Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute

Größe: px
Ab Seite anzeigen:

Download "Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute"

Transkript

1 3.4 PageRank Arbeit: Page, Brin, Motwani, Winograd (1998). Ziel: Maß für absolute Wichtigkeit von Webseiten; nicht Relevanz bezüglich Benutzeranfrage. Anfrageunabhängiges Ranking. Ausgangspunkt: Eingangsgrad. Problem: Alle eingehenden Links gleich bewertet. Link von genauso wichtig wie von obskurer Crackerseite. Und: Leicht zu spammen. Idee für Verbesserung: Seite wichtig, falls sie viele eingehende Links von wichtigen Seiten hat. 158

2 3.4.1 Der PageRank-Algorithmus PageRank einfache Version: Betrachte Webgraphen (bzw. Ausschnitt, Crawl) G = (V, E), n := V. Ordne jeder Seite v V Pagerank r v [0, 1] zu gemäß r v := r u outdeg(u). (u,v) E Dies als Berechnungsvorschrift interpretieren: Initialisierung irgendwie geeignet : Z. B. r v = 1/n für alle v. Dann iterieren, bis Konvergenz. 159

3 PageRank einfache Version (Forts.): Matrix-Vektor-Formulierung: Gewichtete Adjazenzmatrix A = (a i,j ) 1 i,j n : 1, falls (i, j) E; a i,j = outdeg(i) 0, sonst. r (t) [0, 1] n Rangvektor nach t-tem Schritt, t 1. Iteration: r (0) := [1/n,..., 1/n]; r (t) = r (t 1) A. (Beachte: Hier immer Matrix-Vektor-Multiplikation von links, r(t) Zeilenvektoren.) 160

4 Beispiel 1: /2 1/2 0 A = /2 0 1/ r = [ 1/4 1/4 1/4 1/4 ] 161

5 Beispiel 1: /2 1/2 0 A = /2 0 1/ r = [ 0 4/8 3/8 1/8 ] 161

6 Beispiel 1: /2 1/2 0 A = /2 0 1/ r = [ 0 5/16 8/16 3/16 ] 161

7 Beispiel 1: /2 1/2 0 A = /2 0 1/ r = [ 0 7/16 5/16 4/16 ] 161

8 Beispiel 1: /2 1/2 0 A = /2 0 1/ r = [ 0 13/32 14/32 5/32 ]

9 Beispiel 1: /2 1/2 0 A = /2 0 1/ r = [ 0 12/32 13/32 7/32 ]

10 Beispiel 1: /2 1/2 0 A = /2 0 1/ r = [ 0 27/64 24/64 13/64 ] 161

11 Beispiel 1: /2 1/2 0 A = /2 0 1/ r = [ 0 25/64 27/64 12/64 ] 161

12 Beispiel 1: /2 1/2 0 A = /2 0 1/ r = [ 0 2/5 2/5 1/5 ]

13 Beispiel 2: A = 1/2 0 1/2 0 1/3 1/3 0 1/ r = [ 1/4 1/4 1/4 1/4 ] 162

14 Beispiel 2: A = 1/2 0 1/2 0 1/3 1/3 0 1/ r = [ 5/24 8/24 3/24 2/24 ] 162

15 Beispiel 2: A = 1/2 0 1/2 0 1/3 1/3 0 1/ r = [ 5/24 3/24 4/24 1/24 ] 162

16 Beispiel 2: A = 1/2 0 1/2 0 1/3 1/3 0 1/ r = [ 17/144 7/72 1/16 1/18 ]

17 Beispiel 2: A = 1/2 0 1/2 0 1/3 1/3 0 1/ r = [ 5/72 11/144 7/144 1/48 ]

18 Beispiel 2: A = 1/2 0 1/2 0 1/3 1/3 0 1/ r = [ ] 162

19 Das Random-Surfer-Modell: Durch PageRank-Iteration beschriebener Prozess: Starte an zufällig gleichverteilt gewähltem Knoten. Iterationsschritt für Seite i: Wähle zufällig gleichverteilt einen von Seite i ausgehenden Link und verfolge diesen zu neuer Seite j. Matrixeintrag a i,j gibt Wskt. für Übergang i j an. Bisher: Kann in Knoten stecken bleiben (Beispiel 2). 163

20 Problem: Sackgassen ( Dangling Links ) Definition 3.13: Sackgasse: Seite ohne ausgehende Links bzw. Knoten v mit outdeg(v) = 0. Problem ist real, Experimente: Crawls mit 40 % 80 % Sackgassen-Knoten. Möglichkeiten für Abhilfe: Entferne rekursiv Sackgassen (Brin, Page). Patche Matrix der Übergangswahrscheinlichkeiten bzw. analog Update-Regel. 164

21 Sackgassen (Forts.): In Beispiel 2: /4 1/4 1/4 1/4 A = 1/2 0 1/2 0 1/3 1/3 0 1/3 A = 1/2 0 1/2 0 1/3 1/3 0 1/ Allgemein: Nullzeile Zeile [1/n,..., 1/n]. Analog Änderung der Update-Regel: { d = [d 1,..., d n ] 1, falls Knoten i Sackgasse; mit d i = 0, sonst. r (t+1) = r (t) A + r (t) d [1/n,..., 1/n]. }{{} n n-matrix 165

