Lösung VIII Veröentlicht:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösung VIII Veröentlicht:"

Transkript

1 1 Impulse and Momentum Bei einem Crash-Test kollidiert ein Auto der Masse 2kg mit einer Wand. Die Anfangs- und Endgeschwindigkeit des Autos sind jeweils v = (- 2 m/ s) e x und v f = (6 m/ s) e x. Die Kollision dauert.4 s. (a) Der Anfangs- und Endimpuls des Autos sind gegeben durch P = m v = ( Kg m/s) e x und P f = m v f = ( Kg m/s) e x. Die Veränderung des Impulses des Autos ist gleich dem Impuls der netto Kraft, die auf das Auto wirkt. Die Veränderung ist I = P = P f P, Also I = ( kg m/ s) e x. Die durchschnittliche Kraft, die die Wand auf das Auto ausübt ist F av = P t = (13 13 N) e x. (b) In der oberen Betrachtung federt das Auto zurück. Die Kraft tut in dem Zeitintervall also zwei Dinge. Erst stoppt sie das Auto und dann beschleunigt sie das Auto in die andere Richtung, so dass es sich mit 6 m/ s bewegt. Wenn das Auto nicht zurück federt, stoppt die Kraft nur das Auto. Wir erwarten also eine kleinere Kraft. Mathematisch beschrieben erhalten wir I = P = P f P = P, Also I = (4 1 3 kg m/ s) e x. Die durchschnittliche Kraft durch die Wand auf das Auto ist 1 / 9

2 F av = P t = (1 13 N) e x. Wie erwartet ist die Kraft kleiner als im ersten Fall. 2 Zwei Körper Stoÿ mit Feder Ein Block der Masse m 1 = 4kg bewegt sich anfänglich mit einer Geschwindigkeit von 8 m/ s auf einer Reibungsfreien Fläche nach rechts. Er kollidiert dann mit einer Feder, die an einem zweiten Block der Masse m 2 = 6kg befestigt ist, welcher sich zunächst mir einer Geschwindigkeit von 4 m/ s nach links bewegt (vgl. Abb. 1 (a) oben). Die Federkonstante ist 6 N/ m. (a) Da die Federkraft eine konservative Kraft ist, wird während der Kompression keine kinetische Energie in innere Energie umgewandelt. Somit ist der Stoÿ elastisch. Aufgrund der Impulserhaltung gilt m 1 v 1 + m 2 v 2 = m 1 v 1f + m 2 v 2f, einsetzen der Werte ergibt 2v 1f + 3v 2f = 4. für den elastischen Stoÿ ist bekannt, dass v 1 v 2 = (v 1f v 2f ), und somit v 2f v 1f = 12, Löst man oberes Gleichungssystem erhält man v 1f = -6.4 m/ s und v 2f = 5.6 m/ s. (b) Da während der ganzen Kollision die mechanische Energie und der Impuls der beiden Blöcke erhalten bleibt, kann man den Stoÿ zu jedem Zeitpunkt als elastischen Stoÿ behandeln. 2 / 9

3 Wir wählen den Zeitpunkt, andem sich der Block m 1 sich mit einer Geschwindigkeit von 3 m/ s bewegt, wie in Abbildung 1 (a) unten gezeigt ist, also m 1 v 1 + m 2 v 2 = m 1 v 1f + m 2 v 2f, Durch Auösen nach v 2f und einsetzen der Werte erhält man v 2f 1.6 m/ s. Der positive Wert von v 2f zeigt, dass der Block zu diesem Zeitpunkt nach rechts rutscht. In dem System aus den zwei Blöcken und der Feder wirkt keine Reibung oder andere nichtkonservative Kraft, somit ist die mechanische Energie erhalten. K + U = K f + U f oder 1 2 m 1v m 2v = 1 2 m 1v 2 1f m 2v 2 2f κx2, Auösen nach x und einsetzen der Werte ergibt, dass sich die Feder um x.18 m zusammendrückt. Abbildung 1: (a) Ein nach rechts rutschender Block kollidiert mit einer Feder, die an einem nach links rutschenden Block befestigt ist. (b) Eine Kugel der Masse m wird in einen Holzblock der Masse M gefeuert, welcher mit leichtem Draht aufgehängt ist. Nach der Kollision steckt die Kugel im Holz. 3 Das ballistische Pendel Eine Kugel der Masse m wird in einen Holzblock der Masse M gefeuert, welcher mit leichtem Draht aufgehängt ist. Die Kugel bleibt im Holz stecken und das ganze System schwingt bis zu einer Maximalhöhe h, wie in Abbildung 1 (b) zu sehen ist. Schauen wir uns den Stoÿ in verschiedenen Teilen an: Teil A ist vor der Kollision, B ist direkt nach der Kollision und C ist, 3 / 9

