Eigenschaften des blauen Vierecks. b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Eigenschaften des blauen Vierecks. b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt"

Transkript

1 Name: Klasse: Datum: Besondere Vierecke erkunden Öffne die Datei 2_3_BesondereVierecke.ggb. 1 Im Fenster siehst du drei Vierecke: ein rotes, ein blaues und ein gelbes. Durch Verschieben der Eckpunkte kannst du die Vierecke verändern. a) Beschreibe für jedes der drei Vierecke, welche Eigenschaften sich durch das Verschieben nicht verändern. Eigenschaften des roten Eigenschaften des blauen Eigenschaften des grünen b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt 2 Welche Aussagen kannst du über die gegenseitige Lage der Diagonalen in den drei Vierecken machen? Durch Aktivieren des Kästchens "Hilfe 2" erhältst du Hilfe. 3 Lassen sich die Vierecke entlang einer Gerade so falten, dass die beiden Teile deckungsgleich sind? Wenn du nicht weiterkommst, kannst du das Kästchen "Hilfe 1" aktivieren.

2 Didaktische Erläuterungen Einstieg Besondere Vierecke erkunden Vorwissen: Vielecke und ihre Diagonale, besondere Vierecke aus der Grundschule Material: Digitale Datei, Arbeitsblatt Lernziel: Die Schülerinnen und Schüler beschreiben die Eigenschaften von Parallelogrammen, gleichschenkligen Trapezen und Rechtecken. Methodische Hinweise: Wenn genügend Computerarbeitsplätze verfügbar sind, sollten die Lernenden möglichst selbstständig paarweise arbeiten. Durch das Verschieben bestimmter Eckpunkte entdecken die Schülerinnen und Schüler, welche Eigenschaften der Vierecke sich verändern lassen und welche gleich bleiben. Einigen werden die Namen der besonderen Vierecke bereits bekannt sein. Aufgabe 3 des Arbeitsblattes ist ein Ausblick auf die nächste Lerneinheit (Achsensymmetrie). Die Erweiterung der besonderen Vierecke auf Quadrat, Raute und Drachenviereck kann im Anschluss an das Bearbeiten des Arbeitsblattes noch in der gleichen Unterrichtsstunde erfolgen. Einbettung in Buchkontext: Wissen: Besondere Vierecke und Beispiel 1 Mögliche Stundenskizze: Arbeitsblatt Aufgabe 1 (Arbeit mit digitalem Arbeitsblatt, Partnerarbeit) (10-15 Minuten) Sicherung: Schülerpräsentation der Ergebnisse von Aufgabe 1 (evtl. per Beamer) (10 Minuten) Arbeitsblatt Aufgabe 2 und 3 (Arbeit mit digitalem Arbeitsblatt, Partnerarbeit) (ca. 10 Minuten) Sicherung: Erweiterung der Ergebnisse um (Quadrat,) Raute und Drachenviereck (Plenum) (ca. 10 Minuten) Hausaufgabe: Aufgabe 1 im Buch (evtl. ohne Raute und Drachenviereck)

3 Lösung Besondere Vierecke erkunden Öffne die Datei 2_3_BesondereVierecke.ggb. 1 Im Fenster siehst du drei Vierecke: ein rotes, ein blaues und ein gelbes. Durch Verschieben der Eckpunkte kannst du die Vierecke verändern. a) Beschreibe für jedes der drei Vierecke, welche Eigenschaften sich durch das Verschieben nicht verändern. Eigenschaften des roten Seiten sind parallel Eigenschaften des blauen zwei Seiten sind parallel Eigenschaften des grünen alle vier Winkel sind rechtwinklig Seiten sind gleich lang Seiten sind parallel Seiten sind gleich lang b) Kennst du den Namen der Vierecke? Das rote Viereck heißt Das blaue Viereck heißt Das grüne Viereck heißt Parallelogramm (gleichschenkliges) Trapez Rechteck 2 Welche Aussagen kannst du über die gegenseitige Lage der Diagonalen in den drei Vierecken machen? Durch Aktivieren des Kästchens "Hilfe 2" erhältst du Hilfe. Im Parallelogramm halbieren sich die Diagonalen gegenseitig. Im gleichschenkligen Trapez sind die Diagonalen gleich lang. Im Rechteck halbieren sich die Diagonalen und sind gleich lang. 3 Lassen sich die Vierecke entlang einer Gerade so falten, dass die beiden Teile deckungsgleich sind? Wenn du nicht weiterkommst, kannst du das Kästchen "Hilfe 1" aktivieren. Im Parallelogramm gibt es im Allgemeinen keine solche Gerade. Das gleichschenklige Trapez hat eine senkrechte Spiegelgerade, das Rechteck hat vier Spiegelgerade.

4 Name: Klasse: Datum: arten erzeugen und untersuchen 1 Stelle aus Papier (am besten aus farbigem Transparentpapier) jeweils zwei Streifen nach den vier abgebildeten Mustern her. 2 Durch das Übereinanderlegen zweier Streifen entstehen Vierecke. Falls dein Papier nicht transparent ist, kannst du die Ränder des oberen Streifens auf dem unteren einzeichnen. Kannst du alle sechs unten abgebildeten Vierecke erzeugen? Klebe sie in dein Heft. 3 Prüfe, welche Eigenschaften (gleich lange Seiten, rechte Winkel, parallele Seiten) die Vierecke haben. Markiere diese Eigenschaften in deinem Heft. 4 Zusatzaufgabe a) Falte ein rechteckiges Blatt Papier in der Mitte und zerschneide es dann von einer Ecke zur n Seite wie im Bild. Beschreibe deinem Nachbarn bzw. deiner Nachbarin die entstandenen Vierecke: 1. wenn das Blatt noch zusammengefaltet ist und 2. wenn es wieder auseinandergefaltet ist. b) Nimm ein weiteres Blatt und falte dieses zweimal wie im Bild Wie kannst du schneiden, damit beim Auseinanderfalten ein Viereck entsteht? Probiere es aus. Wie verändert sich die Situation, wenn du nicht gerade faltest? Sortiere deine Vierecke nach ihren Eigenschaften und präsentiere deine Übersicht der Klasse.

5 Didaktische Erläuterungen Einstieg arten erzeugen und untersuchen Vorwissen: Vielecke, Umgang mit Schere und Geodreieck Material: Papier (am besten Transparentpapier), Schere, Lineal oder Geodreieck, Klebstoff Lernziel: Die Schülerinnen und Schüler erzeugen mithilfe der Überschneidung von Papierfiguren verschiedene arten. Methodische Hinweise: Die Lernenden können mithilfe der in Aufgabe 1 hergestellten Papierstreifen Parallelogramme, Trapeze, Rauten, Rechtecke und Quadrate erzeugen. Aufgabe 4 ist eine Zusatzaufgabe für leistungsstärkere Schülerinnen und Schüler, die im Unterricht parallel zu den Aufgaben 1 bis 3 des Arbeitsblattes behandelt werden kann. Im Aufgabenteil a) entstehen Trapeze und gleichschenklige Trapeze (aufgeklappt). Einbettung in Buchkontext: Wissen: Besondere Vierecke und Beispiel 1 Mögliche Stundenskizze: Arbeitsblatt Aufgabe 1 und 2 (Einzelarbeit bzw. Partnerarbeit (vergleichen)) (15-20 Minuten) Arbeitsblatt Aufgabe 3 (Einzelarbeit) (ca. 10 Minuten) Parallel als Zusatzaufgabe für leistungsstärkere Schülerinnen und Schüler (10-15 Minuten), ggf. mit Präsentation in der Folgestunde Sicherung: Besprechung im Klassenverband und Beschriftung der Vierecke im Heft ( Wissen: Besondere Vierecke im Buch) (10-15 Minuten) Hausaufgabe: Aufgabe 1 im Buch

6 Lösung arten erzeugen und untersuchen 1 Stelle aus Papier (am besten aus farbigem Transparentpapier) jeweils zwei Streifen nach den vier abgebildeten Mustern her. (Bastelarbeit) 2 Durch das Übereinanderlegen zweier Streifen entstehen Vierecke. Falls dein Papier nicht transparent ist, kannst du die Ränder des oberen Streifens auf dem unteren einzeichnen. Kannst du alle sechs unten abgebildeten Vierecke erzeugen? Klebe sie in dein Heft. Es können Quadrate, Rechtecke, Trapeze, Rauten und Parallelogramme, aber keine Drachenvierecke erzeugt werden. 3 Prüfe, welche Eigenschaften (gleich lange Seiten, rechte Winkel, parallele Seiten) die Vierecke haben. Markiere diese Eigenschaften in deinem Heft. individuell 4 Zusatzaufgabe a) Falte ein rechteckiges Blatt Papier in der Mitte und zerschneide es dann von einer Ecke zur n Seite wie im Bild. Beschreibe deinem Nachbarn bzw. deiner Nachbarin die entstandenen Vierecke: 1. wenn das Blatt noch zusammengefaltet ist und Trapez 2. wenn es wieder auseinandergefaltet ist. gleichschenkliges Trapez b) Nimm ein weiteres Blatt und falte dieses zweimal wie im Bild Wie kannst du schneiden, damit beim Auseinanderfalten ein Viereck entsteht? Probiere es aus. Wie verändert sich die Situation, wenn du nicht gerade faltest? Sortiere deine Vierecke nach ihren Eigenschaften und präsentiere deine Übersicht der Klasse. individuell

2.4 Achsensymmetrie. Achsensymmetrie entdecken. Name:

2.4 Achsensymmetrie. Achsensymmetrie entdecken. Name: Name: Klasse: Datum: Achsensymmetrie entdecken Öffne die Datei 2_4_Spielkarte.ggb. 1 Bewege den blauen Punkt nach Lust und Laune. Beschreibe deine Beobachtungen. Beschreibe, wie sich der grüne Punkt bewegt,

Mehr

6.2 Körpernetze. Muster an Körpernetzen. Name:

6.2 Körpernetze. Muster an Körpernetzen. Name: Name: Klasse: Datum: Muster an Körpernetzen 1 Öffne die Datei 6_2_Musterwuerfel.ggb. Du siehst den Bauplan (ein Netz ) eines Würfels, bei dem auf einer Seite ein Männchen eingezeichnet ist. Stell dir vor,

Mehr

3.1 Addieren. Magische Quadrate (1/2) Name:

3.1 Addieren. Magische Quadrate (1/2) Name: Name: Klasse: Datum: Magische Quadrate (1/2) In magischen Quadraten ist die Summe in allen Zeilen, Spalten und Diagonalen immer gleich groß. Diese Summe nennt man magische Zahl. Beispiel: Das magische

Mehr

3.4 Schriftliches Subtrahieren

3.4 Schriftliches Subtrahieren Mit Geldscheinen rechnen zweiter Teil 1 Arbeitet zu zweit. Mithilfe der Fundamente-Geldscheine lassen sich Beträge darstellen. Denkt euch abwechselnd Geldbeträge (kleiner als 1000) aus und lasst sie vom

Mehr

Zahl 100er-Scheine 10er-Scheine 1er-Scheine

Zahl 100er-Scheine 10er-Scheine 1er-Scheine Mit Geldscheinen rechnen - erster Teil 1 Arbeitet zu zweit. Schneidet die Fundamente-Geldscheine (Kopiervorlage) aus und klebt die beiden Geldscheintabellen zusammen (falls ihr sie verwenden wollt, es

Mehr

2.5 Koordinaten. Schatzsuche im Koordinatensystem. Name:

2.5 Koordinaten. Schatzsuche im Koordinatensystem. Name: Name: Klasse: Datum: Schatzsuche im Koordinatensystem Öffne die Datei 2_5_Schatzsuche.ggb. 1 Käpt'n Cross hat vor langer Zeit einen Schatz auf der Insel Mysteria vergraben. Wie es in Piratenkreisen üblich

Mehr

3.9 Schriftliches Dividieren

3.9 Schriftliches Dividieren Mit Geldscheinen rechnen dritter Teil 1 Arbeitet zu zweit. Mithilfe der Fundamente-Geldscheine lassen sich Beträge darstellen. Denkt euch abwechselnd Geldbeträge (kleiner als 1000) aus und lasst sie vom

Mehr

Einstiege: Volumen eines Zylinders

Einstiege: Volumen eines Zylinders An Abbildungen Höhe und Radius bestimmen und Volumen berechnen (1/3) 1 Schneide die Netze der beiden Zylinder aus und stelle zwei Modelle her. a) Schätze, welcher Zylinder das größere Volumen und die größere

Mehr

Aufgabe 1. Wie muss? richtig angeschrieben werden?

Aufgabe 1. Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 1 Wie muss? richtig angeschrieben werden? Aufgabe 2 Wie gross ist die Summe der Innenwinkel im konvexen und konkaven Viereck? Aufgabe 2 Wie gross

Mehr

Einstiege: Volumen eines Prismas

Einstiege: Volumen eines Prismas Quader zusammensetzen und erkunden (1/3) 1 Schneide die unten abgedruckten Netze für einen oben offenen Quader und ein Prisma aus. a) Miss die Kantenlängen des Quaders und ermittle das Volumen des Quaders.

Mehr

Basteln und Zeichnen

Basteln und Zeichnen Titel des Arbeitsblatts Seite Inhalt 1 Falte eine Hexentreppe 2 Falte eine Ziehharmonika 3 Die Schatzinsel 4 Das Quadrat und seine Winkel 5 Senkrechte und parallele Linien 6 Ein Scherenschnitt 7 Bastle

Mehr

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? a) Dreiecke Viereck d) Quadrat b) Kreis Quadrate e) Dreiecke Rechteck c) Rechtecke Viereck f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. a) Nimm vier gleich

Mehr

Einstiege: Umfang eines Kreises

Einstiege: Umfang eines Kreises Einstiege: eines Kreises Erkundungen an Erde und Fahrradreifen: eines Kreises bestimmen (1/3) 1 Schneide die Kreise auf dem Arbeitsblatt aus. a) Bestimme den der Kreise, indem du sie an einem Lineal abrollst

Mehr

Unser Weltall ist viele, viele tausend Jahre alt. In der Tabelle findest du einige wichtige Stationen der Geschichte unseres Universums.

Unser Weltall ist viele, viele tausend Jahre alt. In der Tabelle findest du einige wichtige Stationen der Geschichte unseres Universums. Name: Klasse: Datum: Unser Weltall ist viele, viele tausend Jahre alt. In der Tabelle findest du einige wichtige Stationen der Geschichte unseres Universums. Ereignis Zeitpunkt Zahl Nr. Der Mensch fliegt

Mehr

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen

VORSCHAU. zur Vollversion. Inhaltsverzeichnis. Grundwissen Geometrische Abbildungen Inhaltsverzeichnis Grundwissen Geometrische Abbildungen Achsensymmetrie 1 Achsensymmetrie erkennen 2 Symmetrieachsen finden (1) 3 Symmetrieachsen finden (2) 4 Symmetrieachsen finden (3) 5 Achsensymmetrische

Mehr

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke

Montessori-Diplomkurs Inzlingen Geometrische Mappe Die metallenen Dreiecke Geometrische Mappe Die metallenen Dreiecke 1 Material 4 metallene Rahmen (14 cm X 14 cm) mit gleichseitigen Dreiecken (Seitenlänge 10 cm). Die Dreiecke sind wie folgt unterteilt Ganze Halbe Drittel Viertel

Mehr

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung

Flächenberechnung Flächenberechnung. Mögliche Schritte zur Einführung. Einleitung Flächenberechnung Flächenberechnung Einleitung Mögliche Schritte zur Einführung Wie groß ist diese Form? Mit diesem Material kannst du erfahren, wie man bei geometrischen Formen die Fläche berechnen kann.

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie.

