Graphische Datenverarbeitung und Bildverarbeitung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Graphische Datenverarbeitung und Bildverarbeitung"

Transkript

1 Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung Einführung mathematische und allgemeine Grundlagen Hardware für Graphik und Bildverarbeitung Graphische Grundalgorithmen (Zeichnen graphischer Primitive, Methoden für Antialaising, Füllalgorithmen) Bildaufnahme (Koordinatensysteme, Transformation) Durchführung der Bildverarbeitung und -analyse Fourier-Transformation Bildrekonstruktion und Bildrestauration Bildverbesserung (Grauwertmodifikation, Filterverfahren) Segmentierung Morphologische Operationen Merkmalsermittlung und Klassifikation Erzeugung von Bildern in der Computergraphik Geometrierepräsentationen Clipping in 2D und 3D Hidden Surface Removal Beleuchtungsberechnung Shading Schattenberechnung Volumenrendering als Beispiel für die Nutzung beider Gebiete Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 2

2 Wiederholung wichtiger Begriffe Gamma-Korrektur Histogrammausgleich Filterung im Frequenzraum Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 3 Nachbarschaftsbasierte Bildverbesserung Rauschen kann durch Integration einer Signalfolge mit (nahezu) konstantem Signal reduziert werden. Konstante Signalfolge: Integration über eine zeitliche Folge. Integration über eine homogene Fläche. Lineare verschiebungsinvariante Operatoren Konvolutionsmethoden Filterung im Frequenzraum Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 4

3 Annahmen Zeitliche Folge Aufnahme mehrerer Bilder g i, i=,i über einen gegebenen Zeitraum. Bild verändert sich über den Zeitraum nicht (keine Bewegung, keine Beleuchtungsänderung). Erwartungswert E des Rauschens n ist 0. Näherung an die unverrauschte Funktion f: E{g(m,n)} = E{f(m,n)} +E{n(m,n)} = E{ f(m,n) } +0 = f(m,n) Abschätzung von E{g(m,n)} durch Integration über die Bilder. Aufnahme 20 Aufnahmen Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 5 Integration über die Fläche Falls für eine Reihe von Bildpunkten (p 0,...,p n ) gilt, dass f(p i )=const, dann kann Rauschen n mit E{n}=0 durch Addition der gemessenen Funktionswerte g(p i ) reduziert werden. Annahmen: Bild besteht aus homogenen Bereichen. Benachbarte Punkte haben den gleichen Grauwert. Rauschunterdrückung: Mittelwertbildung über vorgegebene Nachbarschaft. SNR max =2.83 Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 6

4 Faltung (Konvolution) b ( m, n) h( i, j) = b( m k, n l) h( k, l) k = l= Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 7 Berechnung der Faltung am Bildrand Randpunkte werden nicht behandelt Randpunkte werden unverändert übernommen Originalbild an den Rändern spiegeln Maske wird in den Randbereichen eingeschränkt Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 8

5 Konvolutionskerne (Faltungskerne) Die Funktionswerte der Konvolutionsfunktion h(i,j) geben die Wichtung an, mit der die Funktionswerte des Bildes in die gewichtete Summe eingehen. Der von Null verschiedenen Anteil von h(i,j) wird als Konvolutionskern (oder Faltungskern) bezeichnet. Damit die Konvolutionskerne symmetrisch und im Ursprung zentriert sein können, wird allgemein eine ungeradzahlige Anzahl von Werten verwendet Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 9 Eigenschaften der Faltung Konvolution ist kommutativ: h *h 2 = h 2 *h assoziativ: (h *h 2 )*h 3 = h *(h 2 *h 3 ) linear: h *(ah 2 +bh 3 ) = a(h *h 2 ) + b(h *h 3 ) verschiebungsinvariant: Operatoranwort hängt nicht vom Ort, sondern nur von den Werten in der Umgebung ab Transferfunktion eines Konvolutionsoperators: Die Transferfunktion gibt an, in welcher Form die Konvolution die Frequenzrepräsentation des Ursprungsbildes verändert (=Repräsentation des Operators im Frequenzraum) Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 0

6 Mittelwertbildung durch Konvolution Konvolutionskern: Gleichmäßige Gewichtung der Pixel in einer gegebenen Nachbarschaft f(m,n) Linie n=50 (rot) m original Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung /9 /9 /9 /9 /9 /9 /9 /9 /9 Filterkern 3x3 Boxcar-Filter Rot = original Weiss = gefaltet Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 2

7 7x7 Boxcar-Filter Beobachtung: Kanten werden degradiert. Grund: Annahme konstanter Funktionswerte ist nicht wahr. Rot = original Weiss = gefaltet Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 3 nach 3x3 Boxcar-Filterung Verhalten an Kanten nach 7x7 Boxcar-Filterung f(m,n)-g(m,n) Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 4

8 Transferfunktionen des 3x3 und des 7x7 Mittelwertfilters Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 5 Auswirkungen original 9 9 Mittelwertfilter kontrastverstärkt Artefakte Artefakt Bildzeile: rot: vor der Filterung, weiß: nach Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 6