4 wenn das System die Maximalhöhe h erreicht hat. A B : Hierbei handelt es sich um den idealen unelastischen Stoÿ und die zwei Massen bewegen sich nach dem Stoÿ mit der gleichen Geschwindigkeit. Mit Impulserhaltung sieht man, dass m v 1A + M v 2A = (m + M) v B, benutzt man, dass v 2A =, kann man auch schreiben v B = ( ) m v 1A. m + M B C : Betrachten wir nun die neue Konguration B und C. Bei B trit die Kugel das Holz (bleibt stecken) und bewegt beide bewegen sich mit der Geschwindigkeit v B (Bei Punkt B ist die Höhe h = ). Block und Kugel schwingen dann zur Höhe h. Die kinetische Energie im Punkt B ist K B = 1 2 (m + M)v2 B, diese kann man auch in Abhängigkeit von v 1A schreiben: K B = m2 v 2 1A 2(m + M). Die potentielle Gravitationsenergie bei B ist. Also, U B =. Bei Punkt C hingegen ist U C = (m + M)gh und K C =. Benutzt man Energieerhaltung ndet man oder K B + U B = K C + U C, Umstellen nach v 1A ergibt m 2 v1a 2 + = + (m + M)gh, 2(m + M) ( ) m + M 2gh. v 1A = m 4 / 9

5 4 Proton - Proton Kollision Ein Proton kollidiert elastisch mit einem anderen ruhenden Proton. Das einlaufende Proton hat eine Anfangsgeschwindigkeit von m/ s und kollidiert (nicht frontal) mit dem ruhenden Proton (Abbildung 2 (a)). Nach der Kollision iegt ein Proton mit einem Winkel von θ = 6 zur ursprünglichen Bewegungsrichtung weiter und das andere mit einem Winkel φ zur selben Achse. Oensichtlich ist in diesem isolierten System der Impuls des Systems erhalten. Also P = P f. Aufgeteilt in x and y Komponenten ergibt das m 1 v 1x + m 2 v 2x = m 1 v 1fx + m 2 v 2fx und m 1 v 1y + m 2 v 2y = m 1 v 1fy + m 2 v 2fy. Da v 2 = and m 1 = m 2 = m sieht man schnell, dass v 1f cos 6 + v 2f cos φ = m/s, und v 1f sin 6 v 2f sin φ =, Durch Ausnutzung der Energieerhaltung erhält man v 2 1f + v2 2f = (8 15 m/s) 2. Durch Umstellen der ersten beiden Gleichungen erhält man folgender Gleichungssystem v 2f cos φ = m/s v 1f cos 6 v 2f sin φ = v 1f sin 6. Die beiden Gleichungen werden quadriert und dann addiert 5 / 9

6 v 2 2f = ( m 2 /s 2 ) (8 1 5 m/s)v 1f + v 2 1f Benutzt man noch die Beziehung, die man aus der Energieerhaltung gewonnen hat, d.h. v 2 1f + v2 2f = ( )m 2 /s 2 kann man die quadratische Gleichung lösen. Tut man dies erhält man für die Endgeschwindigkeiten der beiden Protonen v 1f m/ s and v 2f m/ s. Man kann die zweite Gleichung (d.h. v 1f sin 6 = v 2f sin φ) benutzen um den Winkel φ zu bestimmen: ( ) φ = sin 1 v1f sin v 2f Abbildung 2: (a) Ein Proton kollidiert elastisch mit einem anderen ruhenden Proton. (b) Eine Platte in der Form eines rechtwinkligen Dreiecks mit gleichmäÿiger Dicke und konstanter Dichte. 5 Schwerpunkt (a) Betrachte ein Stab der Masse m und Länge l (der eine konstante Masse pro Längeneinheit hat), der entlang der x - Achse gelegt ist (vgl. Abb. 2 (b) links), also Y cm = Z cm =. Die Masse pro Längeneinheit (auch Längendichte) kann man für den gleichmäÿigen Stab schreiben als λ = m/l. Wenn man den Stab in Elemente der Länge dx aufteilt, ist die Masse jeden Elements dm = λdx. Benutzt man die Denition des Schwerpunkts X cm = 1 m x dm, durch Einsetzen von dm erhält man 6 / 9

7 X cm = 1 m l xλ dx, Lösen des Integrals ergibt X cm = λl2 2m. Aber da λ = m l wird X cm zu X cm = l 2. (b) Betrachte einen Stab der Länge l, dessen Längendichte λ linear mit x gemäÿ λ = βx zunimmt. β ist dabei eine Konstante. Dass die Längendichte nicht konstant ist, sondern mit x zunimmt bedeutet, dass Elemente auf der rechten Seite des Stabs massiver sind als Elemente auf der linken Seite. Wieder wird die Denition des Schwerpunkts benutzt X cm = 1 m x dm = 1 m l xλ dx, einsetzen von λ = βx und Lösen des Integrals ergibt X cm = βl3 3m. Die Gesamtmasse des Stabs ist m = dm = l λ dx = βl2 2, Durch einsetzen der Masse in Obere Gleichung erhält man X cm = 2l 3. (c) Betrachte ein rechtwinkliges Dreieck mit konstanter Dicke (t) und konstanter Dichte (ρ). Da ρ konstant ist die die Masse pro Flächeneinheit konstant. Somit ist dm = ρydx beziehungsweise Der Schwerpunkt ist Deniert durch ( m dm = 1 2 ab ) ydx = 2my ab dx, 7 / 9

8 X cm = 1 m x dm = 2 ab a xy dx, Um dieses Integral zu lösen, muss y in Abhängigkeit von x dargestellt werden. Da es sich um ein rechtwinkliges Dreieck handelt sieht man, dass gilt y x = b a, beziehungsweise y = (b/a)x. Benutzt man diese Relation kann man schreiben: Lösen des Integrals ergibt X cm = 2 3 a. X CM = 2 a a 2 x 2 dx, Genau die gleiche Logik wird für die y - Koordinate verwendet und man ndet Y cm = 1 3b. Somit ist die Koordiante des Schwerpunkts ( 2 3 a, 1 3 b). Genauso gut kann die Dicke der Platte (t) verwendet werden. Dann kann die Dichte über Masse und Volumen bestimmt werden. Die Rechnung, Interpretation und Lösung bleiben die Gleichen. 6 Bewegung eines Teilchensystems Betrachte ein Koordinatensystem, bei dem die aufwärts Bewegung in positive y Richtung und Bewegung nach Osten in positive x Richtung zeigt. Nun wird das Projektil der Masse m gerade nach oben geschossen. An dem Punkt wo es 3 m erreicht und eine Geschwindigkeit von v = (8 m/ s) e y hat, explodiert es in drei Teile gleicher Masse (d.h. jedes Teil hat eine Masse von m/3). Ein Teil bewegt sich nach oben mit einer Geschwindigkeit von (1 m/ s) e y. Das zweite Stück hat eine Geschwindigkeit von (5 m/ s) e x. Vor der Explosion ist der Impuls des Systems P = m v = m(8m/s) e y, und nach der Explosion wird der Impuls des Systems P f = m 3 (5m/s) e x + m 3 (1m/s) e y + m 3 v f, Da der Impuls erhalten bleibt gilt P = P f. Einsetzen: 8 / 9

9 m(8m/s) e y = m 3 (5m/s) e x + m 3 (1m/s) e y + m 3 v f, Mit einfacher Vektoralgebra ndet man die Endgeschwindigkeit des dritten Stücks v f = ( 5m/s) e x + (14m/s) e y. 9 / 9

Lösung III Veröentlicht:

Lösung III Veröentlicht: 1 Projektil Bewegung Lösung Ein Ball wird von dem Dach eines Gebäudes von 80 m mit einem Winkel von 80 zur Horizontalen und mit einer Anfangsgeschwindigkeit von 40 m/ s getreten. Sei diese Anfangsposition

Mehr

Lösung VII Veröffentlicht:

Lösung VII Veröffentlicht: 1 Konzeptionelle Fragen (a) Kann Haftreibung Arbeit verrichten? Wenn Haftreibung intern ist, ist sie eine verlustfreie Kraft und leistet keine Arbeit am gewählten System. Als externe Kraft kann Haftreibung

Mehr

Übungsblatt IX Veröffentlicht:

Übungsblatt IX Veröffentlicht: Pendel Eine Kugel der Masse m und Geschwindigkeit v durchschlägt eine Pendelscheibe der Masse M. Hinter der Scheibe hat die Kugel die Geschwindigkeit v/2. Die Pendelscheibe hängt an einem steifen Stab

Mehr

Lösung IV Veröffentlicht:

Lösung IV Veröffentlicht: Fx = mg sin θ = ma x 1 Konzeptionelle Frage I Welche der der folgenden Aussagen über Kraft Bewegung ist korrekt? Geben sie Beispiele an (a) Ist es für ein Objekt möglich sich zu bewegen, ohne dass eine

Mehr

Solution V Published:

Solution V Published: 1 Reibungskraft I Ein 25kg schwerer Block ist zunächst auf einer horizontalen Fläche in Ruhe. Es ist eine horizontale Kraft von 75 N nötig um den Block in Bewegung zu setzten, danach ist eine horizontale

Mehr

EXPERIMENTALPHYSIK I - 4. Übungsblatt

EXPERIMENTALPHYSIK I - 4. Übungsblatt Musterlösung des Übungsblattes 5 der Vorlesung ExpPhys I (ET http://wwwet92unibw-muenchende/uebungen/ep1et-verm/uebun EXPERIMENTALPHYSIK I - 4 Übungsblatt VII Die mechanischen Energieformen potentielle

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Grundlagen der Physik 1 Lösung zu Übungsblatt 6

Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Grundlagen der Physik 1 Lösung zu Übungsblatt 6 Daniel Weiss 20. November 2009 Inhaltsverzeichnis Aufgabe 1 - Massen auf schiefer Ebene 1 Aufgabe 2 - Gleiten und Rollen 2 a) Gleitender Block..................................