22 Das Random-Surfer-Modell (Forts.): Im Folgenden: Sackgassen entfernt / in A berücksichtigt. Dann ist A stochastische Matrix: Definition 3.14: Matrix stochastisch, falls Einträge aus [0, 1] und Zeilensummen alle jeweils gleich 1. Random-Surfer-Prozess ist Markoffkette, A ist Matrix der Übergangswahrscheinlichkeiten. Hätten wieder gerne: Konvergenz gegen Grenzverteilung auf Seiten / Knoten. Unabhängigkeit vom Startvektor. Für das einfache Verfahren nicht gegeben (später)! 166

23 PageRank Vollversion: Zusätzlicher Parameter α [0, 1], Dämpfungsfaktor. Neue Update-Regel: Graph G = (V, E), n = V. Für v V : r v := 1 α n + α (u,v) E Random-Surfer-Modell: Start auf zufälliger Seite. r u outdeg(u). Münze mit Aufschriften Weiter und Neustart mit Wahrscheinlichkeiten α bzw. 1 α. Weiter : Wie bisher, folge zufälligem Link. Neustart : Sprung zu zufälliger Seite. 167

24 Matrix-Vektor-Schreibweise: r (0) = [1/n,..., 1/n]. r (t) = r (t 1) M, t 1; wobei M := (1 α)e + αa, 1/n 1/n E :=... 1/n 1/n Beobachtung: A stochastische Matrix M stochastische Matrix. 168

25 Absoluter PageRank: Benutze Initialisierung mit PageRank 1 für jede Seite: r (0) = [1,..., 1]. r (t) = r (t 1) M, t 1; M stochastische Matrix Für alle t 0 gilt: n n r (t) i = r (0) i = n. i=1 i=1 Formulierung als Update-Regel: r u r v := (1 α) + α outdeg(u), v V. (u,v) E So auch implementiert, da sonst: sehr viele sehr kleine Wahrscheinlichkeiten; lästige Abhängigkeit von n ( Knotenupdates!). Für Theorie allerdings Markoffketten-Sichtweise. 169

26 Der Google-Toolbar-Rang Toolbar-Rang: Wert aus {0,..., 10}, der tatsächlichen PageRank repräsentiert. Benutze dafür absoluten PageRank. Intervall für absoluten PageRank (falls = 0): 1 α (keine eingehenden Kanten) bis 1 α + α n. 1 2 n 1... n Werte aus {0,..., 10} gemäß logarithmischer Skala auf dieses Intervall abbilden (Basis ?). Finetuning von Hand (?). 170

27 3.4.2 Konvergenz des PageRank-Algorithmus Wie HITS ist PageRank Spezialfall der Potenziteration: r (t) = r (0) M t, t 0. Unter geeigneten Bedingungen wieder Konvergenz gegen Eigenvektor zum (reellen) größten Eigenwert von M. Proposition 3.15: Matrix M stochastisch größter Eigenwert von M ist 1. Falls r (linker) Eigenvektor zum größten Eigenwert 1 von M: r = r M. Später: r sogar positiv wählbar. Nach Normierung, r 1 = i r i = i r i = 1: Stationäre Verteilung der Markoffkette. 171

28 Beweis von Proposition 3.15: Sei M stochastische Matrix. 1 ist Eigenwert von M: Offenbar gilt für e = [1,..., 1] : Me = e. Da aber M und M das gleiche Spektrum haben, ist damit bereits die obige Behauptung gezeigt. M hat keinen größeren Eigenwert als 1: Sei xm = λx für x = [x 1,..., x n ] = 0 und seien r 1,..., r n die Zeilen M. Dann gilt xm 1 = x 1 r x n r n 1 x 1 r x n r n 1 = x x n = x 1. Damit haben wir xm 1 = λ x 1 x 1. Division durch x 1 > 0 liefert die Behauptung. 172

29 Hinreichendes Kriterium für Konvergenz + Eindeutigkeit: Markoffkette / Matrix M irreduzibel und aperiodisch. Definition 3.16: Sei M reelle n n-matrix und M =0 zugehörige Adjazenzmatrix mit 1-Einträgen genau an den Stellen, an denen M Einträge ungleich 0 hat. Betrachte durch M =0 definierten Graphen. Für i = 1,..., n Periode von Knoten i: t i := ggt({l Kreis mit Startknoten i der Länge l}). Dann heißt M aperiodisch, falls t 1 = = t n =

30 Proposition 3.17: Alle Knoten einer starken Zusammenhangskomponente eines Graphen haben dieselbe Periode. Beweis: Knoten v, w einer SZK gegeben: verbunden durch Kreis, Länge sei l 1. Knoten v auf beliebigem Kreis der Länge l 2 : Periode t w von w teilt l 1, aber auch l 1 + l 2 t w teilt auch l 2 t w ist Teiler der Längen aller Kreise durch v t w t v. Symmetrie t v = t w. 174

31 Beispiel: Knoten in SZK haben alle selbe Periode, also o. B. d. A. Knoten 1 betrachten. Kreislänge 2 kommt vor, und alle andere Kreislängen gerade Periode von Knoten 1 ist 2. Fazit: Irreduzibel, aber nicht aperiodisch. 175

32 Satz 3.18 (Perron-Frobenius): Sei M quadratische, nichtnegative, irreduzible Matrix. Dann: Es gibt einen positiven Eigenwert λ 1 von M, der genau einmal vorkommt. Für alle Eigenwerte λ = λ 1 gilt λ 1 λ. Es gibt einen positiven Eigenvektor zu λ 1. Falls M zusätzlich aperiodisch: Für alle Eigenwerte λ = λ 1 gilt sogar λ 1 > λ. Bei irreduziblem, aber nicht aperiodischem M z. B. Eigenwerte 1, 1 möglich. Dann: Potenziteration konvergiert i. A. nicht! 176

33 Anwendung für Markoffketten: Stochastische Matrix M insbesondere nichtnegativ, falls zusätzlich irreduzibel und aperiodisch: 1 = λ 1 > λ 2 λ n 0. Mit Anpassung des Beweises von Satz 3.8 (hier nicht): Folgerung 3.19: Potenziteration mit stochastischer Matrix M, die irreduzibel und aperiodisch ist, konvergiert für beliebigen positiven Startvektor gegen positiven Eigenvektor r zum größten Eigenwert 1. Eigenvektor r eindeutig, wenn zusätzlich r 1 = i r i =

34 Anwendung bei PageRank: Beobachtung: Gewichtete Adjazenzmatrix A von Webcrawls ist ziemlich sicher nicht einmal irreduzibel I. A. keine Konvergenz für einfachen PageRank-Algorithmus! Proposition 3.20: Für einen Dämpfungsfaktor α < 1 ist die Matrix M = (1 α)e + αa in der Iteration des PageRank- Algorithmus irreduzibel und aperiodisch. Beweis: Trivial, denn durch zufällige Neustarts ist jeder Knoten von jedem mit positiver Wskt. erreichbar. 178

35 Anwendung bei PageRank (Forts.): Damit haben wir insgesamt: Satz 3.21: Sei α < 1. Dann gibt es einen positiven Vektor r mit r 1 = 1, sodass für jeden positiven Startvektor die Folge der Vektoren im PageRank-Algorithmus mit Matrix M = (1 α)e + αa gegen r konvergiert. 179

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87

16. November 2011 Zentralitätsmaße. H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 16. November 2011 Zentralitätsmaße H. Meyerhenke: Algorithmische Methoden zur Netzwerkanalyse 87 Darstellung in spektraler Form Zentralität genügt Ax = κ 1 x (Herleitung s. Tafel), daher ist x der Eigenvektor

Mehr

Ranking am Beispiel von Google (1998):

Ranking am Beispiel von Google (1998): Ranking am Beispiel von Google (1998): So heute (lange) nicht mehr, aber wenigstens konkret, wie es prinzipiell gehen kann. Und Grundschema bleibt dasselbe. Zwei Komponenten (genaue Kombination unbekannt):

Mehr

Das Prinzip der Suchmaschine Google TM

Das Prinzip der Suchmaschine Google TM /9 Das Prinzip der Suchmaschine Google TM Numerische Mathematik WS 20/2 Basieren auf dem Paper The $25,000,000,000 Eigenvector: The Linear Algebra behind Google von Kurt Bryan und Tanya Leise (SIAM Review,

Mehr

Ranking Functions im Web: PageRank & HITS

Ranking Functions im Web: PageRank & HITS im Web: PageRank & HITS 28. Januar 2013 Universität Heidelberg Institut für Computerlinguistik Information Retrieval 4 / 30 Idee PageRank Entstehung: Larry Page & Sergey Brin, 1998, genutzt von Google

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009

Eigenwerte. Vorlesung Computergestützte Mathematik zur Linearen Algebra. Lehrstuhl für Angewandte Mathematik Sommersemester 2009 Eigenwerte Vorlesung Computergestützte Mathematik zur Linearen Algebra Lehrstuhl für Angewandte Mathematik Sommersemester 2009 25. Juni + 2.+9. Juli 2009 Grundlagen Definition Ist für A C n,n, Ax = λx

Mehr

5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank

5 Suchmaschinen Page Rank. Page Rank. Information Retrieval und Text Mining FH Bonn-Rhein-Sieg, SS Suchmaschinen Page Rank Page Rank Google versucht die Bedeutung von Seiten durch den sogenannten Page Rank zu ermitteln. A C Page Rank basiert auf der Verweisstruktur des Webs. Das Web wird als großer gerichteter Graph betrachtet.

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Die Mathematik hinter Google

Die Mathematik hinter Google Die Mathematik hinter Google Informationstag für Gymnasiastinnen und Gymnasiasten Universität Fribourg (Schweiz) georges.klein@unifr.ch Fribourg, 24. November 2010 georges.klein@unifr.ch Die Mathematik

Mehr

Übungsaufgaben Lösungen

Übungsaufgaben Lösungen Übungsaufgaben Lösungen Stochastische Matrizen, Markov-Prozesse MV5.1 Eine N N-Matrix P heißt stochastisch, wenn ihre Matrixelemente nicht-negativ sind und alle Zeilensummen 1 ergeben. In Formeln: P ij

Mehr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr

Ein Zustand i mit f i = 1 heißt rekurrent. DWT 2.5 Stationäre Verteilung 420/476 c Ernst W. Mayr Definition 140 Wir bezeichnen einen Zustand i als absorbierend, wenn aus ihm keine Übergänge herausführen, d.h. p ij = 0 für alle j i und folglich p ii = 1. Ein Zustand i heißt transient, wenn f i < 1,

Mehr

Endliche Markov-Ketten - eine Übersicht

Endliche Markov-Ketten - eine Übersicht Endliche Markov-Ketten - eine Übersicht Diese Übersicht über endliche Markov-Ketten basiert auf dem Buch Monte Carlo- Algorithmen von Müller-Gronbach et. al. und dient als Sammlung von Definitionen und

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23.

Google s PageRank. Eine Anwendung von Matrizen und Markovketten. Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. Google s PageRank Eine Anwendung von Matrizen und Markovketten Vortrag im Rahmen der Lehrerfortbildung an der TU Clausthal 23. September 2009 Dr. Werner Sandmann Institut für Mathematik Technische Universität

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Juniorprof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Universität desmeyerhenke, Landes Baden-Württemberg Institutund für Theoretische

Mehr

Thema 8: Verbesserte Suchstrategien im WWW. Bearbeiter: Robert Barsch Betreuer: Dr. Oliver Ernst

Thema 8: Verbesserte Suchstrategien im WWW. Bearbeiter: Robert Barsch Betreuer: Dr. Oliver Ernst Thema 8: Verbesserte Suchstrategien im WWW Bearbeiter: Robert Barsch Betreuer: Dr. Oliver Ernst Inhaltsverzeichnis 1. Einleitung 2. Grundlagen 3. Google PageRank Algorithmus 4. IBM Clever HITS Algorithmus

Mehr

7. Vorlesung. Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten

7. Vorlesung. Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten 7. Vorlesung Bipartite Kerne Das kopierende Modell Bow-tie Struktur des Web Random Sampling von Web Seiten Seite 179 Web als ein Soziales Netzwerk Small-world Netzwerk: Niedriger (Durchschnitts) Durchmesser

Mehr

Einführung in Markoff-Ketten

Einführung in Markoff-Ketten Einführung in Markoff-Ketten von Peter Pfaffelhuber Version: 6. Juli 200 Inhaltsverzeichnis 0 Vorbemerkung Grundlegendes 2 Stationäre Verteilungen 6 3 Markoff-Ketten-Konvergenzsatz 8 0 Vorbemerkung Die

Mehr

LANGZEITVERHALTEN VON MARKOW-KETTEN

LANGZEITVERHALTEN VON MARKOW-KETTEN LANGZEITVERHALTEN VON MARKOW-KETTEN NORA LOOSE. Buchstabensalat und Definition Andrei Andreewitsch Markow berechnete Anfang des 20. Jahrhunderts die Buchstabensequenzen in russischer Literatur. 93 untersuchte

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

Hans Humenberger. Das PageRank-System von Google eine aktuelle Anwendung im MU

Hans Humenberger. Das PageRank-System von Google eine aktuelle Anwendung im MU Hans Humenberger Das PageRank-System von Google eine aktuelle Anwendung im MU Google und seine Gründer Google etwas Riesengroßes nach der unglaublichen Fülle des WWW Googol = 10^100 1938 durch E. Kasner

Mehr

Gambler s Ruin. B ist die Bank ) 4/40

Gambler s Ruin. B ist die Bank ) 4/40 Gambler s Ruin Zwei Spieler A und B spielen ein Spiel um m Franken. Spieler A hat a Franken, Spieler B hat b = m a Franken. In jeder Runde wird um 1 Franken gespielt. A gewinnt eine Runde mit W keit p,

Mehr

Die Abbildung zeigt die Kette aus dem "

Die Abbildung zeigt die Kette aus dem ½ Ô ½ 0 1 2 Õ Eine Markov-Kette mit absorbierenden Zustanden Die Abbildung zeigt die Kette aus dem " gamblers ruin problem\ fur m = 2. Man sieht sofort, dass hier sowohl 1 = (1; 0; 0) als auch 2 = (0;

Mehr

Der Ergodensatz. Hendrik Hülsbusch

Der Ergodensatz. Hendrik Hülsbusch Der Ergodensatz Hendrik Hülsbusch 1..212 Inhaltsverzeichnis Einleitung 3 5 Stationäre Verteilungen 5 6 Reversible Markovketten 11 2 Einleitung In meinem Vortrag beschäftigen wir uns mit dem asymptotischen

Mehr

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren

8. Vorlesung, 5. April Numerische Methoden I. Eigenwerte und Eigenvektoren 8. Vorlesung, 5. April 2017 170 004 Numerische Methoden I Eigenwerte und Eigenvektoren 1 Eigenwerte und Eigenvektoren Gegeben ist eine n n-matrix A. Gesucht sind ein vom Nullvektor verschiedener Vektor

Mehr

Suchmaschinen und Markov-Ketten 1 / 42

Suchmaschinen und Markov-Ketten 1 / 42 Suchmaschinen und Markov-Ketten 1 / 42 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort oder

Mehr

Das Pagerank-Verfahren (und Markovketten) 16. Dezember 2013

Das Pagerank-Verfahren (und Markovketten) 16. Dezember 2013 Das Pagerank-Verfahren (und Markovketten) 16. Dezember 2013 Gegeben: Eine Sammlung von N Web-Seiten, die (teilweise) { untereinander verlinkt sind. 1 wenn Seite i auf Seite j verweist Sei L ij = 0 sonst

Mehr

DynaTraffic Modelle und mathematische Prognosen. Simulation der Verteilung des Verkehrs mit Hilfe von Markov-Ketten

DynaTraffic Modelle und mathematische Prognosen. Simulation der Verteilung des Verkehrs mit Hilfe von Markov-Ketten DynaTraffic Modelle und mathematische Prognosen Simulation der Verteilung des Verkehrs mit Hilfe von Markov-Ketten Worum geht es? Modelle von Verkehrssituationen Graphen: Kanten, Knoten Matrixdarstellung

Mehr

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen

Musterlösungen Blatt Mathematischer Vorkurs. Sommersemester Dr. O. Zobay. Matrizen Musterlösungen Blatt 8 34007 Mathematischer Vorkurs Sommersemester 007 Dr O Zobay Matrizen Welche Matrixprodukte können mit den folgenden Matrizen gebildet werden? ( 4 5 A, B ( 0 9 7, C 8 0 5 4 Wir können

Mehr

Ein Index zur Berechnung von Prestige in Koautornetzwerken

Ein Index zur Berechnung von Prestige in Koautornetzwerken Ein Index zur Berechnung von Prestige in Koautornetzwerken Thomas Metz, Universität Freiburg 5. März 2012 Zusammenfassung Bei der Analyse von Koautornetzwerken stellt sich oft die Frage, ob sich für ein

Mehr

PageRank-Algorithmus

PageRank-Algorithmus Proseminar Algorithms and Data Structures Gliederung Gliederung 1 Einführung 2 PageRank 3 Eziente Berechnung 4 Zusammenfassung Motivation Motivation Wir wollen eine Suchmaschine bauen, die das Web durchsucht.

Mehr

PG520 - Webpageranking

PG520 - Webpageranking 12. Oktober 2007 Webpageranking - Quellen The PageRank citation ranking: Bringing order to the Web; Page, Brin etal. Technical report, 1998. A Unified Probabilistic Framework for Web Page Scoring Systems;

Mehr

Modellierung WS 2014/15. Wahrscheinlichkeits-Modelle und stochastische Prozesse. (mit Folien von Prof. H. Schütze)

Modellierung WS 2014/15. Wahrscheinlichkeits-Modelle und stochastische Prozesse. (mit Folien von Prof. H. Schütze) Modellierung WS 2014/15 Wahrscheinlichkeits-Modelle und stochastische Prozesse (mit Folien von Prof. H. Schütze) Prof. Norbert Fuhr 1 / 63 Wahrscheinlichkeits-Modelle Wahrscheinlichkeits-Modelle Zufalls-Experiment

Mehr

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P.

Pr[X t+1 = k] = Pr[X t+1 = k X t = i] Pr[X t = i], also. (q t+1 ) k = p ik (q t ) i, bzw. in Matrixschreibweise. q t+1 = q t P. 2.2 Berechnung von Übergangswahrscheinlichkeiten Wir beschreiben die Situation zum Zeitpunkt t durch einen Zustandsvektor q t (den wir als Zeilenvektor schreiben). Die i-te Komponente (q t ) i bezeichnet

Mehr

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung

5. Vorlesung. Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung 5. Vorlesung Das Ranking Problem PageRank HITS (Hubs & Authorities) Markov Ketten und Random Walks PageRank und HITS Berechnung Seite 120 The Ranking Problem Eingabe: D: Dokumentkollektion Q: Anfrageraum

Mehr

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren

Kapitel 1. Vektoren und Matrizen. 1.1 Vektoren Kapitel 1 Vektoren und Matrizen In diesem Kapitel stellen wir die Hilfsmittel aus der linearen Algebra vor, die in den folgenden Kapiteln öfters benötigt werden. Dabei wird angenommen, dass Sie die elementaren

Mehr

1 Theorie der Kettenbrüche II

1 Theorie der Kettenbrüche II Theorie der Kettenbrüche II Vom ersten Vortrag erinnern wir, dass sich jede reelle Zahl α wie folgt darstellen lässt: α = a 0 + a + a 2 + mit a 0 Z und a i N >0 für jedes i Die Kettenbruchdarstellung lässt

Mehr

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1}

2. Entsprechende Listen P i von Vorgängern von i 3. for i := 1 to n do. (ii) S i = Knoten 2 + 1} 1. Berechne für jeden Knoten i in BFS-Art eine Liste S i von von i aus erreichbaren Knoten, so dass (i) oder (ii) gilt: (i) S i < n 2 + 1 und Si enthält alle von i aus erreichbaren Knoten (ii) S i = n

Mehr

Big Data Analytics in Theorie und Praxis Theorieteil

Big Data Analytics in Theorie und Praxis Theorieteil Big Data Analytics in Theorie und Praxis Theorieteil Vorlesung (entspricht 2V+1Ü SWS) Prof. Dr. Nicole Schweikardt Lehrstuhl Logik in der Informatik Institut für Informatik Humboldt-Universität zu Berlin

Mehr

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst

Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen. Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Theoretische Überlegungen zur Ausbreitung von Infektionserregern auf Kontaktnetzen Hartmut Lentz, Maria Kasper, Ansgar Aschfalk und Thomas Selhorst Netzwerke / Graphen verschiedene Typen von Graphen: einfache

Mehr

Markov-Ketten und Google s Page-Rank 1 / 70

Markov-Ketten und Google s Page-Rank 1 / 70 Markov-Ketten und Google s Page-Rank 1 / 70 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort

Mehr

Einführung in die Theorie der Markov-Ketten. Jens Schomaker

Einführung in die Theorie der Markov-Ketten. Jens Schomaker Einführung in die Theorie der Markov-Ketten Jens Schomaker Markov-Ketten Zur Motivation der Einführung von Markov-Ketten betrachte folgendes Beispiel: 1.1 Beispiel Wir wollen die folgende Situation mathematisch

Mehr

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Suche im Web. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Suche im Web. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Suche im Web Tobias Scheffer WWW 1990 am CERN von Tim Berners Lee zum besseren Zugriff auf Papers entwickelt. HTTP, URLs, HTML,

Mehr

Ein Index zur Berechnung von Zentralität in Koautornetzwerken

Ein Index zur Berechnung von Zentralität in Koautornetzwerken Ein Index zur Berechnung von Zentralität in Koautornetzwerken Thomas Metz Universität Freiburg Seminar für Wissenschaftliche Politik 13. Dezember 2012 Zusammenfassung Bei der Analyse von Koautornetzwerken

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 13 Allgemeine Theorie zu Markov-Prozessen (stetige Zeit, diskreter Zustandsraum) Literatur Kapitel 13 * Grimmett & Stirzaker: Kapitel 6.9 Wie am Schluss von Kapitel

Mehr

Eigenwerte und Eigenvektoren

Eigenwerte und Eigenvektoren Eigenwerte und Eigenvektoren Siehe Analysis (von der Hude, Folie 20: Definition 2.3. Ein Vektor x R n heißt Eigenvektor der quadratischen n n-matrix A zum Eigenwert λ R, wenn gilt Ax = λx Die Eigenwerte

Mehr

16.3 Rekurrente und transiente Zustände

16.3 Rekurrente und transiente Zustände 16.3 Rekurrente und transiente Zustände Für alle n N bezeichnen wir mit f i (n) = P(X n = i,x n 1 i,...,x 1 i,x 0 = i) die Wahrscheinlichkeit, daß nach n Schritten erstmalig wieder der Zustand i erreicht

Mehr

Markov-Ketten und Google s Page-Rank 1 / 70

Markov-Ketten und Google s Page-Rank 1 / 70 Markov-Ketten und Google s Page-Rank 1 / 70 Zielstellung 1 Wir geben einen kurzen Überblick über die Arbeitsweise von Suchmaschinen für das Internet. Eine Suchmaschine erwartet als Eingabe ein Stichwort

Mehr

Duplikatfilterung und Sampling von Webseiten

Duplikatfilterung und Sampling von Webseiten Duplikatfilterung und Sampling von Webseiten Seminar Suchmaschinen, Wintersemester 2007/2008 Martin Sauerhoff Lehrstuhl 2, Universität Dortmund Übersicht 1. Duplikatfilterung: 1.1 Gleichheitstest mit Fingerabdrücken

Mehr

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10

D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler. Lösungen Serie 10 D-MAVT Lineare Algebra I HS 2017 Prof. Dr. N. Hungerbühler Lösungen Serie 10 1. Für a 1 : 1 1 0, a 2 : 1 1, a 3 : 1 1 1, b : 2 2 2 1 und A : (a 1, a 2, a 3 ) gelten welche der folgenden Aussagen? (a) det(a)

Mehr

Lineare Algebra 1. . a n1 a n2 a n3 a nm

Lineare Algebra 1. . a n1 a n2 a n3 a nm Lineare Algebra 1 Lineare Algebra Hilfreiche Konzepte zur Vereinfachung der Darstellung und Berechnung stellt die lineare Algebra bereit. Auch wenn sie nur an wenigen Stellen des Buches verwendet wurden,

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p

2. Geben Sie für das Jacobi-Verfahren eine scharfe a-priori Abschätzung für den Fehler. x (10) x p Wiederholungsaufgaben Algorithmische Mathematik Sommersemester Prof. Dr. Beuchler Markus Burkow Übungsaufgaben Aufgabe. (Jacobi-Verfahren) Gegeben sei das lineare Gleichungssystem Ax b = für A =, b = 3.

Mehr

PageRank & HITS. Christian Schwarz Andreas Beyer Information Retrieval Uni Heidelberg

PageRank & HITS. Christian Schwarz Andreas Beyer Information Retrieval Uni Heidelberg PageRank & HITS Christian Schwarz Andreas Beyer 02.02.2009 Information Retrieval Uni Heidelberg Lawrence Page Sergey Brin 2 Im Verlauf der letzten Jahre hat sich Google weltweit zur bedeutendsten Suchmaschine

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

47 Singulärwertzerlegung

47 Singulärwertzerlegung 47 Singulärwertzerlegung 47.1 Motivation Wir haben gesehen, dass symmetrische Matrizen vollständig mithilfe ihrer Eigenwerte und Eigenvektoren beschrieben werden können. Diese Darstellung kann unmittelbar

Mehr

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1

Lösungen Serie 2. D-MAVT Lineare Algebra II FS 2018 Prof. Dr. N. Hungerbühler 1 0 1? 0 1 1 D-MAVT Lineare Algebra II FS 8 Prof. Dr. N. Hungerbühler Lösungen Serie. Welche der folgenden Vektoren sind Eigenvektoren der Matrix? (a) (,, ). Ein Vektor v ist Eigenvektor von A :=, falls Av ein skalares

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1)

Eigenwerte. Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) Eigenwerte 1 Eigenwerte und Eigenvektoren Ein Eigenwert einer quadratischen n n Matrix A ist ein Skalar λ C (eine komplexe Zahl) mit der Eigenschaft Ax = λx (1) für einen Vektor x 0. Vektor x heißt ein

Mehr

51 Numerische Berechnung von Eigenwerten und Eigenvektoren

51 Numerische Berechnung von Eigenwerten und Eigenvektoren 5 Numerische Berechnung von Eigenwerten und Eigenvektoren 5. Motivation Die Berechnung der Eigenwerte einer Matrix A IR n n als Lösungen der charakteristischen Gleichung (vgl. Kapitel 45) ist für n 5 unpraktikabel,

Mehr

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand

UNABHÄNGIGER LASTEN. Vorlesung 9 BALANCIERUNG DYNAMISCHER. Graphenalgorithmen und lineare Algebra Hand in Hand Vorlesung 9 BALANCIERUNG DYNAMISCHER UNABHÄNGIGER LASTEN 266 Lastbalancierung Motivation! Ein paralleles System besteht aus! verschiedenen Recheneinheiten,! die miteinander kommunizieren können! Warum

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 16. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 16 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 45 Graphen TU Ilmenau Seite 2 / 45 Graphen 1 2 3 4 5 6 7 8

Mehr

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen

Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Proseminar Lineare Algebra SS10 Exponentialabbildung für Matrizen und Systeme von Differentialgleichungen Simon Strahlegger Heinrich-Heine-Universität Betreuung: Prof. Dr. Oleg Bogopolski Inhaltsverzeichnis:

Mehr

PageRank und HITS. Frank Habermann 11. Februar 2007

PageRank und HITS. Frank Habermann 11. Februar 2007 PageRank und HITS Frank Habermann 11 Februar 2007 1 Inhaltsverzeichnis 1 Einleitung 2 PageRank 4 21 mathematische Beschreibung 4 211 Random Surfer Model 4 212 Berechnung 4 21 Rechenbeispiel 5 22 Vorteile

Mehr

Lineare Schieberegisterfolgen

Lineare Schieberegisterfolgen Lineare Schieberegisterfolgen Sei K ein endlicher Körper. Man nehme zwei Vektoren x 0 a0 x n 1, a n 1 K n n 1 x n := a i x i und betrachte die lineare Abbildung : K n K n, die durch i=0, berechne x 0 x

Mehr

Wie Google Webseiten bewertet. François Bry

Wie Google Webseiten bewertet. François Bry Wie Google Webseiten bewertet François Bry Heu6ge Vorlesung 1. Einleitung 2. Graphen und Matrizen 3. Erste Idee: Ranking als Eigenvektor 4. Fragen: Exisi6ert der Eigenvektor? Usw. 5. Zweite Idee: Die Google

Mehr

Stochastische Prozesse. Woche 5

Stochastische Prozesse. Woche 5 FS 2016 Stochastische Prozesse Woche 5 Aufgabe 1 PageRank-Algorithmus von Google Das Herz der Google-Suchmaschine ist ein Algorithmus, der alle Dokumente des WWW nach ihrer Wichtigkeit anordnet. Die Auflistung

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Eigenvektorzentralität auf Hypergraphen

Eigenvektorzentralität auf Hypergraphen Eigenvektorzentralität auf Hypergraphen Seminar Graphen & Algorithmen Universität Konstanz Matthias Fratz 1. April 2009 Inhaltsverzeichnis 1 Was ist Zentralität? 2 2 Grundlagen zur Eigenvektorzentralität

Mehr

Kapitel II. Vektoren und Matrizen

Kapitel II. Vektoren und Matrizen Kapitel II. Vektoren und Matrizen Vektorräume A Körper Auf der Menge R der reellen Zahlen hat man zwei Verknüpfungen: Addition: R R R(a, b) a + b Multiplikation: R R R(a, b) a b (Der Malpunkt wird oft

Mehr

1 0 1, V 3 = M, und λ A = λa

1 0 1, V 3 = M, und λ A = λa Aufgabe 57. Magische Quadrate Eine reelle 3 3-Matrix A = a 11 a 12 a 13 a 21 a 22 a 23 heißt magisches Quadrat, falls alle Zeilensummen, alle Spaltensummen und die beiden Diagonalsummen a 11 + a 22 + a

Mehr

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und

Definition 7.1. Der Coxeter Graph zu W ist der ungerichtete gewichtete Graph Γ W = (V, E), mit Eckenmenge V und Kantenmenge E, gegeben durch V = und 7. Coxeter Graphen Um die endlichen Spiegelungsgruppen zu klassifizieren, wollen wir ihnen nun Graphen zuordnen, die die Gruppen bis auf Isomorphie eindeutig bestimmen. Im Folgenden sei wie vorher Π Φ

Mehr

f h c 7 a 1 b 1 g 2 2 d

f h c 7 a 1 b 1 g 2 2 d ) Man bestimme mit Hilfe des Dijkstra-Algorithmus einen kürzesten Weg von a nach h: c 7 a b f 5 h 3 4 5 i e 6 g 2 2 d Beim Dijkstra-Algorithmus wird in jedem Schritt von den noch unmarkierten Knoten jener

Mehr

Web Information Retrieval

Web Information Retrieval Web Information Retrieval Informationssysteme für Ingenieure (ISI) Herbstsemester 206 R. Marti Ziel des Kapitels Kenntnis einer Methode zur Gewichtung von Dokumenten bezüglich Relevanz, durch Ausnutzung

Mehr

5 Teilmengen von R und von R n

5 Teilmengen von R und von R n 5 Teilmengen von R und von R n Der R n ist eine mathematische Verallgemeinerung: R n = {x = (x 1,...,x n ) : x i R} = R }... {{ R }. n mal Für x R ist x der Abstand zum Nullpunkt. Die entsprechende Verallgemeinerung

Mehr

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09)

Vorlesung Mathematik für Ingenieure 1 (Wintersemester 2008/09) Vorlesung Mathematik für Ingenieure Wintersemester 8/9 Kapitel 4: Matrizen, lineare Abbildungen und Gleichungssysteme Volker Kaibel Otto-von-Guericke Universität Magdeburg Version vom 5. November 8 Page-Rank

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

Stabilität linearer Differentialgleichungssysteme 1-1

Stabilität linearer Differentialgleichungssysteme 1-1 Stabilität linearer Differentialgleichungssysteme Ein lineares homogenes Differentialgleichungssystem mit konstanten Koeffizienten u = Au, u = (u 1,..., u n ) t, ist Stabilität linearer Differentialgleichungssysteme

Mehr

SPEKTRALE GRAPHENTHEORIE

SPEKTRALE GRAPHENTHEORIE SPEKTRALE GRAPHENTHEORIE 179 Graphen, Matrizen, Spektren! Graph als Matrix:! Adjazenzmatrix! Inzidenzmatrix! Laplacematrix!...! Spektrum: Menge der Eigenwerte! Motivation: Sagt das Spektrum etwas über

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14)

Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 2013/14) Vorlesung Einführung in die Mathematische Optimierung (Wintersemester 3/) Kapitel : Optimierung ohne Nebenbedingungen Volker Kaibel Otto-von-Guericke Universität Magdeburg (Version vom. Oktober 3) Gliederung

Mehr

Kapitel 16. Invertierbare Matrizen

Kapitel 16. Invertierbare Matrizen Kapitel 16. Invertierbare Matrizen Die drei Schritte des Gauß-Algorithmus Bringe erweiterte Matrix [A b] des Gleichungssystems A x auf Zeilenstufenform [A b ]. Das System A x = b ist genau dann lösbar,

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015

Inhalt. Mathematik für Chemiker II Lineare Algebra. Vorlesung im Sommersemester Kurt Frischmuth. Rostock, April Juli 2015 Inhalt Mathematik für Chemiker II Lineare Algebra Vorlesung im Sommersemester 5 Rostock, April Juli 5 Vektoren und Matrizen Abbildungen 3 Gleichungssysteme 4 Eigenwerte 5 Funktionen mehrerer Variabler

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 6 Langzeitverhalten, stationäre Masse Multiplikation von Rechts! Literatur Kapitel 6 * Grimmett & Stirzaker: Kapitel 6.4 * Krengel: 6. 6. Motivation Um die nachfolgenden

Mehr

Ohne Mathematik undenkbar!

Ohne Mathematik undenkbar! Die tägliche - Suche: Ohne Mathematik undenkbar! Dipl.-Wirt.Math. Jan Maruhn FB IV - Mathematik Universität Trier 29. März 2006 29. März 2006 Seite 1 Gliederung Einleitung und Motivation Das Internet als

Mehr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr

DWT 2.3 Ankunftswahrscheinlichkeiten und Übergangszeiten 400/467 Ernst W. Mayr 2. Ankunftswahrscheinlichkeiten und Übergangszeiten Bei der Analyse von Markov-Ketten treten oftmals Fragestellungen auf, die sich auf zwei bestimmte Zustände i und j beziehen: Wie wahrscheinlich ist es,

Mehr

9 Metrische und normierte Räume

9 Metrische und normierte Räume 9 Metrische und normierte Räume Idee: Wir wollen Abstände zwischen Punkten messen. Der Abstand soll eine reelle Zahl 0 sein (ohne Dimensionsangabe wie Meter...). 9.1 Definition Sei X eine Menge. Eine Metrik

Mehr

Endliche Markov-Ketten

Endliche Markov-Ketten Endliche Markov-Ketten Michael Krühler 24. Oktober 2013 Inhaltsverzeichnis 1 Einführung 2 1.1 Mathematische Einführung......................... 2 1.2 Interpretation................................. 3 2

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlenbereiche 2.3. Reelle Zahlen Erweiterung des Zahlenbereichs der natürlichen Zahlen Ganze Zahlen Z := {..., 3, 2, 1, 0, 1, 2, 3,... } = N {0} N. Rationale Zahlen Q := { m n m Z, n N }. Beachte:

Mehr

Markovsche Entscheidungsprozesse - Teil III Der erwartete Gesamtgewinn. Universität Siegen

Markovsche Entscheidungsprozesse - Teil III Der erwartete Gesamtgewinn. Universität Siegen Markovsche Entscheidungsprozesse - Teil III Der erwartete Gesamtgewinn Jan Müller Universität Siegen Sommersemester 2009 Inhaltsverzeichnis 1 Das Gesamtgewinn-Kriterium 1 1.1 Die Existenz des erwarteten

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechnung von Eigenwerten Neben der Festlegung auf den betragsgrößten Eigenwert hat die Potenzmethode den Nachteil sehr langsamer Konvergenz, falls die Eigenwerte nicht hinreichend separiert sind.

Mehr

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl J. Berger & J.T. Frings. Institut für Geometrie und Praktische Mathematik RWTH Aachen (für Informatiker) M. Grepl J. Berger & J.T. Frings Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2010/11 Problemstellung Lineare Gleichungssysteme, iterative Verfahren geg.:

Mehr

Vortrag 20: Kurze Vektoren in Gittern

Vortrag 20: Kurze Vektoren in Gittern Seminar: Wie genau ist ungefähr Vortrag 20: Kurze Vektoren in Gittern Kerstin Bauer Sommerakademie Görlitz, 2007 Definition und Problembeschreibung Definition: Gitter Seien b 1,,b k Q n. Dann heißt die

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr