehr

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler

Klassische Mechanik - Ferienkurs. Sommersemester 2011, Prof. Metzler Klassische Mechanik - Feienkus Sommesemeste 2011, Pof. Metzle 1 Inhaltsvezeichnis 1 Kelegesetze 3 2 Zweiköeoblem 3 3 Zentalkäfte 4 4 Bewegungen im konsevativen Zentalkaftfeld 5 5 Lenzsche Vekto 7 6 Effektives

Mehr

Einführung in die Theoretische Physik

Einführung in die Theoretische Physik Einfühung in die Theoetische Physik De elektische Stom Wesen und Wikungen Teil : Gundlagen Siegfied Pety Fassung vom 19. Janua 013 n h a l t : 1 Einleitung Stomstäke und Stomdichte 3 3 Das Ohmsche Gesetz

Mehr

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt

Gleichseitige Dreiecke im Kreis. aus der Sicht eines Punktes. Eckart Schmidt Gleichseitige Deiecke im Keis aus de Sicht eines Punktes Eckat Schmidt Zu einem Punkt und einem gleichseitigen Deieck in seinem Umkeis lassen sich zwei weitee Deiecke bilden: das Lotfußpunktdeieck und

Mehr

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert.

Grundwissen Mathematik Jahrgangsstufe 9. Bisher bekannte Zahlenmengen: a b = a b. Die üblichen Rechengesetze gelten unverändert. Gundwissen Mathematik Jahgangsstufe I. Reelle Zahlen Eweiteung des Zahlenbeeichs Bishe bekannte Zahlenmengen: Jedes Element a aus N, Z, Q Q ist dastellba duch a= p q mit p Z und q N. Zahlen, die nicht

Mehr

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten

Gradient, Divergenz, Rotation und Laplace-Operator in Polarkoordinaten. Umrechnung des Laplace-Operators auf Polarkoordinaten Polakoodinaten Vektofeld mit Polakoodinaten Gadient, Divegenz, Rotation und Laplace-Opeato in Polakoodinaten Gadient des Skalafeldes Φ(, ϕ) Divegenz des Vektofeldes v(,ϕ) Divegenz Umechnung des Laplace-Opeatos

Mehr

Graphische Datenverarbeitung. Polar-, Zylinder- und Kugelkoordinatensysteme. Prof. Dr. Elke Hergenröther. h_da

Graphische Datenverarbeitung. Polar-, Zylinder- und Kugelkoordinatensysteme. Prof. Dr. Elke Hergenröther. h_da Gaphische Datenveabeitung Pola-, Zylinde- und Kugelkoodinatensysteme Pof. D. Elke Hegenöthe h_da GDV : Pola-, Zylinde-und Kugelkoodinatensystem Koodinatensysteme zu Dastellung geometische Daten: Katesisches

Mehr

Anhang 1: Gradient, Divergenz, Rotation

Anhang 1: Gradient, Divergenz, Rotation Anhang : Gadient, ivegen, Rotation Felde Anhang : Gadient, ivegen, Rotation Wid jedem Punkt im Raum eine skalae Göße U ugeodnet (.. Tempeatu, elektisches Potential,...), so spicht man von einem skalaen

Mehr

1 Umkehrfunktionen und implizite Funktionen

1 Umkehrfunktionen und implizite Funktionen $Id: impliit.tex,v 1.6 2012/10/30 14:00:59 hk Exp $ 1 Umkehfunktionen und impliite Funktionen 1.1 De Umkehsat Am Ende de letten Situng hatten wi alle Vobeeitungen um Beweis des Umkehsates abgeschlossen,

Mehr

Unterlagen Fernstudium - 3. Konsultation 15.12.2007

Unterlagen Fernstudium - 3. Konsultation 15.12.2007 Untelagen Fenstudium - 3. Konsultation 5.2.2007 Inhaltsveeichnis Infomationen u Püfung 2 2 Aufgabe 7. Umstömte Keisylinde mit Auftieb 3 3 Aufgabe 8. Komplexes Potential und Konfome Abbildung 0 Infomationen

Mehr

Lagebeziehungen zwischen Geraden und Ebenen

Lagebeziehungen zwischen Geraden und Ebenen Lagebeziehungen zwischen Geaden und Ebenen. Lagebeziehungen zwischen Geaden g a Gegeben seien zwei Geaden zu g µ b () Man untesucht zuest die Richtungsvektoen a, b auf lineae Abhängigkeit bzw. Unabhängigkeit

Mehr

1. Schularbeit Mathematik 6B 97/

1. Schularbeit Mathematik 6B 97/ . Schulabeit Mathematik 6B 97/98.0.997. Beechne die fehlenden Fomen de Geaden Vektoielle Fom Koodinatenfom x y t. Auf de Geaden g[a( /6), B(/ )] ist von A aus in Richtung B eine Stecke von d abzutagen.

Mehr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr

U y. U z. x U. U x y. dy dz. 3. Gradient, Divergenz & Rotation 3.1 Der Gradient eines Skalarfeldes. r dr PHYSIK A Zusatvolesung SS 13 3. Gadient Divegen & Rotation 3.1 De Gadient eines Skalafeldes Sei ein skalaes eld.b. ein Potential das von abhängt. Dann kann man scheiben: d d d d d d kann duch eine Veändeung

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe

Erzeugung eines Skalars durch räumliche Differentiation einer vektoriellen Größe eugung eines Skalas duch äumliche Diffeentiation eine ektoiellen Göße Diegen - de Gaußsche Integalsat Diegen ist als Wot aus de Stahlenoptik bekannt wid hie abe iel allgemeine gebaucht: Unte Diegen estehen

Mehr

Kernfach Mathematik (Thüringen): Abiturprüfung 2013 Aufgabe A1: Analysis (mit CAS)

Kernfach Mathematik (Thüringen): Abiturprüfung 2013 Aufgabe A1: Analysis (mit CAS) Kenfach Mathematik (Thüingen): Abitupüfung 03 Aufgabe A: Analysis (mit CAS) Gegeben ist die Funktion f duch y= f(x) = x e (x 0). x a) Untesuchen Sie den Gaphen de Funktion f auf lokale Extempunkte und

Mehr

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik

Vorlesung Technische Mechanik 1 Statik, Wintersemester 2007/2008. Technische Mechanik Volesung Technische Mechanik 1 Statik, Wintesemeste 2007/2008 Technische Mechanik 1. Einleitung 2. Statik des staen Köpes 2.1 Äquivalenz von Käfteguppen am staen Köpe 2.2 Käfte mit gemeinsamem Angiffspunkt

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr

Teilbereich 5: Exponential Funktionen 1. Grundkursniveau. Hier eine Musteraufgabe mit Lösung Auf CD alles komplett. Datei Nr Püfungsaufgaben Mündliches Abitu Analysis Teilbeeich 5: Eponential Funktionen Gundkusniveau Hie eine Musteaufgabe mit Lösung Auf CD alles komplett Datei N. 495 Fiedich Buckel Oktobe 003 INTERNETBIBLIOTHEK

Mehr

Lichttechnische Grössen

Lichttechnische Grössen Lichttechnische Gössen Modul 931 Optik Lichttechnische Gössen und Fabe 1. De Raumwinkel De Lichtstahl z.b. eine Taschenlampe entspicht einem Lichtkegel. Zeichnen wi diesen Lichtstahl, so geben wi den Winkel

Mehr

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE

7 Trigonometrie. 7.1 Defintion am Einheitskreis. Workshops zur Aufarbeitung des Schulsto s Wintersemester 2014/15 7 TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Geometrie Skript für die Vorlesung: , G, Geometrie, 86-3, Ausgabe 2002

Geometrie Skript für die Vorlesung: , G, Geometrie, 86-3, Ausgabe 2002 Reseach Collection Educational Mateial Geometie Skipt fü die Volesung: 91-157, G, Geometie, 86-3, Ausgabe 2002 Autho(s): Walse, Hans Publication Date: 2002 Pemanent Link: https://doi.og/10.3929/ethz-a-004377954

Mehr

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte)

v A 1 v B D 2 v C 3 Aufgabe 1 (9 Punkte) Institut fü Technische und Num. Mechanik Technische Mechanik II/III Pof. D.-Ing. Pof. E.h. P. Ebehad WS 009/10 P 1 4. Mäz 010 Aufgabe 1 (9 Punkte) Bestimmen Sie zeichneisch die Momentanpole alle vie Köpe

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck

( ) ( ) 5. Massenausgleich. 5.1 Kräfte und Momente eines Einzylindermotors. 5.1.1 Kräfte und Momente durch den Gasdruck Pof. D.-Ing. Victo Gheoghiu Kolbenmaschinen 88 5. Massenausgleich 5. Käfte und Momente eines Einzylindemotos 5.. Käfte und Momente duch den Gasduck S N De Gasduck beitet sich in alle Richtungen aus und

Mehr

Statische Magnetfelder

Statische Magnetfelder Statische Magnetfelde Bewegte Ladungen ezeugen Magnetfelde. Im Magnetfeld efäht eine bewegte Ladung eine Kaft. Elektische Felde weden von uhenden und bewegten Ladungen gleichemaßen ezeugt. Die Kaft duch

Mehr

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz

Lösungen II.1. Lösungen II.2. c r d r. u r. 156/18 c) Assoziativgesetz Lösungen II. / selbe Länge:,, 7;,, ;,, ;, ;, 9 selbe Tanslation:, ;, ;,, ;, Lösungen II. / a b a b c c d d s u v s u v b) ein Pfeil de Länge /7 a b ; y b a b) Kommutativgesetz / u a b ; v b c b) w u c

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

Einführung in die Vektoranalysis

Einführung in die Vektoranalysis Einfühung in die Vektoanalysis Eckad Specht Geschieben fü Matoids Matheplanet Vesion. www.matheplanet.com Novembe 23 Studenten stömen seit einigen Wochen wiede in die Hösäle und venehmen dieses fuchteinflößende

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Zur Erinnerung. Volumenintegrale in unterschiedlichen Koordinatensystemen. Stichworte aus der 10. Vorlesung:

Zur Erinnerung. Volumenintegrale in unterschiedlichen Koordinatensystemen. Stichworte aus der 10. Vorlesung: Zu Einneung Stichote aus de 10. Volesung: Volumenintegale in unteschiedlichen Koodinatensstemen Beegung eines staen Köpes: Tanslation und Rotation Tägheitsmoment Steinesche Sat Momentane Dehachse Zusammenhang

Mehr

9.2. Bereichsintegrale und Volumina

9.2. Bereichsintegrale und Volumina 9.. Beeichsintegale und Volumina Beeichsintegale Rein fomal kann man Integale übe einem (meßbaen) Beeich B bilden, indem man eine möglicheweise auf einem gößeen Beeich definiete Funktion f mit de chaakteistischen

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE

7 Trigonometrie. 7.1 Definition am Einheitskreis. Workshops zur Aufarbeitung des Schulstoffs Sommersemester TRIGONOMETRIE 7 Tigonometie Wi beschäftigen uns hie mit de ebenen Tigonometie, dabei geht es hauptsächlich um die geometische Untesuchung von Deiecken in de Ebene. Ein wichtiges Hilfsmittel dafü sind die Winkelfunktionen

Mehr

Berufsmaturitätsprüfung 2005 Mathematik

Berufsmaturitätsprüfung 2005 Mathematik GIBB Geweblich-Industielle Beufsschule Ben Beufsmatuitätsschule Beufsmatuitätspüfung 005 Mathematik Zeit: 180 Minuten Hilfsmittel: Fomel- und Tabellensammlung ohne gelöste Beispiele, Taschenechne Hinweise:

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 15 DER KREIS ARBEITSBLATT 15 DER KREIS Zunächst einmal wollen wi uns übelegen, was man mathematisch unte einem Keis vesteht. Definition: Ein Keis ist die Menge alle Punkte, die von einem gegebenen Punkt ( Keismittelpunkt)

Mehr

r [0, ), φ [0, 2π), ϑ [0, π]

r [0, ), φ [0, 2π), ϑ [0, π] ET2 Koodinatenssteme 1 Koodinatenssteme Zlindekoodinaten Kugelkoodinaten P(,,) P(,,) P(,,) P(,,ϑ) cos ϑ sin ϑ sin ϑ sin cos sin ϑ cos sin ϑ = cos = sin = [, ), [, 2π), (-, ) = sin ϑ cos = sin ϑ sin = cos

Mehr

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade.