9 Frequenzraumfilterung Filter im Frequenzraum so entwickeln, dass die Artefakte nicht auftauchen können , falls u + v F max Ideales Tiefpassfilter H F ( u, v) = max 0, sonst. F max Cut-Off-Frequenz Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 7 Tiefpassfilter zur Rauschunterdrückung Cutoff-Frequenz: 40 Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 8

10 Ringing-Artefakt Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 9 Ringing-Artefakt Helligkeit Bildzeile m F(u) Fouriertransformierte Zeile Der Ringing-Artefakt entsteht, weil scharfe Kanten durch Wellen aller Frequenzen beschrieben werden. u Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 20

11 Filterung F(u) Fouriertransformierte Zeile u Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 2 Butterworth-Filter Frequenzen werden nicht gelöscht, sondern nur abgeschwächt. Tiefpass-Filter: H Hochpass-Filter: H ( u, v) ( u, v) = + = + 2 ( D( u, v) / D ) n 0 2 ( D / D( u v) ) n 0, Tiefpass Butterworth- Tiefpass D 0 : D(u,v): Cutoff-Frequenz, Frequenz, d.h. Abstand vom Ursprung H(u,v)=0.5 Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 22

12 Binomialfilter N=4 N=8 Zweidimensionaler Binomialfilter: n n T B n ( B ) B 2 T = B = [ 2 ] [ 2 ] 4 4 = Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 23 Zweidimensionale Binomialfilter B 2 = /6 [ 2 ] T [ 2 ] = / B 3 = /64 [ 3 3 ] T [ 3 3 ] = / B 4 = / Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 24

13 Transferfunktion des 3x3 und 5x5 Binomialfilters Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 25 Filterresultate des Binomialfilters original Filter B 6 Bildzeile rot: vor der Filterung weiß: nach Filterung Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 26

14 Butterworth-Filter / Binomialfilter Idealer Tiefpassfilter: kompakter Träger im Frequenzraum, aber artefakt-verursachende Ortsraumrepräsentation Butterworth-Filter: kontrolliert monoton fallende Funktion im Frequenzraum, deren Ortsraumrepräsentation ebenfalls monoton fällt. Mittelwertfilter: kompakter Träger im Ortsraum, aber artefaktverursachende Frequenzraumrepräsentation Binomial-Filter: monoton fallende Funktion im Ortsraum, deren Frequenzraumrepräsentation gleichfalls monoton fällt. Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 27 Binomialfilter und Gaußfunktion Für immer größere Filterkerne nähert sich das Binomialfilter der Gauß schen Glockenkurve an. Der Betrag der Transferfunktion einer solchen Funktion ist wieder eine Gauß sche Glockenkurve. boxcar Gauß sche Glockenkurve Transferfunktion Transferfunktion gauss(x,y) = [σ 2π] - exp[-(x 2 +y 2 )/(2σ 2 )] Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 28

15 Filterung mit 2D Gaußfilter Die Gaußfunktion ist separabel, so dass die Filterung durch zwei D Konvolutionen erfolgen kann. Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 29 Grenzen Sogenanntes Impuls-rauschen (Salt&Pepper Noise) kann nicht entfernt werden. Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 30

16 Zusammenfassung Rauschenunterdrückung durch Schätzung des Erwartungswerts der Bildfunktion Schätzung des Erwartungswerts = zeitliche oder räumliche Integration Filter im Orts- und Frequenzraum Artefakte bei Orts-/Frequenzraumfiltern Graphische DV und BV, Regina Pohle,. Bildverbesserung - Filterung 3

Nichtmonotone Grauwertabbildung

Nichtmonotone Grauwertabbildung LMU München Medieninformatik Butz/Hilliges 2D Graphics WS2005 02.12.2005 Folie 1 Nichtmonotone Grauwertabbildung Zwei Grauwertfenster in einem Bild. g (g) 0 511 2100 g Erzeugt künstliche Kanten. Grenzen

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung

Computergraphik 1 2. Teil: Bildverarbeitung 1 Computergraphik 1 2. Teil: Bildverarbeitung Bildverbesserung 2 Themen jetzt gleich Rauschen, Entropie Bildverbesserung Punktbasiert Flächenbasiert Kantenbasiert 3 Was ist Rauschen? Rauschen n(m,n) ist

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Fourier-Transformation Graphische DV und BV, Regina Pohle, 8. Fourier-Transformation 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Filterung Graphische DV und BV Regina Pohle. Bildverbesserung - Filterung Einordnung in die Inhalte der Vorlesung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Morphologische Operatoren Graphische DV und BV, Regina Pohle, 5. Morphologische Operatoren Einordnung in die Inhalte der Vorlesung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Bildverbesserung - Grauwertmodifikation Graphische DV und BV, Regina Pohle, 10. Bildverbesserung - Grauwertmodifikation 1 Einordnung

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Segmentierung Graphische DV und BV, Regina Pohle, 13. Segmentierung 1 Einordnung in die Inhalte der Vorlesung Einführung mathematische

Mehr

Computergrafik 2: Filtern im Ortsraum

Computergrafik 2: Filtern im Ortsraum Computergrafik 2: Filtern im Ortsraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Computergrafik 2: Filtern im Ortsraum

Computergrafik 2: Filtern im Ortsraum Computergrafik 2: Filtern im Ortsraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2

Was bisher geschah. digitale Bilder: Funktion B : pos col Matrix B col pos. Punktoperationen f : col 1 col 2 Was bisher geschah digitale Bilder: Funktion B : pos col Matrix B col pos statistische Merkmale Punktoperationen f : col 1 col 2 (Bildanalyse) (Farbtransformation) Geometrische Operationen f : pos 1 pos

Mehr

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter

Computergrafik 2: Übung 6. Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Computergrafik : Übung 6 Korrelation im Orts- und Frequenzraum, Filtern im Frequenzraum, Wiener Filter Quiz Warum Filtern im Frequenzraum? Ideales Tiefpassfilter? Parameter? Eigenschaften? Butterworth-Filter?

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Pipeline Pipelinestufen können sich unterscheiden, beinhalten aber i.d.r. eine Stufe zur Bildvorverarbeitung zur

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Beleuchtungsberechnung Graphische DV und BV, Regina Pohle, 21. Beleuchtungsberechnung 1 Einordnung in die Inhalte der Vorlesung

Mehr

Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev

Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev Proseminar Grundlagen der Bildverarbeitung Thema: Bildverbesserung Konstantin Rastegaev 1 Inhaltsverzeichnis: 1.Pixelbasierte Bildverbesserung...3 1.1.Monotone Grauwertabbildung...3 1.1.1.Maximierung des

Mehr

Systemtheorie abbildender Systeme

Systemtheorie abbildender Systeme Bandbegrenzung Bild in (b) nicht band-begrenzt: scharfe Kanten = Dirac-Funktionen = weißes Spektrum Erfordert Tapering vor Digitalisierung (Multiplikation mit geeigneter Fensterfunktion; auf Null drücken

Mehr

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation

Computergraphik 1 2. Teil: Bildverarbeitung. Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation Computergraphik 1 2. Teil: Bildverarbeitung Fouriertransformation Ende FFT, Bildrestauration mit PSF Transformation, Interpolation LMU München Medieninformatik Butz/Hoppe Computergrafik 1 SS2009 1 2 Repräsentation

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Graphische Grundalgorithmen Graphische DV und BV, Regina Pohle, 4. Algorithmen für graphische Primitive 1 Einordnung in die Inhalte

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Merkmale und Klassifikation Graphische DV und BV, Regina Pohle, 16. Merkmale und Klassifikation 1 Einordnung in die Inhalte der

Mehr

Digitale Bildverarbeitung Einheit 8 Lineare Filterung

Digitale Bildverarbeitung Einheit 8 Lineare Filterung Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag WS 05/06 Fachbereich M+I der FH-Offenburg Dipl.-Math. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen,

Mehr

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1.

1. Filterung im Ortsbereich 1.1 Grundbegriffe 1.2 Lineare Filter 1.3 Nicht-Lineare Filter 1.4 Separabele Filter 1. . Filterung im Ortsbereich. Grundbegriffe. Lineare Filter.3 Nicht-Lineare Filter.4 Separabele Filter.5 Implementierung. Filterung im Frequenzbereich. Fouriertransformation. Hoch-, Tief- und Bandpassfilter.3

Mehr

Struktur des menschlichen Auges. Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Bildverbesserung 2 / 99

Struktur des menschlichen Auges. Bildgebende Verfahren in der Medizin und medizinische Bildverarbeitung Bildverbesserung 2 / 99 Struktur des menschlichen Auges 2 / 99 Detektoren im Auge Ca. 100 150 Mio. Stäbchen Ca. 1 Mio. Zäpfchen 3 / 99 Zapfen Entlang der Sehachse, im Fokus Tagessehen (Photopisches Sehen) Scharfsehen Farbsehen

Mehr

2D Graphik: Bildverbesserung 2

2D Graphik: Bildverbesserung 2 LMU München Medieninformatik Butz/Hilliges D Graphics WS5 9..5 Folie D Graphik: Bildverbesserung Vorlesung D Graphik Andreas Butz, Otmar Hilliges Freitag, 9. Dezember 5 LMU München Medieninformatik Butz/Hilliges

Mehr

Grundlagen der Bildverarbeitung

Grundlagen der Bildverarbeitung Grundlagen der Bildverarbeitung Inhaltsverzeichnis Vorwort 9 Kapitel 1 Einführung 13 1.1 Anwendungen der digitalen Bildverarbeitung 16 1.2 Algorithmische Verarbeitung von Bildinformation 17 1.3 Zu diesem

Mehr

Digitale Bildverarbeitung Einheit 8 Lineare Filterung

Digitale Bildverarbeitung Einheit 8 Lineare Filterung Digitale Bildverarbeitung Einheit 8 Lineare Filterung Lehrauftrag SS 2008 Fachbereich M+I der FH-Offenburg Dr. Bernard Haasdonk Albert-Ludwigs-Universität Freiburg Ziele der Einheit Verstehen, wie lineare

Mehr

Bildverbesserung. Frequenz-, Punkt- und Maskenoperationen. Backfrieder-Hagenberg

Bildverbesserung. Frequenz-, Punkt- und Maskenoperationen. Backfrieder-Hagenberg Bildverbesserung Frequenz-, Punkt- und Maskenoperationen Filtern im Frequenzraum Fouriertransformation f(x)->f( ) Filter-Multiplikation F =FxH Rücktransformation F ( )->f (x) local-domain frequency-domain

Mehr

EVC Repetitorium Blender

EVC Repetitorium Blender EVC Repetitorium Blender Michael Hecher Felix Kreuzer Institute of Computer Graphics and Algorithms Vienna University of Technology INSTITUTE OF COMPUTER GRAPHICS AND ALGORITHMS Filter Transformationen

Mehr

Übung zur Vorlesung 2D Grafik Wintersemester 05/06. Otmar Hilliges

Übung zur Vorlesung 2D Grafik Wintersemester 05/06. Otmar Hilliges Übung zur Vorlesung 2D Grafik Wintersemester 05/06 Übungsblatt 5 Musterlösung auf der Übungsseite. https://wiki.medien.ifi.lmu.de/pub/main/uebung2dgrafikws 0506/FFT_LSG.jar Page 2 transform() for (y =

Mehr

Filterung von Bildern (2D-Filter)

Filterung von Bildern (2D-Filter) Prof. Dr. Wolfgang Konen, Thomas Zielke Filterung von Bildern (2D-Filter) SS06 6. Konen, Zielke Aktivierung Was, denken Sie, ist ein Filter in der BV? Welche Filter kennen Sie? neuer Pixelwert bilden aus

Mehr

FILTER UND FALTUNGEN

FILTER UND FALTUNGEN Ausarbeitung zum Vortrag von Daniel Schmitzek im Seminar Verarbeitung und Manipulation digitaler Bilder I n h a l t. Der Begriff des Filters 3 2. Faltungsfilter 4 2. Glättungsfilter 4 2.2 Filter zur Kantendetektion

Mehr

Computergrafik 2: Morphologische Operationen

Computergrafik 2: Morphologische Operationen Computergrafik 2: Morphologische Operationen Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies

Mehr

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17

Bildverarbeitung: Filterung. D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Bildverarbeitung: Filterung D. Schlesinger () Bildverarbeitung: Filterung 1 / 17 Allgemeines Klassische Anwendung: Entrauschung (Fast) jeder Filter basiert auf einem Modell (Annahme): Signal + Rauschen

Mehr

Bildverarbeitung. Fachschaftsrat Informatik. Professor Fuchs. Fragen TECHNISCHE UNIVERSITÄT DRESDEN. Unterteilung der Filter in Klassen

Bildverarbeitung. Fachschaftsrat Informatik. Professor Fuchs. Fragen TECHNISCHE UNIVERSITÄT DRESDEN. Unterteilung der Filter in Klassen Professor Fuchs Unterteilung der Filter in Klassen Wie erstellt man bei der Segmentierung objektumschreibende Formen? Eigenschaften der Zellkomplextopologie Was ist ein Histogramm? Wozu ist es gut? Unterschied

Mehr

2D Graphik: Bildverbesserung. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005

2D Graphik: Bildverbesserung. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005 2D Graphik: Bildverbesserung Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005 Themen heute Rauschen, Entropie Bildverbesserung Punktbasiert Flächenbasiert Kantenbasiert Was ist

Mehr

Computergrafik 2: Filtern im Frequenzraum

Computergrafik 2: Filtern im Frequenzraum Computergrafik 2: Filtern im Frequenzraum Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Clippen in 2D und 3D Graphische DV und BV, Regina Pohle, 19. Clippen in 2D und 3D 1 Einordnung in die Inhalte der Vorlesung Einführung

Mehr

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz

Filter. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz Filter Industrielle Bildverarbeitung, Vorlesung No. 5 1 M. O. Franz 07.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Lineare Filter 2 Formale

Mehr

Grundlagen der Bildverarbeitung Klaus D. Tönnies

Grundlagen der Bildverarbeitung Klaus D. Tönnies Grundlagen der Bildverarbeitung Klaus D. Tönnies ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam Grundlagen der Bildverarbeitung

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Fouriertransformation Organisatorisches Neue Abgabefrist für Blatt

Mehr

Proseminar: Grundlagen Bildverarbeitung / Bildverstehen. Bildverbesserung. Sylwia Kawalerowicz

Proseminar: Grundlagen Bildverarbeitung / Bildverstehen. Bildverbesserung. Sylwia Kawalerowicz Proseminar: Grundlagen Bildverarbeitung / Bildverstehen Bildverbesserung Sylwia Kawalerowicz Betreuer: Michael Roth Abgabetermin: 8 April 2006 Inhaltverzeichnis Kapitel...3.. Die wichtigen Fragen der Bildverbesserung....3.2

Mehr

1. Bildverbesserung / Bildvorverarbeitung

1. Bildverbesserung / Bildvorverarbeitung 1. Bildverbesserung / Bildvorverarbeitung Bildverbesserung ist problemorientiert für menschliche/maschinelle Interpretation Dominanz zwischen Farbe, Textur, Kontext Ziel der ikonischen Bildauswertung:

Mehr

Diskrete Signalverarbeitung und diskrete Systeme

Diskrete Signalverarbeitung und diskrete Systeme Diskrete Signalverarbeitung und diskrete Systeme Computer- basierte Verarbeitung von Signalen und Realisierung von Systemverhalten erfordern diskrete Signale und diskrete Systembeschreibungen. Wegen der

Mehr

Bildverarbeitung. Bildvorverarbeitung - Fourier-Transformation -

Bildverarbeitung. Bildvorverarbeitung - Fourier-Transformation - Bildverarbeitung Bildvorverarbeitung - Fourier-Transformation - 1 Themen Methoden Punktoperationen / Lokale Operationen / Globale Operationen Homogene / Inhomogene Operationen Lineare / Nichtlineare Operationen

Mehr

Segmentierung. Vorlesung FH-Hagenberg SEM

Segmentierung. Vorlesung FH-Hagenberg SEM Segmentierung Vorlesung FH-Hagenberg SEM Segmentierung: Definition Die Pixel eines Bildes A={a i }, i=1:n, mit N der Anzahl der Pixel, werden in Teilmengen S i unterteilt. Die Teilmengen sind disjunkt

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Graphische Datenverarbeitung und Bildverarbeitung WS 2005 / 2006 Hochschule Niederrhein

Graphische Datenverarbeitung und Bildverarbeitung WS 2005 / 2006 Hochschule Niederrhein Graphische Datenverarbeitung und Bildverarbeitung WS 2005 / 2006 Hochschule Niederrhein Regina Pohle Graphische DV und BV, Regina Pohle, 1. Einführung 1 Organisatorisches Dozent: Regina Pohle Büro: H321

Mehr

Bildverbesserung (Image Enhancement)

Bildverbesserung (Image Enhancement) Prof. Dr. Wolfgang Konen, Thomas Zielke Bildverbesserung (Image Enhancement) WS07 7.1 Konen, Zielke Der Prozess der Bildverbesserung (1) Bildverbesserung wird häufig dafür eingesetzt, die für einen menschlichen

Mehr

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung

Motivation. Diskretisierung. Überblick. Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen. Diskretisierung und Quantisierung Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Motivation Analoge Aufnahme von Sprache, Bildern Digitale Speicherung durch Diskretisierung + Quantisierung Informationsverlust

Mehr

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel)

Bildpunkt auf dem Gitter: Pixel (picture element) (manchmal auch Pel) 4. Digitalisierung und Bildoperationen 4.1 Digitalisierung (Sampling, Abtastung) Rasterung auf 2D-Bildmatrix mathematisch: Abb. einer 2-dim. Bildfunktion mit kontinuierlichem Definitionsbereich auf digitales

Mehr

Grundlagen der Computer-Tomographie

Grundlagen der Computer-Tomographie Grundlagen der Computer-Tomographie Quellenangabe Die folgenden Folien sind zum Teil dem Übersichtsvortrag: imbie.meb.uni-bonn.de/epileptologie/staff/lehnertz/ct1.pdf entnommen. Als Quelle für die mathematischen

Mehr

(Fast) Fourier Transformation und ihre Anwendungen

(Fast) Fourier Transformation und ihre Anwendungen (Fast) Fourier Transformation und ihre Anwendungen Johannes Lülff Universität Münster 14.01.2009 Definition Fouriertransformation F (ω) = F [f(t)] (ω) := 1 2π dt f(t)e iωt Fouriersynthese f(t) = F 1 [F

Mehr

Faltung, Korrelation, Filtern

Faltung, Korrelation, Filtern Faltung, Korrelation, Filtern Wie beschreibe ich lineare Systeme (z.b. Seismometer) -> Faltung, Konvolution, Dekonvolution? Wie quantifiziere ich die Ähnlichkeit von Zeitreihen (-> Korrelation) Wie quantifiziere

Mehr

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt

Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt Modul Digitale Bildverarbeitung SS16 Bestandteile der Lehrveranstaltung und Prüfung: Vorlesungen Übungsserien Praktika (ImageJ) bis Mai 2016 Projekt im Juni 2016 Themen: Digitale Bilder, Eigenschaften

Mehr

1 Einleitung Einordnung des Gebietes Aufbau des Buches Philosophie Inhalte Einige Lehrbücher...

1 Einleitung Einordnung des Gebietes Aufbau des Buches Philosophie Inhalte Einige Lehrbücher... Inhaltsverzeichnis 1 Einleitung... 1 1.1 Einordnung des Gebietes... 1 1.2 Aufbau des Buches... 3 1.2.1 Philosophie... 3 1.2.2 Inhalte... 5 1.3 Einige Lehrbücher... 6 2 Allgemeine Begriffe... 11 2.1 Einige

Mehr

Einführung in die medizinische Bildverarbeitung SS 2013

Einführung in die medizinische Bildverarbeitung SS 2013 Einführung in die medizinische Bildverarbeitung SS 2013 Stephan Gimbel 1 Kurze Wiederholung Gradienten 1. und 2. Ableitung grad( f ( x, y) ) = f ( x, y) = f ( x, y) x f ( x, y) y 2 f ( x, y) = 2 f ( x,

Mehr

Computergrafik 2: Kanten, Linien, Ecken

Computergrafik 2: Kanten, Linien, Ecken Computergrafik 2: Kanten, Linien, Ecken Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

Einführung in das 6. Aufgabenblatt: Bildverarbeitung und Klassifkation

Einführung in das 6. Aufgabenblatt: Bildverarbeitung und Klassifkation Einführung in das 6. Aufgabenblatt: Bildverarbeitung und Klassifkation Philippe Dreuw dreuw@i6.informatik.rwth-aachen.de Praktikum im Grundstudium SS 2007 28. Juni 2007 Human Language Technology and Pattern

Mehr

BV in Frequenzbereich

BV in Frequenzbereich Bilderarbeitng ZHAW BV HS7 M. Thaler BV in Freqenzbereich Freqency omain M. Thaler TG8 tham@zhaw.ch Jni 7 Um was geht es? Periodische Störngen z.b. Afnahmesystem Scanner Übertragngstörngen etc. wie lassen

Mehr

Kapitel 7. Bildverarbeitung im Frequenzraum

Kapitel 7. Bildverarbeitung im Frequenzraum Kapitel 7 Bildverarbeitung im Frequenzraum Durchführung von Faltungen im Frequenzraum Filterung im Frequenzraum: Tiefpass- und Hochpass-Filter, etc. Bildrestaurierung Notch-Filter: Entfernung periodischer

Mehr

R.Wagner, Mathematik in der Astronomie

R.Wagner, Mathematik in der Astronomie Mathematik in der Astronomie Roland Wagner Johann Radon Institute for Computational and Applied Mathematics (RICAM) Österreichische Akademie der Wissenschaften (ÖAW) Linz, Austria Linz, 20.Mai 2016 Übersicht

Mehr

Morphologische Filter

Morphologische Filter Morphologische Filter Industrielle Bildverarbeitung, Vorlesung No. 8 1 M. O. Franz 28.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Morphologische

Mehr

Technische Universität München. Fakultät für Informatik

Technische Universität München. Fakultät für Informatik Technische Universität München Fakultät für Informatik Forschungs- und Lehreinheit Informatik IX Thema: Filterung im Bildraum: Konvolution Proseminar: Grundlagen Bildverstehen/Bildgestaltung Jonas Zaddach

Mehr

Übung: Computergrafik 1

Übung: Computergrafik 1 Prof. Dr. Andreas Butz Prof. Dr. Ing. Axel Hoppe Dipl.-Medieninf. Dominikus Baur Dipl.-Medieninf. Sebastian Boring Übung: Computergrafik 1 Filtern im Frequenzraum Segmentierung Organisatorisches Klausuranmeldung

Mehr

Kanten und Konturen. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz

Kanten und Konturen. Industrielle Bildverarbeitung, Vorlesung No M. O. Franz Kanten und Konturen Industrielle Bildverarbeitung, Vorlesung No. 6 1 M. O. Franz 14.11.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger & Burge, 2005. Übersicht 1 Kanten und

Mehr

Multiskalenanalyse. Any view depends on the viewpoint!

Multiskalenanalyse. Any view depends on the viewpoint! Multiskalenanalyse Any view depends on the viewpoint! Multiskalenanalyse Motivation Aufwandsminimierung bei Filterung Objekterkennung, Segmentierung Textur Klassifikation Mosaicing rundlagen Signaltheorie

Mehr

Bildverarbeitung Herbstsemester

Bildverarbeitung Herbstsemester Bildverarbeitung Herbstsemester Herbstsemester 2009 2012 Filter Filter 1 Inhalt Lineare und nichtlineare Filter Glättungsfilter (z.b. Gauss-Filter) Differenzfilter (z.b. Laplace-Filter) Lineare Faltung

Mehr

5. Übung für Übungsgruppen Musterlösung

5. Übung für Übungsgruppen Musterlösung Grundlagenveranstaltung Systemtheorie WS 6/7 (H.S. Stiehl, AB Kognitive Systeme, Department Informatik der Universität Hamburg) 5. Übung für Übungsgruppen Musterlösung (U. Köthe, Department Informatik,

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Bernd Jahne Digitale Bildverarbeitung 6., überarbeitete und erweiterte Auflage Mit 248 Abbildungen und 155 Übungsaufgaben und CD-ROM Sy Springer Inhaltsverzeichnis I Grundlagen 1 Anwendungen und Werkzeuge

Mehr

Graphische Datenverarbeitung und Bildverarbeitung

Graphische Datenverarbeitung und Bildverarbeitung Graphische Datenverarbeitung und Bildverarbeitung Hochschule Niederrhein Texturen Graphische DV und BV, Regina Pohle, 24. Texturen 1 Einordnung in die Inhalte der Vorlesung Einführung mathematische und

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Bild-Erkennung & -Interpretation

Bild-Erkennung & -Interpretation Kapitel I Bild-Erkennung & -Interpretation FH Aachen / Jülich, FB 9 Prof. Dr. rer.nat. Walter Hillen (Dig Img I) 1 Einführung Schritte zur Bilderkennung und Interpretation: Bild-Erfassung Vorverarbeitung

Mehr

4. Segmentierung von Objekten Video - Inhaltsanalyse

4. Segmentierung von Objekten Video - Inhaltsanalyse 4. Segmentierung von Objekten Video - Inhaltsanalyse Stephan Kopf Inhalt Vorgehensweise Berechnung der Kamerabewegungen zwischen beliebigen Bildern Transformation eines Bildes Hintergrundbilder / Panoramabilder

Mehr

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält.

- Sei r(x,y) Eingangsbild, dass nur Rauschen (Quantenrauschen) enthält. Eingang System Ausgang - Sei r(x,y) Eingangsbild, dass nur (Quantenrauschen) enthält. - Das Bild enthalte keinerlei Information, d.h. das Spektrum ist weiß und es gibt keine Korrelationen zwischen den

Mehr

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration

Mehr

Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt

Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt TU Bergakademie Freiberg Praktikum-Meßtechnik Verfasser: Dr. H. Bergelt Filter in der Bildverarbeitung. Einleitung Digitale Filter gehören zu den wirkungsvollsten Methoden der Bildverarbeitung. Wir können

Mehr

Teil IV-A: Signal- und Bildverarbeitung Methoden

Teil IV-A: Signal- und Bildverarbeitung Methoden Teil IV-A: Signal- und Bildverarbeitung Methoden 1. Aufgaben der Signal- / Bildverarbeitung 2. Elementare Verarbeitungsmethoden 3. 2D Fourier-Transformation und Faltung Aufgaben der Signal- / Bildverarbeitung

Mehr

Grundlagen der Digitalen Bildverarbeitung

Grundlagen der Digitalen Bildverarbeitung Grundlagen der Digitalen Bildverarbeitung Michael Baron baron@cs.uni-frankfurt.de www.cs.uni-frankfurt.de/~baron Mitarbeiterseminar Angewandte Physik 24. Januar 2008 Motivation Insbesondere moderne graphische

Mehr

INTELLIGENTE DATENANALYSE IN MATLAB

INTELLIGENTE DATENANALYSE IN MATLAB INTELLIGENTE DATENANALYSE IN MATLAB Bildanalyse Literatur David A. Forsyth: Computer Vision i A Modern Approach. Mark S. Nixon und Alberto S. Aguado: Feature Extraction and Image Processing. Ulrich Schwanecke:

Mehr

Merkmale von Bildregionen, Einführung in Spektraltechniken

Merkmale von Bildregionen, Einführung in Spektraltechniken Merkmale von Bildregionen, Einführung in Spektraltechniken Industrielle Bildverarbeitung, Vorlesung No. 10 1 M. O. Franz 12.12.2007 1 falls nicht anders vermerkt, sind die Abbildungen entnommen aus Burger

Mehr

Bilder: Eigenschaften

Bilder: Eigenschaften Bilder: Eigenschaften Images M. Thaler TG208 tham@zhaw.ch Juni 17 1 1 Um was geht es? Juni 17 2 Was ist ein Bild? - hier sehen sie verschiedene Ausschnitte eines digitalen Bildes -das Bild besteht aus

Mehr

Digitale Bildverarbeitung (DBV)

Digitale Bildverarbeitung (DBV) Digitale Bildverarbeitung (DBV) Prof. Dr. Ing. Heinz Jürgen Przybilla Labor für Photogrammetrie Email: heinz juergen.przybilla@hs bochum.de Tel. 0234 32 10517 Sprechstunde: Montags 13 14 Uhr und nach Vereinbarung

Mehr

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz.

Prüfung zur Vorlesung Signalverarbeitung am Name MatrNr. StudKennz. 442.0 Signalverarbeitung (2VO) Prüfung 8.3.26 Institut für Signalverarbeitung und Sprachkommunikation Prof. G. Kubin Technische Universität Graz Prüfung zur Vorlesung Signalverarbeitung am 8.3.26 Name

Mehr

Computergrafik 2: Fourier-Transformation

Computergrafik 2: Fourier-Transformation Computergrafik 2: Fourier-Transformation Prof. Dr. Michael Rohs, Dipl.-Inform. Sven Kratz michael.rohs@ifi.lmu.de MHCI Lab, LMU München Folien teilweise von Andreas Butz, sowie von Klaus D. Tönnies (Grundlagen

Mehr

5. Numerische Differentiation. und Integration

5. Numerische Differentiation. und Integration 5. Numerische Differentiation und Integration 1 Numerische Differentiation Problemstellung: Gegeben ist eine differenzierbare Funktion f : [a,b] R und x (a,b). Gesucht sind Näherungen für die Ableitungen

Mehr

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6

Perlen der Informatik I Wintersemester 2012 Aufgabenblatt 6 Technische Universität München WS 2012 Institut für Informatik Prof. Dr. H.-J. Bungartz Prof. Dr. T. Huckle Prof. Dr. M. Bader Kristof Unterweger Perlen der Informatik I Wintersemester 2012 Aufgabenblatt

Mehr

Computergrafik 2: Übung 2. Subsampling und Moiré-Effekte, Color Maps und Histogrammlinearisierung

Computergrafik 2: Übung 2. Subsampling und Moiré-Effekte, Color Maps und Histogrammlinearisierung Computergrafik 2: Übung 2 Subsampling und Moiré-Effekte, Color Maps und Histogrammlinearisierung Inhalt Besprechung von Übung 1 Subsampling und Moiré Effekte Color Maps Histogrammlinearisierung Computergrafik

Mehr

Bildverarbeitung und Mustererkennung

Bildverarbeitung und Mustererkennung Bildverarbeitung und Mustererkennung Prüfung im Modul ET5030 für den Masterstudiengang Systems Design & Production Management Professor Dr.-Ing. Martin Werner Juli 2013 Hinweise zur Bearbeitung der Klausur

Mehr

Digitale Bildverarbeitung

Digitale Bildverarbeitung Digitale Bildverarbeitung Prof. Dr. Sibylle Schwarz HTWK Leipzig, Fakultät IMN Gustav-Freytag-Str. 42a, 04277 Leipzig Zimmer Z 411 (Zuse-Bau) http://www.imn.htwk-leipzig.de/~schwarz sibylle.schwarz@htwk-leipzig.de

Mehr

Praktikum zur Vorlesung Einführung in die Geophysik

Praktikum zur Vorlesung Einführung in die Geophysik Praktikum zur Vorlesung Einführung in die Geophysik Hinweise zum Praktikum: Messunsicherheit und Fehlerrechnung Stefan Wenk, Prof. Thomas Bohlen TU Bergakademie Freiberg Institut für Geophysik www.geophysik.tufreiberg.de/pages/studenten/praktika/nebenfaechlerpraktikum.htm

Mehr

6.6 Poisson-Verteilung

6.6 Poisson-Verteilung 6.6 Poisson-Verteilung Die Poisson-Verteilung ist eine Wahrscheinlichkeitsverteilung, die zur Modellierung der Anzahl von zufälligen Vorkommnissen in einem bestimmten räumlichen oder zeitlichen Abschnitt

Mehr

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1

Beate Meffert, Olaf Hochmuth: Werkzeuge der Signalverarbeitung, Pearson Ludwig-Maximilians-Universität München Prof. Hußmann Digitale Medien 4-1 4. Signalverarbeitung 4.1 Grundbegrie 4.2 Frequenzspektren, Fourier-Transormation 4.3 Abtasttheorem: Eine zweite Sicht 4.4 Filter Weiterührende Literatur (z.b.): Beate Meert, Ola Hochmuth: Werkzeuge der

Mehr

Computergrafik / Animation. künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten).

Computergrafik / Animation. künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten). Computergrafik / Animation künstliches Objekt, dargestellt durch Anzahl von Punkten in Raum und Zeit (bei bewegten, animierten Objekten). Punkte, werden auch «Kontrollpunkte» genannt Wesentlicher Punkt:

Mehr

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

5. Meßfehler. Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar 5. Meßfehler Man unterscheidet... zufällige Meßfehler systematische Meßfehler Zufällige Messfehler machen das Ergebnis unsicher - ihre Abschätzung ist nur unter Verwendung statistischer Methoden durchführbar

Mehr

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen

Inhaltsübersicht. Deltafunktion Gammafunktion Fehlerfunktion. Kapitel 13: Spezielle Funktionen Inhaltsübersicht Kapitel 13: Spezielle Funktionen Deltafunktion Gammafunktion Fehlerfunktion Notizen zur Vorlesung Mathematik für Materialwissenschaftler 2 1 Die Bezeichnung Delta-Funktion ist streng genommen

Mehr

Bildrekonstruktion & Multiresolution

Bildrekonstruktion & Multiresolution Bildrekonstruktion & Multiresolution Verkleinern von Bildern? Was ist zu beachten? Es kann aliasing auftreten! Das Abtasttheorem sagt wie man es vermeidet? ===> Page 1 Verkleinern von Bildern (2) Vor dem

Mehr

Morphologische BV. Morphological Image Processing. M. Thaler, TG208 Bildverarbeitung ZHAW, BV HS17, M. Thaler.

Morphologische BV. Morphological Image Processing. M. Thaler, TG208 Bildverarbeitung ZHAW, BV HS17, M. Thaler. Morphologische BV Morphological Image Processing M. Thaler, TG208 tham@zhaw.ch Juni 7 Um was geht es? threshold Binärbild region fill egdes Juni 7 2 2 ... um was geht es? Morphologie in der Biologie Beschäftigung

Mehr

Universität Trier. Fachbereich IV. Wintersemester 2004/2005. Wavelets made easy. Kapitel 2 Mehrdimensionale Wavelets und Anwendungen

Universität Trier. Fachbereich IV. Wintersemester 2004/2005. Wavelets made easy. Kapitel 2 Mehrdimensionale Wavelets und Anwendungen Universität Trier Fachbereich IV Wintersemester 2004/2005 Wavelets made easy Kapitel 2 Mehrdimensionale Wavelets und Anwendungen Thomas Queckbörner 16.11.2004 Übersicht des Kapitels: 1. Einführung 2. Zweidimensionale

Mehr

Thema: Bildaufbereitung für die Objekterkennung

Thema: Bildaufbereitung für die Objekterkennung Westfälische Wilhelms-Universität Münster Thema: Bildaufbereitung für die Objekterkennung Ausarbeitung im Rahmen des Seminars Unterstützung von Landminendetektion durch Bildauswertungsverfahren und Robotereinsatz

Mehr