Mathematik Klasse 5 Bereich (Kartennummer): Innermathematisch. Schwierigkeitsgrad: Strategie. Mathematisches Thema: Symmetrie. Bereich (Kartennummer): Strategie Fortsetzung Strategie Vertiefung Welche der folgenden Verkehrsschilder sind achsen- bzw. punktsymmetrisch? Mögliche Lösung A B C D E F G punkt- und achsensymmetrisch achsensymmetrisch

Mehr

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1)

Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs. 09.02. Klausur (08-10 Uhr Audimax, HS 1) Vorlesungsübersicht Wintersemester 2015/16 Di 08-10 Audimax Grundlegende Geometrie - Vorlesung mit integriertem Praxiskurs Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier

Mehr

Geometrie. in 15 Minuten. Geometrie. Klasse

Geometrie. in 15 Minuten. Geometrie. Klasse Klasse Geometrie Geometrie 6. Klasse in 5 Minuten Winkel und Kreis Zeichne und überprüfe in deinem Übungsheft: a) Wo liegen alle Punkte, die von einem Punkt A den Abstand cm haben? b) Färbe den Bereich,

Mehr

4.1 Brüche mit natürlichen Zahlen multiplizieren

4.1 Brüche mit natürlichen Zahlen multiplizieren Name: Klasse: Datum:. Brüche mit natürlichen Zahlen multiplizieren Memory zu Brüche mit natürlichen Zahlen multiplizieren (/3) Für das Memoryspiel Brüche mit natürlichen Zahlen multiplizieren wurde dieses

Mehr

Eine Hilfe, wenn du mal nicht mehr weiterweisst...

Eine Hilfe, wenn du mal nicht mehr weiterweisst... Geometrie 6. Klasse Eine Hilfe, wenn du mal nicht mehr weiterweisst... Themen Seite Das 1 Das Viereck 2 Der Kreis 2 Die Winkel 3 Parallele Geraden zeichnen 4 Eine Senkrechte zeichnen 4 Die Spiegelsymmetrie

Mehr

4.2 Brüche multiplizieren

4.2 Brüche multiplizieren Name: Klasse: Datum: Memory zu Brüche multiplizieren (1/3) 1 Für das Memoryspiel Brüche multiplizieren wurde dieses Kartenpaar entworfen. a) Erkläre, warum beide Karten das gleiche bedeuten. b) Entwirf

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 5x5-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 5x5-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

4.3 Brüche durch natürliche Zahlen dividieren

4.3 Brüche durch natürliche Zahlen dividieren Name: Klasse: Datum: Memory zu Brüche durch natürliche Zahlen dividieren (1/3) 1 Für das Memoryspiel Brüche durch eine natürliche Zahl dividieren wurde dieses Kartenpaar entworfen. a) Erkläre, warum beide

Mehr

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6

Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Arbeitsblätter zur Arbeit mit GEOGEBRA in Klasse 6 Die folgenden Arbeitsblätter sind für die Arbeit im Mathematikunterricht Klasse 6 bestimmt. Sie kommen im Verlauf von Lernbereich 3 Dreiecke und Vierecke

Mehr

Kopfgeometrie Vorbemerkung

Kopfgeometrie Vorbemerkung Kopfgeometrie Vorbemerkung Kopfgeometrie lässt sich wie das Kopfrechnen regelmäßig in den Unterricht einbauen, z. B. zu Beginn einer Stunde alle 14 Tage oder wöchentlich während einer Phase von ein bis

Mehr

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A

1. Schulaufgabe aus der Mathematik * Klasse 7c * * Gruppe A 1. Schulaufgabe aus der Mathematik * Klasse 7c * 17.11.2014 * Gruppe A 1. Finde den Term a) Finde einen Term, der zur folgenden Tabelle passt: x 2 3 4 5 T(x) 82 76 70 64 b) Peter legt aus blauen und roten

Mehr

Was kann ich? 1 Geometrie. Vierecke (Teil 1)

Was kann ich? 1 Geometrie. Vierecke (Teil 1) Was kann ich? 1 Geometrie. Vierecke (Teil 1) 1 Markiere Strecken rot und Geraden blau. 2 Welche Strecken und Geraden sind senkrecht zueinander, welche parallel? Schreibe mit den Zeichen und. 3 Zeichne

Mehr

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten?

Drachen. Station 7. Aufgabe. Name: Untersuche die Eigenschaften eines Drachenvierecks. a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? Eigenschaften von Figuren Station 7 Aufgabe Drachen Untersuche die Eigenschaften eines Drachenvierecks. D f A E e C B a) Welche Seiten sind gleich lang? b) Gibt es parallele Seiten? c) Sind die Diagonalen

Mehr

Vierecke Kurzfragen. 2. Juli 2012

Vierecke Kurzfragen. 2. Juli 2012 Vierecke Kurzfragen 2. Juli 2012 Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben? Ecken: Vierecke Kurzfrage 1 Wie werden Vierecke angeschrieben?

Mehr

4.4 Brüche dividieren

4.4 Brüche dividieren Name: Klasse: Datum: Memory zu Brüche dividieren (1/3) 1 Für das Memoryspiel Brüche dividieren wurde dieses Kartenpaar entworfen. a) Beide Karten bedeuten das gleiche, denn bei der Division wird mit dem

Mehr

Löwe Königspinguin Kaninchen Elefant

Löwe Königspinguin Kaninchen Elefant Name: Größer, schwerer, älter? - ein Kartenspiel mit Tieren 1 Vorbereitung auf das Spiel Beim Kartenspiel Größer, schwerer, älter? werden Größen miteinander verglichen. Manchmal sind die Größen in verschiedenen

Mehr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr

SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht. Kurs 7: Module 13 und :00-18:00 Uhr SINUS Saarland Geometrie beziehungshaltig entdecken Module für den Geometrieunterricht Kurs 7: Module 13 und 14 08.01.2015 15:00-18:00 Uhr 1 Modul 13: Vielecke (Vielecke; regelmäßige Vielecke; Orientierungsfigur:

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke A512-0 1 10 Dreiecke 01 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke und sind gleichschenklig. 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A = A = 61, cm2,56

Mehr

Sicheres, vernetztes Wissen zu geometrischen Formen

Sicheres, vernetztes Wissen zu geometrischen Formen Sicheres, vernetztes Wissen zu geometrischen Formen SINUS Veranstaltung Grundschule Egelsbach 08.12. 2011, 14:30-17:30 Uhr Renate Rasch, Universität Koblenz-Landau, Campus Landau r-rasch@uni-landau.de

Mehr

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges

Download. Mathe an Stationen. Mathe an Stationen. Das 4x4-Geobrett in der Sekundarstufe I. Marco Bettner, Erik Dinges Download Marco Bettner, Erik Dinges Mathe an Stationen Das 4x4-Geobrett in der Sekundarstufe I Downloadauszug aus dem Originaltitel: Sekundarstufe I Marco Bettner Erik Dinges Mathe an Stationen Umgang

Mehr

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote :

Konstruktion Dreiecke und Vierecke PRÜFUNG 09. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : GEOMETRIE PRÜFUNGSVORBEREITUNG Konstruktion Dreiecke und Vierecke PRÜFUNG 09 Name: Klasse: Datum: : Note: Ausgabe:. September 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck.

Beweise. 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. Beweise 1. Betrachte folgenden Satz: Ein achsensymmetrisches Viereck mit einem 90 -Winkel ist ein Rechteck. (a) Gib Satz und Kehrsatz in der Wenn-dann-Form an! (b) Ist die Voraussetzung des Satzes notwendig,

Mehr

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum:

Figuren. Figuren. Kompetenztest. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges

Mehr

mathbu.ch 7 Aufgabensammlung 8 Parallelogramme untersuchen

mathbu.ch 7 Aufgabensammlung 8 Parallelogramme untersuchen 1. Für die gezeichneten Parallelogramme gelten die Masse: I s = 7.5 cm II a = 3 cm b = 5 cm h = 2 cm III c = 8.6 cm d = 47 mm IV s = 28 mm t = 6.5 cm Beantworte zu jeder Figur die folgenden Fragen. A Wie

Mehr

Inhaltsverzeichnis. Inhaltsverzeichnis

Inhaltsverzeichnis. Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis Einleitung 5 1 Zahlen 7 1.1 Zahlen und Zahlenmengen....................................... 7 1.2 Rechnen mit Zahlen und Termen....................................

Mehr

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken?

Viereck und Kreis Gibt es da etwas Besonderes zu entdecken? Bekanntlich besitzt ein Dreieck einen Umkreis, dessen Mittelpunkt man konstruieren kann. 1) Zeichne in dein Heft ein beliebiges Dreieck und konstruiere den Außenkreis des Dreieckes nur mit Zirkel und Lineal.

Mehr

Sicheres Wissen und Können zu Vierecken und Vielecken 1

Sicheres Wissen und Können zu Vierecken und Vielecken 1 Sicheres Wissen und Können zu Vierecken und Vielecken 1 Die Schüler können Figuren als Viereck, Fünfeck, Sechseck usw. bezeichnen und können solche Figuren skizzieren (ohne Angabe von Maßen). Die Schüler

Mehr

KONSTRUKTIVE DREIECKE KLEINER SECHSECKIGER KASTEN

KONSTRUKTIVE DREIECKE KLEINER SECHSECKIGER KASTEN KONSTRUKTIVE DREIECKE KLEINER SECHSECKIGER KASTEN Bildung verschiedener geometrischer Figuren aus Dreiecken Sechseckiger Kasten mit folgenden Dreiecken: 1 gelbes gleichseitiges Dreieck 6 graue gleichseitige

Mehr

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2.

Geometrie Winkel und Vierecke PRÜFUNG 02. Ohne Formelsammlung! Name: Klasse: Datum: Punkte: Note: Klassenschnitt/ Maximalnote : Ausgabe: 2. GEOMETRIE PRÜFUNGSVORBEREITUNG Seite 1 Geometrie Winkel und Vierecke PRÜFUNG 02 Name: Klasse: Datum: : Note: Ausgabe: 2. Mai 2011 Klassenschnitt/ Maximalnote : Selbsteinschätzung: / (freiwillig) Für alle

Mehr

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft.

Wassily Kandinsky: Structure joyeuse. Eigene Lösungen Beschreibe die Figuren und zeichne sie aus freier Hand in dein Heft. 6 Flächen Wie heißen die Figuren? Dreiecke Viereck d) Quadrat b) Kreis Quadrate Dreiecke Rechteck c) Rechtecke f) Kreis Wassily Kandinsky: Structure joyeuse Lege Vierecke. Nimm vier gleich lange Stäbe.

Mehr

Bearbeitungszeit: Name: Erklärung

Bearbeitungszeit: Name: Erklärung Ausgabe: Mittwoch, 05.05.2004 Abgabe: Freitag, 14.05.2004 Am Freitag den 14.05.2004 halte ich die Mathestunde. Bring deshalb auch dann dein Übungsblatt mit! Bearbeitungszeit: Name: Erklärung 1 2 3 Pflichtaufgabe

Mehr

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60.

Figuren Lösungen. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. 1) Welche Art Dreieck hat die beschriebene Eigenschaft? Ordne die Eigenschaften den Dreiecken zu. Alle Winkel betragen 60. Es gibt drei Symmetrieachsen. Gleichseitiges Dreieck Zwei Seiten stehen normal.

Mehr

Module für den Geometrieunterricht. Geometrie lehren Geometrie lernen

Module für den Geometrieunterricht. Geometrie lehren Geometrie lernen Module für den Geometrieunterricht Geometrie lehren Geometrie lernen 1 Ein Kind muss genügend Erfahrungen zu geometrischen Ideen erwerben können (classroom or otherwise), um ein höheres Entwicklungsstadium

Mehr

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis

5. Jahrestagung Berlin. Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis 5/6 5./6. 12. 08 SINUS Transfer Grundschule 5. Jahrestagung Berlin Formen und Veränderungen Geometrische Aktivitäten als Grundlage für fachliches Verständnis Workshop: Faltwinkel, rechte Winkel, Flächeninhalt

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind?

M 7.1. Achsensymmetrie. Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren.

M 7.1. Achsensymmetrie. Nenne drei Eigenschaften achsensymmetrischer Figuren. M 7.1 Achsensymmetrie Wo liegen alle Punkte, die von zwei gegebenen Punkten gleich weit entfernt sind? Nenne drei Eigenschaften achsensymmetrischer Figuren. Gegeben sind ein Punkt und die Symmetrieachse.

Mehr

Download Jens Conrad, Hardy Seifert

Download Jens Conrad, Hardy Seifert Download Jens Conrad, Hardy Seifert Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Downloadauszug aus dem Originaltitel: Klassenarbeiten Mathematik 8 Konstruktion von Vielecken Dieser Download

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Achsensymmetrie. Grundkonstruktionen

Achsensymmetrie. Grundkonstruktionen M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Mein Indianerheft: Geometrie 4. Lösungen

Mein Indianerheft: Geometrie 4. Lösungen Mein Indianerheft: Geometrie 4 Lösungen So lernst du mit dem Indianerheft Parallele Linien Flächen Kapitel: Flächen Flächen nicht? Prüfe mit dem Geodreieck. e parallele Linien. parallel nicht parallel

Mehr

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen

Kompetenzorientiert unterrichten: -Argumentieren -Kommunizieren -Problemlösen -Modellieren -Darstellen Sommersemester 2016 Didaktik der Grundschulmathematik Di, 12-14 Uhr, HS 1 I Zahlen und Operationen V 1 12.04. Arithmetik in der Grundschule V 2 19.04. Die Entwicklung mathematischer Kompetenzen V 3 26.04.

Mehr

Vierte Schularbeit Mathematik Klasse 3B am

Vierte Schularbeit Mathematik Klasse 3B am Vierte Schularbeit Mathematik Klasse 3B am 23.05.2016 SCHÜLERNAME: Gruppe A Lehrer: Dr. D. B. Westra Punkteanzahl : von 24 Punkten NOTE: NOTENSCHLÜSSEL 23-24 Punkte Sehr Gut (1) 20-22 Punkte Gut (2) 16-19

Mehr

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag

Symmetrische Figuren. 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. AOL-Verlag Symmetrische Figuren 1 1 Welche Figuren sind symmetrisch? Überprüfe. 2 Suche symmetrische Gegenstände im Klassenzimmer. Symmetrie 1 2 1 Zeichne die Spiegelachsen ein. Symmetrie 2 3 1 Zeichne die Spiegelachsen

Mehr

Übungen. Löse folgende Aufgaben mit GeoGebra

Übungen. Löse folgende Aufgaben mit GeoGebra Übungen Löse folgende Aufgaben mit GeoGebra A1 Die Fachbegriffe in den Kästchen sollen den untenstehenden Aussagen bezüglich eines Dreiecks ABC zugeordnet werden. Du darfst die Kärtchen mehrfach verwenden

Mehr

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1

Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Geometrie Modul 4b WS 2015/16 Mi 10-12 HS 1 Benötigte Materialien: Geometrieheft DIN-A-4 blanco weiß, quadratisches Faltpapier/Zettelblock, rundes Faltpapier; Zirkel, Geometriedreieck, Klebstoff, Schere

Mehr

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax

Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Renate Rasch WS 09/10 Grundlegende Geometrie (Vorlesung mit integriertem Praxiskurs) Di 10 12 Audimax Literatur: Franke M.: M:Didaktik der Geometrie. Zur Geometrievorlesung gehören praktische Übungen (Bitte

Mehr

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse -

Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - 1) Vorkenntnisse: Musterlösung zur 3. Hausaufgabe - Unterrichtsanalyse - Im Rahmen der aktuellen Einheit wurden die folgenden Themen im Unterricht behandelt. Grundkonstruktionen mit Zirkel und Lineal;

Mehr

1 Begriffe und Bezeichnungen

1 Begriffe und Bezeichnungen 1 Begriffe und Bezeichnungen Verbindet man vier Punkte A, B, C, D einer Ebene, von denen keine drei auf einer Geraden liegen, der Reihe nach miteinander, können unterschiedliche Figuren entstehen: ein

Mehr

1.4 Steigung und Steigungsdreieck einer linearen Funktion

1.4 Steigung und Steigungsdreieck einer linearen Funktion Werner Zeyen 1. Auflage, 2013 ISBN: 978-3-86249-250-3 Mathe mit GeoGebra 7/8 Dreiecke, Vierecke, Lineare Funktionen und Statistik Arbeitsheft mit CD RS-MA-GEGE2 1.4 Steigung und Steigungsdreieck einer

Mehr

Parallelogramme und Dreiecke A512-03

Parallelogramme und Dreiecke A512-03 12 Parallelogramme und Dreiecke 1 10 Dreiecke 401 Berechne den Flächeninhalt der vier Dreiecke. Die Dreiecke 3 und 4 sind gleichschenklig. 4 3 2 M 12,8 cm 7,2 cm 1 9,6 cm 12 cm A 1 = A 2 = A 3 = A 4 =

Mehr

Der Einsatz der Dynamischen Geometriesoftware GEONExT rund ums Viereck. Verlauf Material LEK Glossar Lösungen

Der Einsatz der Dynamischen Geometriesoftware GEONExT rund ums Viereck. Verlauf Material LEK Glossar Lösungen S 1 Der Einsatz der Dynamischen Geometriesoftware GEONExT rund ums Viereck Doris Walkowiak, Görlitz Die Schwimmhalle in Görlitz Welche Vierecksarten weist das Gebäude auf? Das Dynamische Geometrieprogramm

Mehr

DOWNLOAD. Geometrisches Zeichnen: Flächen. Quadrat, Rechteck, Trapez & Co. Ralph Birkholz. Downloadauszug aus dem Originaltitel:

DOWNLOAD. Geometrisches Zeichnen: Flächen. Quadrat, Rechteck, Trapez & Co. Ralph Birkholz. Downloadauszug aus dem Originaltitel: DOWNLOAD Ralph Birkholz Geometrisches Zeichnen: Flächen Quadrat, Rechteck, Trapez & Co. Downloadauszug aus dem Originaltitel: Das Werk als Ganzes sowie in seinen Teilen unterliegt dem deutschen Urheberrecht.

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen

Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Geometrie Ich kann... Formen und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise erkennen und benennen Würfel, Quader, Kugeln erkennen und benennen Symmetrien in Figuren erkennen

Mehr

Achsensymmetrie. Konstruktionen M 7.1

Achsensymmetrie. Konstruktionen M 7.1 M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis

Gundlagen Klasse 5/6 Geometrie. nach oben. Inhaltsverzeichnis Inhaltsverzeichnis Grundbegriffe der Geometrie Geometrische Abbildungen Das Koordinatensystem Schnittpunkt von Geraden Symmetrien Orthogonale Geraden Abstände Parallele Geraden Vierecke Diagonalen in Vielecken

Mehr

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen

Material: Festes Tonpapier (2 unterschiedliche Farben) Musterklammern oder Papierösen Mathematik Lerntheke Klasse 5d: Flächeninhalte von Vielecken Die einzelnen Stationen: Station 1: Station 2: Station 3: Station 4: Wiederholung (Quadrat und Rechteck) Material: Zollstock Das Parallelogramm

Mehr

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte

Aufgabe 1 Erstelle mit Hilfe von GEOGEBRA ein dynamisches Geometrie-Programm, das die Mittelsenkrechte AB Mathematik Experimentieren mit GeoGebra Merke Alle folgenden Aufgaben sind mit dem Programm GEOGEBRA auszuführen! Eine ausführliche Einführung in die Bedienung des Programmes erfolgt im Unterricht.

Mehr

Symmetrien und Winkel

Symmetrien und Winkel 1 10 Symmetrien 301 Zeichne Grossbuchstaben des Alphabets, sortiert nach vier Typen: achsensymmetrisch punktsymmetrisch achsen- und punktsymmetrisch weder achsen- noch punktsymmetrisch Trage bei den symmetrischen

Mehr

Name: Arbeitsauftrag Tangram

Name: Arbeitsauftrag Tangram Name: Arbeitsauftrag Tangram Tangram ein sehr altes Lege- und Geduldsspiel, das vermutlich zwischen dem achten und dem vierten Jahrhundert vor Christus in China entstand. Andere Bezeichnungen für dieses

Mehr

Körper erkennen und beschreiben

Körper erkennen und beschreiben Vertiefen 1 Körper erkennen und beschreiben zu Aufgabe 6 Schulbuch, Seite 47 6 Passt, passt nicht Nenne zu jeder Aussage alle Formen, auf die die Aussage zutrifft. a) Die Form hat keine Ecken. b) Die Form

Mehr

Achsen- und punktsymmetrische Figuren

Achsen- und punktsymmetrische Figuren Achsensymmetrie Der Punkt P und sein Bildpunkt P sind symmetrisch bzgl. der Achse s, wenn ihre Verbindungsstrecke [PP ] senkrecht auf der Achse a steht und von dieser halbiert wird. Zueinander symmetrische......strecken

Mehr

Mathematik - Jahrgangsstufe 5

Mathematik - Jahrgangsstufe 5 Mathematik - Jahrgangsstufe 5 1. Natürliche Zahlen und Größen (Stochastik, Arithmetik/Algebra) Strichlisten, Tabellen und Diagramme Die Stellenwerttafel im Dezimalsystem & Runden Grundrechenarten: Summe,

Mehr

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt.

Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. M 7.1 Achsensymmetrie Punkte, die auf der Symmetrieachse liegen und nur diese, sind von zueinander symmetrischen Punkten gleich weit entfernt. Eigenschaften achsensymmetrischer Figuren Die Verbindungsstrecke

Mehr

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner.

Mathe an Stationen. Mathe an Stationen 3 Achsensymmetrie. Handlungsorientierte Materialien für Klasse 3. u Marco Bettner. Marco Bettner Erik Dinges Mathe an Stationen 3 Achsensymmetrie Handlungsorientierte Materialien für Klasse 3 Downloadauszug aus dem Originaltitel: Grundschule u Marco Bettner Erik Dinges Mathe an Stationen

Mehr

Illustrierende Aufgaben zum LehrplanPLUS

Illustrierende Aufgaben zum LehrplanPLUS Bandornamente Jahrgangsstufen 3/4 Fächer Benötigtes Material Mathematik Fotos von Bandornamenten, Geodreieck, Lineal, Zirkel, Papierstreifen DIN A3, Karopapier Kompetenzerwartungen M 3/4 2 M 3/4 2.4 Raum

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus:

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Das Pascal sche Dreieck - Übungen zu arithmetischen Beziehungen und Zahlenmustern Das komplette Material finden Sie hier: Download

Mehr

Übung zur Abgaben Didaktik der Geometrie. Gruppe 5 Alt, Regine u. Gampfer,Stefanie

Übung zur Abgaben Didaktik der Geometrie. Gruppe 5 Alt, Regine u. Gampfer,Stefanie Übung zur Abgaben Didaktik der Geometrie Gruppe 5 Alt, Regine u. Gampfer,Stefanie Inhalt der Klassenstufe 2 in Geometrie Der Geometrieunterricht im zweiten Schuljahr findet in allen fünf Ebenen der Geometrie

Mehr

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen

An alle Primarschulen des Kantons SH. Schaffhausen, Geometrie im Mathematiklehrmittel Logisch Übersicht. Liebe Kolleginnen und Kollegen Kanton Schaffhausen Abteilung Schulentwicklung und Aufsicht Herrenacker 3 CH-8200 Schaffhausen www.sh.ch An alle Primarschulen des Kantons SH Schaffhausen, 11.04.2012 Geometrie im Mathematiklehrmittel

Mehr

1. Das Koordinatensystem

1. Das Koordinatensystem Liebe Schülerin! Lieber Schüler! In den folgenden Unterrichtseinheiten wirst du die Unterrichtssoftware GeoGebra kennen lernen. Mit ihrer Hilfe kannst du verschiedenste mathematische Objekte zeichnen und

Mehr

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN:

Erreichte Punkte ALLGEMEINE MATHEMATISCHE KOMPETENZEN: GRUNDWISSENTEST 05 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 9 DER REALSCHULE HINWEISE: Beim Kopieren der Aufgabenblätter ist auf die Maßhaltigkeit zu achten, um Verzerrungen zu vermeiden. Nicht zugelassen

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: ANNA und LILI entdecken besondere Zahlen!

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: ANNA und LILI entdecken besondere Zahlen! Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: ANNA und LILI entdecken besondere Zahlen! Das komplette Material finden Sie hier: School-Scout.de 2 von 36 ANNA- und LILI-Zahlen entdecken

Mehr

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie

Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen Studie Didaktisches Kolloquium Mathematik Institut für Didaktik der Mathematik und Elementarmathematik der TU Braunschweig 13. 12. 2011 Geometrisches Wissen in der Grundschule Der Weg zu einer experimentellen

Mehr

A B. Geometrische Grundbegriffe zuordnen. Geometrische Grundbegriffe zuordnen.

A B. Geometrische Grundbegriffe zuordnen.  Geometrische Grundbegriffe zuordnen. Hinweis: Dieses Geometrieheft wurde im Zuge einer ergänzenden Lernbegleitung für die Jahrgangsstufe 4 erstellt und erhebt keinen Anspruch auf Vollständigkeit, bzw. wird fortlaufend weiterentwickelt Das

Mehr

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23

MB 10. Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 Arbeitsmaterial ab Seite MB 15 Checkliste Seite MB 23 MB 10 Seiten im Materialblock: Wissensspeicher ab Seite MB 11 Methodenspeicher Seite MB 14 ab Seite MB 15 Checkliste Seite MB 23 Wissensspeicher Körper und Flächen MB 11 Wissensspeicher Fachwörter zu Körpern

Mehr

Grundwissen. Achsenspiegelung. Die Verbindungsstrecke von einem Punkt P und seinem Bildpunkt P' wird von der Symmetrieachse

Grundwissen. Achsenspiegelung. Die Verbindungsstrecke von einem Punkt P und seinem Bildpunkt P' wird von der Symmetrieachse 170 10 Grundwissen Grundwissen Kopiere die folgenden Seiten auf dünnen Karton und zerschneide diesen in,,lernkarten. aue damit eine Lernkartei auf: Wenn im Unterricht ein neuer Lehrstoff behandeltwurde,nimmstdudiezugehörigenkartenindeinekarteiauf.

Mehr

Lösungen zu den Aufgaben 7. Klasse

Lösungen zu den Aufgaben 7. Klasse Lösungen zu den Aufgaben 7. Klasse Beachte: Einheit bei allen Geometrieaufgaben: 1 Kästchenlänge 1 cm 1. Achsen- und Punktsymmetrie Achsenspiegelung: Punktspiegelung: 1 Lösungen zu den Aufgaben 7. Klasse

Mehr

Geometrische Formen - Kinder erstellen ein Lapbook im Mathematikunterricht (Klassen 2-4)

Geometrische Formen - Kinder erstellen ein Lapbook im Mathematikunterricht (Klassen 2-4) Titel: Geometrische Formen - Kinder erstellen ein apbook im Mathematikunterricht (Klassen 2-4) Bestellnummer: 64540 Kurzvorstellung: Suchen Sie ein Material, mit dem Sie geometrische Formen erarbeiten

Mehr