Aufgabe 1 Zeige: Wenn die Summe von 1996 Quadratzahlen durch 8 teilbar ist, dann sind mindestens vier dieser Quadratzahlen gerade. Landeswettbeweb athematik aden-wüttembeg 996 Runde ufgabe Zeige: Wenn die Summe von 996 Quadatzahlen duch 8 teilba ist, dann sind mindestens vie diese Quadatzahlen geade. Vobemekung Eine Quadatzahl ist

Mehr

Integration von Ortsgrößen zu Bereichsgrößen

Integration von Ortsgrößen zu Bereichsgrößen Integation von Otsgößen zu Beeichsgößen 1 Integation von Otsgößen zu Beeichsgößen Stömungen sind Bewegungen von Teilchen innehalb von Stoffen. Ihe wesentlichen Gesetzmäßigkeiten gehen aus Zusammenhängen

Mehr

Elektrostatik. Arbeit und potenzielle Energie

Elektrostatik. Arbeit und potenzielle Energie Elektostatik. Ladungen Phänomenologie. Eigenschaften von Ladungen 3. Käfte zwischen Ladungen, quantitativ 4. Elektisches Feld 5. De Satz von Gauß 6. Potenzial und Potenzialdiffeenz i. Abeit im elektischen

Mehr

[ M ] = 1 Nm Kraft und Drehmoment

[ M ] = 1 Nm Kraft und Drehmoment Stae Köpe - 4 HBB mü 4.2. Kaft und Dehmoment Käfte auf stae Köpe weden duch Kaftvektoen dagestellt. Wie in de Punktmechanik besitzen diese Kaftvektoen einen Betag und eine Richtung. Zusätzlich wid abe

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Der Lagrange- Formalismus

Der Lagrange- Formalismus Kapitel 8 De Lagange- Fomalismus 8.1 Eule-Lagange-Gleichung In de Quantenmechanik benutzt man oft den Hamilton-Opeato, um ein System zu bescheiben. Es ist abe auch möglich den Lagange- Fomalismus zu vewenden.

Mehr

Lösung 1: Die größte Schachtel

Lösung 1: Die größte Schachtel Lösung : Die gößte Schachtel Aufgabenstellung: Aus einem DIN-A-Blatt soll eine offene, quadefömige Schachtel hegestellt weden. Welches Füllvolumen ist maximal möglich, ohne dass etwas aus de Schachtel

Mehr

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben

Zentrale Klausur 2015 Aufbau der Prüfungsaufgaben Zentale Klausu 2015 Aufbau de Püfungsaufgaben Die Zentale Klausu 2015 wid umfassen: hilfsmittelfeie Aufgaben zu Analysis und Stochastik eine Analysisaufgabe mit einem außemathematischen Kontextbezug eine

Mehr

Rechnen mit Vektoren im RUN- Menü

Rechnen mit Vektoren im RUN- Menü Kael 09.. CASIO Teach & talk Jügen Appel Einen deidimenionalen Vekto kann man al Matix mit dei Zeilen und eine Spalte auffaen. Daduch kann man mit Vektoen echnen. D.h. konket, man kann Vektoen addieen

Mehr

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung

Kapitel 13. Das Wasserstoff-Atom Energiewerte des Wasserstoff-Atoms durch Kastenpotential-Näherung Kapitel 13 Das Wassestoff-Atom 13.1 negiewete des Wassestoff-Atoms duch Kastenpotential-Näheung Das gobe Atommodell des im Potentialtopf eingespeten Atoms vemag in qualitative Weise das Aufteten von Linienspekten

Mehr

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE

7. VEKTORRECHNUNG, ANALYTISCHE GEOMETRIE Vektoechnung Anltische Geometie 7. VEKTORRECHNUNG ANALYTISCHE GEOMETRIE 7.1. Vektoen () Definition Schiet mn einen Punkt P 1 im Koodintensstem in eine ndee Lge P so ist diese Schieung duch Ange des Upunktes

Mehr

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher

Seminarvortrag Differentialgeometrie: Rotationsflächen konstanter Gaußscher Seminavotag Diffeentialgeometie: Rotationsflächen konstante Gaußsche Kümmung Paul Ebeman, Jens Köne, Mata Vitalis 1. Juni 22 Inhaltsvezeichnis Vobemekung 2 1 Einfühung 2 2 Este Fundamentalfom 2 3 Vetägliche

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Ebene Bildkoordinatentransformationen. HS BO Lab. für Photogrammetrie: Ebene und räumliche Koordinatensysteme 1

Ebene Bildkoordinatentransformationen. HS BO Lab. für Photogrammetrie: Ebene und räumliche Koordinatensysteme 1 Ebene Bildkoodinatentansfomationen HS BO Lab. fü Photogammetie: Ebene und äumliche Koodinatensysteme 1 Ebene Bildkoodinatentansfomation Veschiebung (Tanslation) (2 Paamete): x, y T x, y Übe Tanslationen

Mehr

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten

Herleitung der Divergenz in Zylinderkoordinaten ausgehend von kartesischen Koordinaten Heleitung de Divegenz in Zylindekoodinaten ausgehend von katesischen Koodinaten Benjamin Menküc benmen@cs.tu-belin.de Ralf Wiechmann alf.wiechmann@uni-dotmund.de 9. Oktobe 24 Zusammenfassung Es wid ausgehend

Mehr

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP

Coulombsches Potential und Coulombsches Feld von Metallkugeln TEP Vewandte Begiffe Elektisches Feld, Feldstäke, elektische Fluss, elektische Ladung, Gauß-Regel, Obeflächenladungsdichte, Induktion, magnetische Feldkonstante, Kapazität, Gadient, Bildladung, elektostatisches

Mehr

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes

Repetitorium B: 1-, 2-dim. Integrale, Satz v. Stokes Fakultät fü Physik R: Rechenmethoden fü Physike, WiSe 06/7 Dozent: Jan von Delft Übungen: Hong-Hao Tu, Fabian Kugle http://www.physik.uni-muenchen.de/lehe/volesungen/wise_6_7/_ echenmethoden_6_7/ Repetitoium

Mehr

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2.

Lösungen. Mathematik ISME Matura Gegeben ist die Funktionsschar f a (x) = ax e a2 x 2, wobei x R und a > 0 ist. 12 Punkte Vorerst sei a = 2. Mathematik ISME Matua 5. Gegeen ist die Funktionsscha f a ( = a e a, woei R und a > ist. Punkte Voest sei a =. (a Beechnen Sie i. die Nullstelle ii. die Gleichung de Asymptote fü iii. die Etema iv. die

Mehr

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der

Definition: Unter dem vektoriellen Flächenelement einer ebnen Fläche A versteht man einen Vektor A r der Obeflächenntegale Vektofluß duch ene Fläche - betachtet wd en homogenes Vektofeld v (B Lchtbündel) - das Lcht falle auf enen Spalt Defnton: Unte dem vektoellen Flächenelement ene ebnen Fläche vesteht man

Mehr

2.12 Dreieckskonstruktionen

2.12 Dreieckskonstruktionen .1 Deieckskonstuktionen 53.1 Deieckskonstuktionen.1.1 B aus a, b und c. Keis um mit Radius b 3. Keis um B mit Radius a 4. Schnittpunkt de Keise ist Bemekung: Es entstehen zwei konguente B..1. B aus α,

Mehr

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s

A A Konservative Kräfte und Potential /mewae/scr/kap2 14s 2.4 Konsevative Käfte und Potential /mewae/sc/kap2 4s3 29-0-0 Einige Begiffe: Begiff des Kaftfeldes: Def.: Kaftfeld: von Kaft-Wikung efüllte Raum. Dastellung: F ( ) z.b. Gavitation: 2. Masse m 2 in Umgebung

Mehr

Schriftliche Prüfung aus Regelungstechnik am

Schriftliche Prüfung aus Regelungstechnik am U Gaz, Institut fü Regelungs- und Automatisieungstechnik 1 Schiftliche Püfung aus Regelungstechnik am 21.10.2004 Name / Voname(n): Kenn-Mat.N.: BONUSPUNKE aus Computeechenübung SS2003: BONUSPUNKE aus Computeechenübung

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeimentalphysik I (Kip WS 009) Inhalt de Volesung Expeimentalphysik I Teil : Mechanik. Physikalische Gößen und Einheiten. Kinematik von Massepunkten 3. Dynamik von Massepunkten 4. Gavitation 4. Keplesche

Mehr

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F =

Aufgabe 1: a) Die Effektivverzinsung einer Nullkuponanleihe lässt sich anhand der folgenden Gleichung ermitteln: F = Aufgabe : a Die Effektivvezinsung eine Nullkuponanleihe lässt sich anhand de folgenden Gleichung emitteln: Hie gilt P( c( aktuelle Maktpeis de Anleihe Nennwet de Anleihe 4 und folglich i P( / c( c( i c(

Mehr

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus

Kreis / Kugel - Integration. 5. Kugelsegment 6. Kreiskegel 7. Kugelausschnitt 8. Rotationskörper: Torus Keis / Kugel - Integation 1. Keis 2. Kugel 3. Keissekto 4. Keissegment 5. Kugelsegment 6. Keiskegel 7. Kugelausschnitt 8. Rotationsköpe: Tous 1. Keis Fomelsammlung - Fläche: A = 2 Integation katesische

Mehr

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt

Steuerungskonzept zur Vermeidung des Schattenwurfs einer Windkraftanlage auf ein Objekt teueungskonzept zu Vemeidung des chattenwufs eine Windkaftanlage auf ein Objekt Auto: K. Binkmann Lehgebiet Elektische Enegietechnik Feithstaße 140, Philipp-Reis-Gebäude, D-58084 Hagen, fa: +49/331/987

Mehr

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November

Übungen zur Physik 1 - Wintersemester 2012/2013. Serie Oktober 2012 Vorzurechnen bis zum 9. November Seie 3 29. Oktobe 2012 Vozuechnen bis zum 9. Novembe Aufgabe 1: Zwei Schwimme spingen nacheinande vom Zehn-Mete-Tum ins Becken. De este Schwimme lässt sich vom Rand des Spungbetts senkecht heuntefallen,

Mehr

Landeswettbewerb Mathematik Bayern

Landeswettbewerb Mathematik Bayern Landeswettbeweb Mathematik Bayen ufgaben und Lösungsbeispiele. Runde 007/008 ufgabe In de nebenstehenden Gleichung steht jede Buchstabe fü eine de Ziffen bis 9, wobei keine Ziffen mehfach vokommt. Zeige,

Mehr

Titrationskurven in der Chemie

Titrationskurven in der Chemie RS 1..004 Titationskuven.mcd Titationskuven in de Chemie In de Chemie wid de sauee bzw. de basische Chaakte eine wässigen Lösung mit Hilfe des ph-wetes beschieben. In jede wässigen Lösung gilt: [H O] +.

Mehr

Wasserstoff mit SO(4)-Symmetrie

Wasserstoff mit SO(4)-Symmetrie Wassestoff mit SO(4)-Symmetie von Eduad Belsch Univesität Hambug 0. Dezembe 0 Inhaltsvezeichnis Einleitung Runge-Lenz-Vekto. klassisch......................................... quantenmechanisch..................................

Mehr

2.3 Elektrisches Potential und Energie

2.3 Elektrisches Potential und Energie 2.3. ELEKTRISCHES POTENTIAL UND ENERGIE 17 2.3 Elektisches Potential un Enegie Aus e Mechanik wissen wi, ass ie Abeit Q, ie an einem Massepunkt veichtet wi, wenn iese um einen (kleinen) Vekto veschoben

Mehr

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. Lehrbrief Nr. 2: Perzeptron

Neuronale Netze, Fuzzy Control, Genetische Algorithmen. Prof. Jürgen Sauer. Lehrbrief Nr. 2: Perzeptron Neuonale Netze, Fuzz Contol, Genetische Algoithmen Pof. Jügen Saue Lehbief N. : Pezepton Pecepton - Das Pezepton ist das einfachste Modell fü Neuonale Netze. Dieses Modell gehöt zu Klasse de sog. Musteassoziatoen.

Mehr

Ebene und räumliche Koordinatentransformationen

Ebene und räumliche Koordinatentransformationen Inhalte Mathematische Gundlagen Koodinatensysteme Ebene und äumliche Koodinatentansfomationen Zentalpespektive HS BO Lab. fü Photogammetie: Ebene und äumliche Koodinatensysteme 1 Veschiebung (Tanslation)

Mehr

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit)

Kinematik und Dynamik der Rotation - Der starre Körper (Analogie zwischen Translation und Rotation eine Selbstlerneinheit) Kinematik und Dynamik de Rotation - De stae Köpe (Analogie zwischen Tanslation und Rotation eine Selbstleneinheit) 1. Kinematische Gößen de Rotation / Bahn- und Winkelgößen A: De ebene Winkel Bei eine

Mehr

Komplexe Widerstände

Komplexe Widerstände Paktikum Gundlagen de Elektotechnik Vesuch: Komplexe Widestände Vesuchsanleitung 0. Allgemeines Eine sinnvolle Teilnahme am Paktikum ist nu duch eine gute Vobeeitung auf dem jeweiligen Stoffgebiet möglich.

Mehr

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck

Aufgabe 1: LKW. Aufgabe 2: Drachenviereck Aufgabe 1: LKW Ein LKW soll duch einen Tunnel mit halbkeisfömigem Queschnitt fahen. Die zweispuige Fahbahn ist insgesamt 6 m beit; auf beiden Seiten befindet sich ein Randsteifen von je 2 m Beite. Wie

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Physik für Mediziner und Zahnmediziner

Physik für Mediziner und Zahnmediziner Physik fü Medizine und Zahnmedizine Volesung 01 Pof. F. Wögötte (nach M.Seibt) -- Physik fü Medizine und Zahnmedizine 1 Liteatu Hams, V.: Physik fü Medizine und Phamazeuten (Hams Velag) Haten, U.: Physik

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h.

Lösung: 1. Für das Volumen gilt die Formel: V = r 2. π. h = 1000 [cm 3 ]. 2. Für die Oberfläche gilt die Formel: O = 2. r 2. π + 2. r. π. h. Analysis Anwendungen Wi 1. Das Konsevendosen-Poblem Ein Konsevendosenhestelle will zylindische Dosen mit einem Inhalt von einem Lite, das sind 1000 cm 3, hestellen und dabei möglichst wenig Mateial vebauchen.

Mehr

3. Elektrostatik (Motivation) Nervenzelle

3. Elektrostatik (Motivation) Nervenzelle 3. Elektostatik (Motivation) Nevenzelle 18 Jh.: Neuone wie elektische Leite. ABER: Widestand des Axoplasmas seh hoch 2,5 10 8 Ω (vegleichba Holz) Weiteleitung duch Pozesse senkecht zu Zellmemban Zellmemban

Mehr

VEKTOREN. 1. Einführung. Vektoren 7

VEKTOREN. 1. Einführung. Vektoren 7 Vektoen 7 VEKTOREN. Einfühung Zwei Raumschiffe befinden sich bei einem Andockmanöve hundete Kilomete übe unseem Planeten und sind zunächst weit voneinande entfent. Sie müssen zum Andocken mit eine Genauigkeit

Mehr

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern?

An welche Stichwörter von der letzten Vorlesung können Sie sich noch erinnern? An welche Stichwöte von de letzten Volesung können Sie sich noch einnen? Positive und negative Ladung Das Coulombsche Gesetz F 1 4πε q q 1 Quantisieung und haltung de elektischen Ladung e 19 1, 6 1 C Das

Mehr

Kinematik. des Massenpunkts. Teil I

Kinematik. des Massenpunkts. Teil I Kinematik 2 des Massenpunkts Teil I 2.1 Geadlinige Bewegung... 18 2.2 Maßeinheiten und Dimensionen von phsikalischen Gößen. 19 2.3 Bewegung im Raum... 19 2.4 Die Keisbewegung... 22 2.5 Wechsel des Koodinatensstems...

Mehr

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de

Computer-Graphik II. Kompexität des Ray-Tracings. G. Zachmann Clausthal University, Germany cg.in.tu-clausthal.de lausthal ompute-aphik II Komplexität des Ray-Tacings. Zachmann lausthal Univesity, emany cg.in.tu-clausthal.de Die theoetische Komplexität des Ray-Tacings Definition: das abstakte Ray-Tacing Poblem (ARTP)

Mehr

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2.

Drei Kreise. Fahrrad r = = = 3 = 3. r r r. n = = = Der Flächeninhalt beträgt 6,34 cm 2. Dei Keise Bestimmt den Flächeninhalt de schaffieten Fläche. Die schaffiete Figu besteht aus einem gleichseitigen Deieck ( cm) und dei Keisabschnitten (gau gezeichnet). Damit beechnet sich die Gesamtfläche:

Mehr

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen

MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsströmen MECHANIK OHNE FERNWIRKUNG - mit Impuls und Impulsstömen Holge Hauptmann Euopa-Gymnasium, Wöth am Rhein holge.hauptmann@gmx.de Mechanik mit Impuls und Impulsstömen 1 Impuls als Gundgöße de Mechanik De Impuls

Mehr