Mehr

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen

Aufgabensammlung. Experimentalphysik für ET. 2. Erhaltungsgrößen Experimentalphysik für ET Aufgabensammlung 1. Erhaltungsgrößen An einem massenlosen Faden der Länge L = 1 m hängt ein Holzklotz mit der Masse m 2 = 1 kg. Eine Kugel der Masse m 1 = 15 g wird mit der Geschwindigkeit

Mehr

E1 Mechanik Musterlösung Übungsblatt 6

E1 Mechanik Musterlösung Übungsblatt 6 Ludwig Maximilians Universität München Fakultät für Physik E1 Mechanik Musterlösung Übungsblatt 6 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Zwei Kugeln der gleichen Masse mit den Geschwindigkeiten

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Kapitel 2 Elastische Stoßprozesse

Kapitel 2 Elastische Stoßprozesse Kapitel Elastische Stoßprozesse In diesem Kapitel untersuchen wir die Auswirkungen von elastischen Kollisionen auf die Bewegungen der Kollisionspartner.. Kollision mit gleichen Massen Elastische Stöße

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Arbeit, Skalarprodukt, potentielle und kinetische Energie Energieerhaltungssatz Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html 4. Nov.

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 1 - Lösung Technische Universität München 1 Fakultät für Physik 1 Kreisbewegung Ein Massepunkt bewege sich auf einer Kreisbahn mit der konstanten Geschwindigkeit

Mehr

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik

Fakultät für Physik Wintersemester 2016/17. Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Fakultät für Physik Wintersemester 26/7 Übungen zur Physik I für Chemiker und Lehramt mit Unterrichtsfach Physik Dr. Andreas K. Hüttel Blatt 7 / 3..26. Wegintegral Gegeben sei das Vektorfeld A( r) = ay

Mehr

Impuls und Impulserhaltung

Impuls und Impulserhaltung Urs Wyder, 4057 Basel Urs.Wyder@edubs.ch Impuls und Impulserhaltung Impuls. Einführung und Definition Der Impuls (engl. momentum) eines Körpers ist das, was in der Umgangssprache als Schwung oder Wucht

Mehr

Lösung II Veröffentlicht:

Lösung II Veröffentlicht: 1 Momentane Bewegung I Die Position eines Teilchens auf der x-achse, ist gegeben durch x = 3m 30(m/s)t + 2(m/s 3 )t 3, wobei x in Metern und t in Sekunden angeben wird (a) Die Position des Teilchens bei

Mehr

Rechenübungen zur Physik I im WS 2009/2010

Rechenübungen zur Physik I im WS 2009/2010 Rechenübungen zur Physik I im WS 2009/200. Klausur (Abgabe Di 5.2.09, 0.00 Uhr N7) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. (ID ) ist: 22 Hinweise: Studentenausweis: Hilfsmittel: Lösungen:

Mehr

Übungen zu Experimentalphysik 1 für MSE

Übungen zu Experimentalphysik 1 für MSE Physik-Department LS für Funktionelle Materialien WS 214/15 Übungen zu Experimentalphysik 1 für MSE Prof. Dr. Peter Müller-Buschbaum, Dr. Volker Körstgens, Daniel Moseguí González, Pascal Neibecker, Nitin

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: 7.9.11, Abgabe am 14.9.11) Beispiel 1: Stoß in der Ebene [3 Punkte] Betrachten Sie den elastischen Stoß dreier Billiardkugeln A, B und C

Mehr

Experimentalphysik I: Mechanik

Experimentalphysik I: Mechanik Ferienkurs Experimentalphysik I: Mechanik Wintersemester 15/16 Probeklausur - Lösung Technische Universität München 1 Fakultät für Physik 1. Wilhelm Tell (13 Punkte) Wilhelm Tell will mit einem Pfeil (m

Mehr

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen.

2.4 Stoßprozesse. entweder nicht interessiert o- der keine Möglichkeit hat, sie zu untersuchen oder zu beeinflussen. - 52-2.4 Stoßprozesse 2.4.1 Definition und Motivation Unter einem Stoß versteht man eine zeitlich begrenzte Wechselwirkung zwischen zwei oder mehr Systemen, wobei man sich für die Einzelheiten der Wechselwirkung

Mehr

Lösungen Aufgabenblatt 6

Lösungen Aufgabenblatt 6 Ludwig Maximilians Universität München Fakultät für Physik Lösungen Aufgabenblatt 6 Übungen E Mechanik WS 07/08 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen

Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen Übungsaufgaben zum Thema Impuls und Impulserhaltung Lösungen 1. Eine Lore mit der Masse 800 kg fährt mit 1,5 m/s durch ein Bergwerk. Während der Fahrt fallen von oben 600 kg Schotter in die Lore. Mit welcher

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Energie und Energieerhaltung

Energie und Energieerhaltung Arbeit und Energie Energie und Energieerhaltung Es gibt keine Evidenz irgendwelcher Art dafür, dass Energieerhaltung in irgendeinem System nicht erfüllt ist. Energie im Austausch In mechanischen und biologischen

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Teil 8 Teilchensysteme Impuls

Teil 8 Teilchensysteme Impuls Tipler-Mosca 8. Teilchensysteme und die Erhaltung des linearen Impulses (Systems of particles and conservation of linear momentum) 8.1 Der Massenmittelpunkt (The center of mass) 8. Bestimmung des Massenmittelpunkts

Mehr

Ferienkurs Experimentalphysik 1

Ferienkurs Experimentalphysik 1 1 Fakultät für Physik Technische Universität München Bernd Kohler & Daniel Singh Probeklausur WS 2014/2015 27.03.2015 Bearbeitungszeit: 90 Minuten Aufgabe 1: Romeo und Julia (ca. 15 min) Julia befindet

Mehr

Harmonische Schwingungen

Harmonische Schwingungen Kapitel 6 Harmonische Schwingungen Von periodisch spricht man, wenn eine feste Dauer zwischen wiederkehrenden ähnlichen oder gleichen Ereignissen besteht. Von harmonisch spricht man, wenn die Zeitentwicklung

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

B.1 Lösungsskizzen der Übungsaufgaben zum Kapitel 1

B.1 Lösungsskizzen der Übungsaufgaben zum Kapitel 1 B sskizzen B.1 sskizzen der Übungsaufgaben zum Kapitel 1 Aufgabe 1 (Zeitabhängige Beschleunigung) Ein geladenes Teilchen (Ion) bewegt sich im Vakuum kräftefrei mit der Geschwindigkeit v x0 längs der x-achse.

Mehr

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln )

Physik 1 ET, WS 2012 Aufgaben mit Lösung 6. Übung (KW 49) Zwei Kugeln ) Physik ET, WS 0 Aufgaben mit Lösung 6. Übung KW 49) 6. Übung KW 49) Aufgabe M 5. Zwei Kugeln ) Zwei Kugeln mit den Massen m = m und m = m bewegen sich mit gleichem Geschwindigkeitsbetrag v aufeinander

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

5. Arbeit und Energie

5. Arbeit und Energie Inhalt 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5.5 Beispiele 5.1 Arbeit 5.1 Arbeit Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit einer

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,

Mehr

Klausur 2 Kurs 12Ph3g Physik

Klausur 2 Kurs 12Ph3g Physik 2009-11-16 Klausur 2 Kurs 12Ph3g Physik Lösung (Rechnungen teilweise ohne Einheiten, Antworten mit Einheiten) Die auf Seite 3 stehenden Formeln dürfen benutzt werden. Alle anderen Formeln müssen hergeleitet

Mehr

Übungsblatt 3 ( ) mit Lösungen

Übungsblatt 3 ( ) mit Lösungen Experimentalphysik für Naturwissenschaftler 1 Universität Erlangen Nürnberg WS 2011/12 Übungsblatt 3 (25.11.2011) mit Lösungen Vorlesungen: Mo, Mi, jeweils 08:15-09:50 HG Übungen: Fr 08:15-09:45 oder Fr

Mehr

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2

Die Kraft. Mechanik. Kräfteaddition. Die Kraft. F F res = F 1 -F 2 Die Kraft Mechanik Newton sche Gesetze und ihre Anwendung (6 h) Physik Leistungskurs physikalische Bedeutung: Die Kraft gibt an, wie stark ein Körper auf einen anderen einwirkt. FZ: Einheit: N Gleichung:

Mehr

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen

5. Arbeit und Energie Physik für E-Techniker. 5.1 Arbeit. 5.3 Potentielle Energie Kinetische Energie. Doris Samm FH Aachen 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 54 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 51 5.1 Arbeit Wird Masse

Mehr

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann:

m 1 und E kin, 2 = 1 2 m v 2 Die Gesamtenergie des Systems Zwei Wagen vor dem Stoß ist dann: Wenn zwei Körper vollkommen elastisch, d.h. ohne Energieverluste, zusammenstoßen, reicht der Energieerhaltungssatz nicht aus, um die Situation nach dem Stoß zu beschreiben. Wenn wir als Beispiel zwei Wagen

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2:

Aufgabe 1: A. 7.7 kj B kj C. 200 kj D kj E. 770 J. Aufgabe 2: Aufgabe 1: Ein Autoreifen habe eine Masse von 1 kg und einen Durchmesser von 6 cm. Wir nehmen an, dass die gesamte Masse auf dem Umfang konzentriert ist (die Lauffläche sei also viel schwerer als die Seitenwände

Mehr

Klausur zur Physik I für Chemiker. February 23, 2016

Klausur zur Physik I für Chemiker. February 23, 2016 WS 2015/2016 zur Physik I für Chemiker February 23, 2016 Name: Matrikelnummer: T1 T2 T3 T4 T5 T6 T TOT.../4.../4.../4.../4.../4.../4.../24 R1 R2 R3 R4 R5 R6 R7 R8 R TOT.../6.../6.../6.../6.../6.../6.../6.../6.../48

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Physik 1 Zusammenfassung

Physik 1 Zusammenfassung Physik 1 Zusammenfassung Lukas Wilhelm 31. August 009 Inhaltsverzeichnis 1 Grundlagen 3 1.1 Mathe...................................... 3 1.1.1 Einheiten................................ 3 1. Trigonometrie..................................

Mehr

Prüfungsklausur - Lösung

Prüfungsklausur - Lösung Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 08. Februar 2012 Bearbeitungszeit: 180min Prüfungsklausur - Lösung Aufgabe 1: Triff den Apfel! (8 Punkte) Wir wählen den Ursprung des Koordinatensystems

Mehr

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an.

Hinweis: Geben Sie für den Winkel α keinen konkreten Wert, sondern nur für sin α und/oder cos α an. 1. Geschwindigkeiten (8 Punkte) Ein Schwimmer, der sich mit konstanter Geschwindigkeit v s = 1.25 m/s im Wasser vorwärts bewegen kann, möchte einen mit Geschwindigkeit v f = 0.75 m/s fließenden Fluß der

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 16.5.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

E1 Mechanik Lösungen zu Übungsblatt 2

E1 Mechanik Lösungen zu Übungsblatt 2 Ludwig Maimilians Universität München Fakultät für Physik E1 Mechanik en u Übungsblatt 2 WS 214 / 215 Prof. Dr. Hermann Gaub Aufgabe 1 Drehbewegung einer Schleifscheibe Es werde die Schleifscheibe (der

Mehr

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems

I.6.3 Potentielle Energie eines Teilchensystems. m i. N z i. i=1. = gmz M. i=1. I.6.4 Kinetische Energie eines Teilchensystems I.6.3 Potentielle Energie eines Teilchensystems Beispiel: Einzelmassen im Schwerefeld U i = m i gz i jetzt viele Massen im Schwerefeld: Gesamtenergie U = m i gz i m i z i = gm m i = gmz M Man muss also

Mehr

2.4 Fall, Wurf und Federkräfte

2.4 Fall, Wurf und Federkräfte 2.4. FALL, WURF UND FEDERKRÄFTE 47 2.4 Fall, Wurf und Federkräfte Sie haben jetzt die Begriffe Arbeit, potentielle und kinetische Energie, sowie die Energieerhaltung kennengelernt. Wir wollen nun einige

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

1 Drehimpuls und Drehmoment

1 Drehimpuls und Drehmoment 1 Drehimpuls und Drehmoment Die Rotationsbewegung spielt in der Natur von der Ebene der Elementarteilchen bis zu den Strukturen des Universums eine eine bedeutende Rolle. Einige Beispiele sind 1. Spin

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 Newtonsche Axiome, Kräfte, Arbeit, Skalarprodukt, potentielle und kinetische Energie Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html

Mehr

Lagrange Formalismus

Lagrange Formalismus Lagrange Formalismus Frank Essenberger FU Berlin 1.Oktober 26 Inhaltsverzeichnis 1 Oszillatoren 1 1.1 Fadenpendel.............................. 1 1.2 Stabpendel.............................. 3 1.3 U-Rohr................................

Mehr

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben

ETH-Aufnahmeprüfung Herbst Physik U 1. Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben ETH-Aufnahmeprüfung Herbst 2015 Physik Aufgabe 1 [4 pt + 4 pt]: zwei unabhängige Teilaufgaben U 1 V a) Betrachten Sie den angegebenen Stromkreis: berechnen Sie die Werte, die von den Messgeräten (Ampere-

Mehr

Lösung 12 Klassische Theoretische Physik I WS 15/16

Lösung 12 Klassische Theoretische Physik I WS 15/16 Karlsruher Institut für Technologie Institut für theoretische Festkörperphysik www.tfp.kit.edu ösung 1 Klassische Theoretische Physik I WS 1/16 Prof. Dr. G. Schön + Punkte Sebastian Zanker, Daniel Mendler

Mehr

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2.

Grundlagen Arbeit & Energie Translation & Rotation Erhaltungssätze Gravitation Reibung Hydrodynamik. Physik: Mechanik. Daniel Kraft. 2. Physik: Mechanik Daniel Kraft 2. März 2013 CC BY-SA 3.0, Grafiken teilweise CC BY-SA Wikimedia Grundlagen Zeit & Raum Zeit t R Länge x R als Koordinate Zeit & Raum Zeit t R Länge x R als Koordinate Raum

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

Das freie mathematische Pendel

Das freie mathematische Pendel Das freie mathematische Pendel Wasilij Barsukow, Januar 0 Einleitung Das mathematische ist das einfachste Modell eines Pendels, bei dem man sich eine punktförmige Masse m an einem masselosen Faden aufgehängt

Mehr

Physikunterricht 11. Jahrgang P. HEINECKE.

Physikunterricht 11. Jahrgang P. HEINECKE. Physikunterricht 11. Jahrgang P. HEINECKE Hannover, Juli 2008 Inhaltsverzeichnis 1 Kinematik 3 1.1 Gleichförmige Bewegung.................................. 3 1.2 Gleichmäßig

Mehr

Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt

Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Lösungsvorschlag Theoretische Physik A Neuntes Übungsblatt Aufgabe 3 Prof. Dr. Schön und Dr. Eschrig Wintersemester 004/005 Durch Trennung der Veränderlichen und anschließende Integration ergibt sich aus

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik

Übungsblatt 02. Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik Übungsblatt 0 Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 4.04.008 Aufgaben. Berechnen Sie, ausgehend vom Coulomb-Gesetz, das elektrische Feld um einen

Mehr

Besprechung am

Besprechung am PN1 Einführung in die Physik für Chemiker 1 Prof. J. Lipfert WS 2015/16 Übungsblatt 8 Übungsblatt 8 Besprechung am 08.12.2015 Aufgabe 1 Trouble with Rockets: Eine Rakete mit einer anfänglichen Masse M

Mehr

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder )

Physik 1 Hydrologen/VNT, WS 2014/15 Lösungen Aufgabenblatt 8. Feder ) Aufgabenblatt 8 Aufgabe 1 (M 4. Feder ) Ein Körper der Masse m wird in der Höhe z 1 losgelassen und trifft bei z = 0 auf das Ende einer senkrecht stehenden Feder mit der Federkonstanten k, die den Fall

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Energie = Fähigkeit Arbeit zu verrichten 5.1 Arbeit Wird Masse m von Punkt

Mehr

Experimentalphysik E1

Experimentalphysik E1 Experimentalphysik E1 30. Okt. Kraftfelder und Potential Alle Informationen zur Vorlesung unter : http://www.physik.lmu.de/lehre/vorlesungen/index.html Die vier fundamentalen Kräfte Relative Stärke Reichweite

Mehr

Klassische Theoretische Physik I WS 2013/2014

Klassische Theoretische Physik I WS 2013/2014 Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 213/214 Prof. Dr. J. Schmalian Blatt 6 Dr. P. P. Orth bgabe und Besprechung 6.12.213 1. Vektoranalysis I (2

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 16. November 25 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

Experimentalphysik 1. Probeklausur - Lösung

Experimentalphysik 1. Probeklausur - Lösung Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 216/17 Probeklausur - Lösung Aufgabe 1 Ein Ball soll vom Punkt P (x =, y = ) aus unter einem Winkel α = 45 zur Horizontalen

Mehr

Vorlesung 3: Roter Faden:

Vorlesung 3: Roter Faden: Vorlesung 3: Roter Faden: Bisher: lineare Bewegungen Energie- und Impulserhaltung Heute: Beispiele Energie- und Impulserhaltung Stöße Gravitationspotential Exp.: Billiard Ausgewählte Kapitel der Physik,

Mehr

, = 2x, dz = 2x dx dx c und d) Partielle Integration u v = u v u v

, = 2x, dz = 2x dx dx c und d) Partielle Integration u v = u v u v Tipps und Lösungen zum Selbsttest Physik/Physik Lehramt Hinweis: Wenn Sie bei einer Aufgabe nicht weitergekommen sind, lesen Sie bitte zuerst die Tipps und versuchen Sie es danach erneut. Die Lösungen

Mehr

Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie

Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Aufgaben 2 Translations-Mechanik Impuls, Kraft, Impulsbilanz, Modellierung mit VENSIM, Energie Lernziele - den Zusammenhang zwischen Impuls, Masse und Geschwindigkeit eines Körpers anwenden können. - das

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Klausur 2 Anmerkung: Diese Klausur enthält 9 Aufgaben, davon eine Multiple

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

1 Die drei Bewegungsgleichungen

1 Die drei Bewegungsgleichungen 1 Die drei Bewegungsgleichungen Unbeschleunigte Bewegung, a = 0: Hier gibt es nur eine Formel, nämlich die für den Weg, s. (i) s = s 0 + v t s ist der zurückgelegte Weg, s 0 der Ort, an dem sich der Körper

Mehr

v 1 vor m 1 v 1 nach

v 1 vor m 1 v 1 nach Aufgaben Aufgabe 1 Ein Gleiter mit der Masse = 500g stößt elastisch auf einen zweiten Gleiter (Masse ist unbekannt). Die Geschwindigkeit des 1. Gleiters vor dem Stoß beträgt v 1 vor = 1,5 m/s, und nach

Mehr

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ.

(a) Transformation auf die generalisierten Koordinaten (= Kugelkoordinaten): ẏ = l cos(θ) θ sin(ϕ) + l sin(θ) cos(ϕ) ϕ. Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Theoretische Physik B - Lösungen SS 10 Prof. Dr. Aleander Shnirman Blatt 5 Dr. Boris Narozhny, Dr. Holger Schmidt 11.05.010

Mehr

Mechanik. Entwicklung der Mechanik

Mechanik. Entwicklung der Mechanik Mechanik Entwicklung der Mechanik ältester Zweig der Physik Kinematik Bewegung Dynamik Kraft Statik Gleichgewicht Antike: Mechanik = Kunst die Natur zu überlisten mit Newton Beginn Entwicklung Mechanik

Mehr

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version

PW2 Grundlagen Vertiefung. Kinematik und Stoÿprozesse Version PW2 Grundlagen Vertiefung Kinematik und Stoÿprozesse Version 2007-09-03 Inhaltsverzeichnis 1 Vertiefende Grundlagen zu den Experimenten mit dem Luftkissentisch 1 1.1 Begrie.....................................

Mehr

5. Arbeit und Energie

5. Arbeit und Energie 5. Arbeit und Energie 5.1 Arbeit 5.2 Konservative Kräfte 5.3 Potentielle Energie 5.4 Kinetische Energie 5. Arbeit und Energie Konzept der Arbeit führt zur Energieerhaltung. 5.1 Arbeit Wird Masse m mit

Mehr

Physik 1. Stoßprozesse Impulserhaltung.

Physik 1. Stoßprozesse Impulserhaltung. Physik Mechanik Impulserhaltung 3 Physik 1. Stoßprozesse Impulserhaltung. WS 15/16 1. Sem. B.Sc. Oec. und B.Sc. CH Physik Mechanik Impulserhaltung 5 Themen Stoßprozesse qualitativ quantitativ Impulserhaltungssatz

Mehr

2.4 Stoßvorgänge. Lösungen

2.4 Stoßvorgänge. Lösungen .4 Stoßvorgänge Lösungen Aufgabe 1: a) Geschwindigkeit und Winkel: Für die Wurfhöhe gilt: H = v 0 g sin Die zugehörige x-koordinate ist: x 1 = v 0 g sincos Aus diesen beiden Gleichungen lässt sich die

Mehr

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II

Hochschule Düsseldorf University of Applied Sciences. 05. Januar 2017 HSD. Physik. Schwingungen II Physik Schwingungen II Ort, Geschwindigkeit, Beschleunigung x(t) = cos! 0 t v(t) =ẋ(t) =! 0 sin! 0 t t a(t) =ẍ(t) =! 2 0 cos! 0 t Energie In einem mechanischen System ist die Gesamtenergie immer gleich

Mehr

Die Aufgaben sind nicht nach Schwierigkeitsgrad, sondern thematisch geordnet. Setzen Sie Zahlen, sofern verlangt, nur am Ende einer Herleitung ein.

Die Aufgaben sind nicht nach Schwierigkeitsgrad, sondern thematisch geordnet. Setzen Sie Zahlen, sofern verlangt, nur am Ende einer Herleitung ein. Prof. G. Dissertori Physik I ETH Zürich, D-PHYS Durchführung: 22. August 2012 Bearbeitungszeit: 180min Prüfungsklausur Tragen Sie als erstes auf dieser Seite Ihren Namen und Ihre Legi-Nummer ein und kreuzen

Mehr

5 Schwingungen und Wellen

5 Schwingungen und Wellen 5 Schwingungen und Wellen Schwingung: Regelmäßige Bewegung, die zwischen zwei Grenzen hin- & zurückführt Zeitlich periodische Zustandsänderung mit Periode T ψ ψ(t) [ ψ(t-τ)] Wellen: Periodische Zustandsänderung

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr