Formel X Leistungskurs Physik 2005/2006

Größe: px
Ab Seite anzeigen:

Download "Formel X Leistungskurs Physik 2005/2006"

Transkript

1 System: Wir betrachten ein Fluid (Bild, Gas oder Flüssigkeit), das sich in einem Zylinder befindet, der durch einen Kolben verschlossen ist. In der Thermodynamik bezeichnet man den Gegenstand der Betrachtung als thermodynamisches System; das was nicht interessiert als die Umgebung. Die Umgebung wird von dem System durch die Systemgrenze abgegrenzt. Kolben Systemgrenze Fluid Zylinder Bild Thermodynamisches System Da wir das Verhalten des Fluids beschreiben wollen, stellt dieses unser thermodynamisches System dar. Wir verdeutlichen dies durch das Eintragen der Systemgrenze (gestrichelte Linie). Zylinder, Kolben und umgebende Atmosphäre stellen für uns die Umgebung dar. Geschlossenes System: Wir nehmen an, dass die Abdichtung zwischen Kolben und Zylinderwand so gut ist, dass an dieser Stelle kein Fluid entweichen kann. Dann ändert sich bei einer Zustandsänderung die Masse des Fluids nicht. m = m = m = const (Gl ) Ein System für das dies gilt, bezeichnet man als ein geschlossenes System. Wir ändern nun den Zustand des Systems, indem wir den Kolben gegen den Druck des Fluids in den Zylinder drücken. Die Masse des Fluids ändert sich dabei nicht (Annahme: geschlossenes System). Das Volumen, das dem Fluid zur Verfügung steht, wird kleiner. Damit nimmt die Dichte des Fluids zu: m ρ =. (Gl ) V Man bezeichnet diese Zustandsänderung daher als Verdichtung oder als Kompression. Quasistatische Zustandsänderung: Wir fordern weiter, dass sich unser thermodynamisches System zu allen Zeiten im Gleichgewicht befindet. Wenn wir das Eigengewicht des Fluids vernachlässigen, bedeutet dies, dass zu jedem Zeitpunkt an allen Orten des Fluids derselbe Druck (mechanisches Gleichgewicht) und dieselbe Temperatur (thermisches Gleichgewicht) herrschen und die Fluidteilchen sich nicht bewegen, also ruhen. Bei einer Zustandsänderung, die im Allgemeinen mit einer Änderung des Druckes und der Temperatur verbunden ist, kommt es zu einer Störung dieses Gleichgewichtszustandes. Wir nehmen an, dass die dadurch hervorgerufenen Ausgleichsvorgänge im Inneren des Systems viel schneller ablaufen als die Zustandsänderung selbst. Die Zustandsänderung also als Folge von Gleichgewichtszuständen betrachtet werden kann. Man spricht bei dieser Modellvorstellung von einer quasistatischen Zustandsänderung.

2 Volumenänderungsarbeit: Um das Volumen des Gases zu verringern, oder mit anderen Worten, um den Kolben gegen den Druck des Fluids in den Zylinder zu drücken, muss Arbeit aufgewandt werden, die dem Fluid zugeführt wird und die die im Fluid gespeicherte Energie erhöht. Diese Arbeit berechnet sich als Arbeit der Druckkräfte, mit denen das Fluid gegen den Kolben drückt. Sie wird als Volumenänderungsarbeit bezeichnet. Mit der Kolbenfläche A berechnet sich die resultierende Druckkraft des Fluids zu F p = pa. Wird der Kolben um den Weg ds in den Zylinder gedrückt verrichtet diese Kraft die Arbeit: dw = F ds dw = F ds. d W = pa ds. p ds Bild Mit der Volumenänderung dv = A ds und durch Aufsummieren der Arbeitsbeiträge über die ganze Zustandsänderung von berechnet sich die Volumenänderungsarbeit zu: p W v = p dv. (Gl ) Bei einer Kompression ist dv negativ, die Volumenänderungsarbeit also positiv. Dem System wird Arbeit zugeführt. Bei einer Volumenvergrößerung (Expansion) ist dv positiv, die Volumenänderungsarbeit also negativ. Das System gibt Arbeit ab. Dissipationsarbeit: Ist das Fluid zäh, kann neben der Volumenänderungsarbeit dem Fluid auch noch Arbeit zugeführt werden, indem man es durch Rühren in Bewegung setzt. Diese Arbeit wird durch Reibung zwischen den Fluidteilchen im Fluid dissipiert und erhöht wieder die im System Bild Dissipationsarbeit gespeicherte Energie. Dissipationsenergie kann einem System nur zugeführt werden, sie ist immer postitiv. Gesamtarbeit: Die ingesamt an einem geschlossenen System verrichtete Arbeit bezeichnet man als Gesamtarbeit: Wg = Wv + W. diss (Gl 4)

3 Wärme: Neben Arbeit kann einem System auch Energie in Form von Wärme zugeführt werden. Wärme ist die Energie, die allein aufgrund eines Temperaturunterschiedes zwischen System und Umgebung über die Systemgrenze tritt. Ist die Umgebungstemperatur größer als die Temperatur des Systems fließt Energie in Form von Wärme in das System (die Wärme ist positiv) ist die Umgebungstemperatur kleiner als die Temperatur des Systems, fließt Energie in Form von Wärme aus dem System (die Wärme ist negativ). Voraussetzung hierfür ist aber, dass die Systemgrenze durchlässig für Wärme ist. Die Modellvorstellung, dass die Systemgrenze vollständig undurchlässig für Wärme ist, bezeichnet man als adiabate Systemgrenze. Erster Hauptsatz : Mit den besprochenen Größen können wir nun den. Hauptsatz für ruhende, geschlossene Systeme aufstellen. Der erste Hauptsatz macht die Aussage, dass sich die in einem System gespeicherte Energie genau um den Betrag der über die Systemgrenze fließenden Energie ändert. Einem geschlossenen System kann Energie in Form von Volumenänderungsarbeit, Dissipationsenergie und Wärme zugeführt werden, und es ändert sich die in dem geschlossenen System gespeicherte Energie, die als innere Energie bezeichnet wird: W + W + Q = U -U (Gl 5) v diss Auf der linken Seite des Ersten Hauptsatzes stehen die über die Systemgrenze fließenden Energien. Sie hängen von dem Verlauf der Zustandsänderung ab und werden daher als Prozessgrößen bezeichnet. Man erkennt sie daran, dass im Index der Ausgangs- und der Endzustand der Zustandsänderung genannt wird. Auf der rechten Seite steht die Änderung der im System gespeicherten Energie. Gespeicherte Energien sind Zustandsgrößen. Die Änderung der inneren Energie berechnet sich als Differenz der Energie im Zustand um im Zustand. Im Index steht nur der Ausgangs- oder der Endzustand. Nutzarbeit und Verschiebearbeit: Die von den Druckkräften des Fluids bei der Verschiebung des Kolbens verrichtete Arbeit, die Volumenänderungsarbeit, unterteilt man in die Nutzarbeit W n und die Verschiebearbeit W u : Wv = Wn + Wu (Gl 6) Die Nutzarbeit ist der Anteil der Volumenänderungsarbeit, der über die Kolbenstange übertragen wird.

4 Die Verschiebearbeit ist der Anteil, der gegen den Umgebungszustand übertragen wird. Zur Herleitung betrachten wir die Kräfte, die am Kolben angreifen: An der Kolbenstange greift die Kraft F K an, von außen wirkt auf die Kolbenoberfläche der Umgebungsdruck und von innen der Druck des Fluids. Die Haftungskräfte, die von der Zylinderwandung auf den Kolben F K v = 0 ds ausgeübt werden, sowie das Eigengewicht Bild 4 Gleichgewicht am Kolben des Kolbens sollen vernachlässigt werden. Aus dem Kräftegleichgewicht folgt für den Druck des Fluids: F is = 0: F p A K + b = pa ds i F d s+ p d V = p dv K b d V = A ds Eingesetzt in die Definitionsgleichung der Volumenänderungsarbeit folgt: dv Wv = p d V = FK ds pb Wn Wu Aus dem Vergleich mit der Gleichung 6 folgt für die Nutzarbeit: n ( ) W = p p p b p (Gl 7) b dv. (Gl 8) Unter der Annahme eines konstanten Umgebungsdruckes p b = const folgt für die Verschiebearbeit: ( ) W = p V V. (Gl 9) u b Bei einer Expansion kann nur ein Teil der abgegebenen Volumenänderungsarbeit als Nutzarbeit an der Kolbenstange abgegeben werden der andere Teil muss zum Verschieben der Umgebung aufgewendet werden. Bei einer Kompression muss nur ein Teil der erforderlichen Volumenänderungsarbeit über die Kolbenstange aufgebracht werden, den Rest liefert die Umgebung, die mit hilft den Kolben zu verschieben. 4

5 Aufgabe /ÜB A./ HS -9 In einem Zylinder befindet sich Luft, die durch einen konstant belasteten Zylinder auf einen Druck von 00 kpa gehalten wird. Durch Zufuhr von 00 kj Wärme vergrößert sich das Volumen der Luft reversibel um 00 l. Wie groß ist die Änderung der inneren Energie? Aufgabe /LB B./ HS - In einem adiabaten Zylinder von 500 l befindet sich ideales Gas, dessen Druck durch einen konstant belasteten Kolben auf 0, MPa gehalten wird. Dem Gas wird die Dissipationsenergie W diss = 0, kw h zugeführt, wobei sich die Temperatur von 8 C auf 600 C erhöht. Der Umgebungsdruck beträgt 98 kpa. a) Wie groß ist die abgeführte Volumenänderungsarbeit? b) Um welchen Wert ändert sich die Energie des Systems? c) Wie groß ist die an die Umgebung abgegebene Verschiebungsarbeit? d) Wie groß ist die an der Kolbenstange abgegebene Nutzarbeit? Aufgabe /ÜB A.5/ HS -0 In einem Druckbehälter befindet sich kmol eines idealen Gases bei einer Temperatur von 0 C. Das Manometer zeigt einen Druck von 400 kpa an. Der Umgebungsdruck beträgt 0, kpa. R i = 4 J/(kg K). a) Wie groß ist das Behältervolumen? b) Wie groß ist das spezifische Volumen des Gases? Durch reversible Zufuhr von 6,6 kj Wärme steigt der Druck im Behälter. Das Manometer zeigt nun eine Druck von 485,5 kpa an. c) Wie groß ist die Änderung der inneren Energie des Gases? Aufgabe 4 /ÜB B./ HS - Eine Glaskapillare mit einer inneren Querschnittsfläche von 5 mm ist auf der einen Seite zugeschmolzen und auf der anderen Seite durch einen 0 cm langen Quecksilberfaden (ρ Hg = 590 kg/m ) verschlossen. Der von der Glaskapillaren und dem Quecksilber begrenzte Raum ist mit Stickstoff (ideales Gas) gefüllt. Der Umgebungsdruck beträgt 98 kpa, die Umgebungstemperatur C. R i = 96,8 J/(kg K). a) Liegt die Kapillare waagerecht, beträgt die Länge des eingeschlossenen Gasvolumens 50 cm. Berechnen Sie für diese Lage die Dichte des Gases (t Gas = t amb ). b) Die Glaskapillare wird nun senkrecht gestellt mit der zugeschmolzenen Seite nach unten. Welche Länge hat nun das eingeschlossene Gasvolumen (t Gas = t amb )? In der senkrechten Lage wird nun die Temperatur des Gases um 78 K erhöht. c) Welche Länge hat nun das eingeschlossene Gasvolumen? d) Wie groß ist die verrichtete Volumenänderungsarbeit? 5

6 e) Welche Arbeit wird am Quecksilber verrichtet? 6

7 Lösungen: ) U U = 80 kj ) a) W v = 00 kj b) U U = 50 kj c) W u = 98 kj d) W n = 0 kj ) a) V = 4,86 m b) v =,4 m /kg c) U U = 6,6 kj 4) a) ρ =,87 kg/m b) l = 44,0 cm c) l = 55,64 cm d) W v = 0,0647 J e) W n = 0,00775 J 7

Leseprobe. Günter Cerbe, Gernot Wilhelms. Technische Thermodynamik. Theoretische Grundlagen und praktische Anwendungen ISBN:

Leseprobe. Günter Cerbe, Gernot Wilhelms. Technische Thermodynamik. Theoretische Grundlagen und praktische Anwendungen ISBN: Leseprobe Günter Cerbe, Gernot Wilhelms Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen ISBN: 978-3-446-4464-7 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-4464-7

Mehr

Technische Thermodynamik

Technische Thermodynamik Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen von Günter Cerbe, Gernot Wilhelms 5., aktualis. Aufl Technische Thermodynamik Cerbe / Wilhelms schnell und portofrei erhältlich

Mehr

Technische Thermodynamik

Technische Thermodynamik Technische Thermodynamik Theoretische Grundlagen und praktische Anwendungen Bearbeitet von Günter Cerbe, Gernot Wilhelms 5., aktualisierte Auflage 2008. Buch. 536 S. Hardcover ISBN 978 3 446 456 4 Format

Mehr

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K

Fundamentalgleichung für die Entropie. spezifische Entropie: s = S/m molare Entropie: s m = S/n. Entropie S [S] = J/K Fundamentalgleichung für die Entropie Entropie S [S] = J/K spezifische Entropie: s = S/m molare Entropie: s m = S/n Mit dem 1. Hauptsatz für einen reversiblen Prozess und der Definition für die Entropie

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Was ist überhaupt Thermodynamik? Das Wort Thermodynamik kommt aus dem Griechischen von therme (Wärme) und dynamis (Kraft).

Was ist überhaupt Thermodynamik? Das Wort Thermodynamik kommt aus dem Griechischen von therme (Wärme) und dynamis (Kraft). Struktur Was ist Thermodynamik Geschichte Einstieg Thermodynamik Thermische Zustandsgrößen Thermische Zustandsgleichungen Thermodynamische Systeme Zustand und Prozess Hauptsätze Was ist überhaupt Thermodynamik?

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik on Hans-Joachim Kretzschmar, Ingo Kraft überarbeitet Kleine Formelsammlung Technische Thermodynamik Kretzschmar / Kraft schnell und ortofrei erhältlich bei

Mehr

2.6 Zweiter Hauptsatz der Thermodynamik

2.6 Zweiter Hauptsatz der Thermodynamik 2.6 Zweiter Hauptsatz der Thermodynamik Der zweite Hauptsatz der Thermodynamik ist ein Satz über die Eigenschaften von Maschinen die Wärmeenergie Q in mechanische Energie E verwandeln. Diese Maschinen

Mehr

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj

Stickstoff kann als ideales Gas betrachtet werden mit einer spezifischen Gaskonstante von R N2 = 0,297 kj Aufgabe 4 Zylinder nach oben offen Der dargestellte Zylinder A und der zugehörige bis zum Ventil reichende Leitungsabschnitt enthalten Stickstoff. Dieser nimmt im Ausgangszustand ein Volumen V 5,0 dm 3

Mehr

wegen Massenerhaltung

wegen Massenerhaltung 3.3 Bilanzgleichungen Allgemein: Änderung der Bilanzgröße im System = Eingang Ausgang + Bildung - Verbrauch. 3.3.1 Massenbilanz Integration für konstante Massenströme: 0 wegen Massenerhaltung 3.3-1 3.3.2

Mehr

Formel X Leistungskurs Physik 2001/2002

Formel X Leistungskurs Physik 2001/2002 Versuchsaufbau: Messkolben Schlauch PI Barometer TI 1 U-Rohr-Manometer Wasser 500 ml Luft Pyknometer 2 Bild 1: Versuchsaufbau Wasserbad mit Thermostat Gegeben: - Länge der Schläuche insgesamt: 61,5 cm

Mehr

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie

- potentiell E pot. Gesamtenergie: E = U + E kin + E pot. 3 Energiebilanz. 3.1 Energie. 3.1.1 Formen der Energie 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie Innere Energie: U - thermisch - latent Äußere Energien: E a - kinetisch E kin - potentiell E pot Gesamtenergie: E = U + E kin + E pot 3.1-1 3.1.2 Die

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 1. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 1 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 1: Übersicht 3 Energiebilanz 3.1 Energie 3.1.1 Formen der Energie 3.1.2 Innere Energie U 3.1.3 Energietransfer

Mehr

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme

5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse Energiebilanz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher Dies

Mehr

Beispielaufgabe zur Energiewandlung

Beispielaufgabe zur Energiewandlung Prof. Dr.-Ing. K. Thielen Technische Thermodynamik THM, StudiumPlus Beispielaufgabe zur Energiewandlung Bei dem Automobilhersteller Audi soll ein neuer Verbrennungsmotor konstruiert werden. Der Motor soll

Mehr

Der atmosphärische Luftdruck

Der atmosphärische Luftdruck Gasdruck Der Druck in einem eingeschlossenen Gas entsteht durch Stöße der Gasteilchen (Moleküle) untereinander und gegen die Gefäßwände. In einem Gefäß ist der Gasdruck an allen Stellen gleich groß und

Mehr

Die innere Energie eines geschlossenen Systems ist konstant

Die innere Energie eines geschlossenen Systems ist konstant Rückblick auf vorherige Vorlesung Grundsätzlich sind alle möglichen Formen von Arbeit denkbar hier diskutiert: Mechanische Arbeit: Arbeit, die nötig ist um einen Massepunkt von A nach B zu bewegen Konservative

Mehr

Aufgaben zur Wärmelehre

Aufgaben zur Wärmelehre Aufgaben zur Wärmelehre 1. Ein falsch kalibriertes Quecksilberthermometer zeigt -5 C eingetaucht im schmelzenden Eis und 103 C im kochenden Wasser. Welche ist die richtige Temperatur, wenn das Thermometer

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN-10: 3-446-41421-5 ISBN-13: 978-3-446-41421-1 Vorwort Weitere Informationen oder Bestellungen unter htt://www.hanser.de/978-3-446-41421-1

Mehr

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur

Thermodynamik. Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur Thermodynamik Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur kann voraussagen, ob eine chemische Reaktion abläuft oder nicht kann nichts über den zeitlichen

Mehr

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess:

Eine (offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Aufgabe 12: Eine offene) Gasturbine arbeitet nach folgendem Vergleichsprozess: Der Verdichter V η s,v 0,75) saugt Luft im Zustand 1 1 bar, T 1 288 K) an und verdichtet sie adiabat auf den Druck p 2 3,7

Mehr

Übungen zur Thermodynamik (PBT) WS 2004/05

Übungen zur Thermodynamik (PBT) WS 2004/05 1. Übungsblatt 1. Berechnen Sie ausgehend von der allgemeinen Gasgleichung pv = nrt das totale Differential dv. Welche Änderung ergibt sich hieraus in erster Näherung für das Volumen von einem Mol eines

Mehr

1 Thermodynamik allgemein

1 Thermodynamik allgemein Einführung in die Energietechnik Tutorium II: Thermodynamik Thermodynamik allgemein. offenes System: kann Materie und Energie mit der Umgebung austauschen. geschlossenes System: kann nur Energie mit der

Mehr

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme

12 Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz der Thermodynamik für geschlossene Systeme Der erste Hauptsatz ist die thermodynamische Formulierung des Satzes von der Erhaltung der Energie. Er besagt, daß Energie weder erzeugt noch

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 3., erweiterte Auflage Fachbuchverlag

Mehr

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6

Inhaltsverzeichnis. Hans-Joachim Kretzschmar, Ingo Kraft. Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Inhaltsverzeichnis Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN: 978-3-446-41781-6 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-41781-6

Mehr

4. Die Energiebilanz. 4.1. Mechanische Formen der Energie. 4.1.1 Energie und Arbeit Arbeit einer Kraft

4. Die Energiebilanz. 4.1. Mechanische Formen der Energie. 4.1.1 Energie und Arbeit Arbeit einer Kraft 4. Die Energiebilanz 4.1. Mechanische Formen der Energie 4.1.1 Energie und Arbeit Arbeit einer Kraft Die auf dem Weg von 1 nach 2 geleistete Arbeit berechnet sich durch Integration entlang der Bahnkurve

Mehr

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436

6.4.2 VerdampfenundEindampfen... 427 6.4.3 Destillieren und Rektifizieren... 430 6.4.4 Absorbieren... 436 Inhaltsverzeichnis 1 Allgemeine Grundlagen... 1 1.1 Thermodynamik... 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 WasistThermodynamik?... 9 1.2 SystemundZustand... 11 1.2.1 SystemundSystemgrenzen...

Mehr

Übungen zur Vorlesung. Energiesysteme

Übungen zur Vorlesung. Energiesysteme Übungen zur Vorlesung Energiesysteme 1. Wärme als Form der Energieübertragung 1.1 Eine Halle mit 500 m 2 Grundfläche soll mit einer Fußbodenheizung ausgestattet werden, die mit einer mittleren Temperatur

Mehr

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant

Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Ü 11.1 Nachrechnung eines Otto-ergleichsprozesses (1) Annahmen: Arbeitsmedium ist Luft, die spezifischen Wärmekapazitäten sind konstant Anfangstemperatur T 1 288 K Anfangsdruck p 1 1.013 bar Maximaltemperatur

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch Thermodynamik Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch Thermodynamik Einleitung Grundbegriffe 3 Systembeschreibung 4 Zustandsgleichungen 5 Kinetische

Mehr

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker Technische Universität Braunschweig Institut für Geophysik und extraterrestrische Physik Prof. A. Hördt Probeklausur zur Vorlesung Physik I für Chemiker, Pharmazeuten, Geoökologen, Lebensmittelchemiker

Mehr

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K:

Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des siedenden Wassers T=T tr = 273,16 K: 3.3.5 Energiebilanz bei der Mischung feuchter Luft Bezugsgröße: Masse der trockenen Luft m L Beladung: Auf die Masse der Luft bezogene Enthalpie Enthalpienullpunkt von Luft und Wasser am Tripelpunkt des

Mehr

Technische Thermodynamik. FB Maschinenwesen. Übungsaufgaben. Technische Thermodynamik. Wärmeübertragung. University of Applied Sciences

Technische Thermodynamik. FB Maschinenwesen. Übungsaufgaben. Technische Thermodynamik. Wärmeübertragung. University of Applied Sciences University of Applied Sciences Übungsaufgaben Technische Thermodynamik Wärmeübertragung Prof. Dr.-Ing. habil. H.-J. Kretzschmar FB Maschinenwesen Technische Thermodynamik HOCHSCHULE ZITTAU/GÖRLITZ (FH)

Mehr

Physikalisch-chemische Grundlagen der Verfahrenstechnik

Physikalisch-chemische Grundlagen der Verfahrenstechnik Physikalisch-chemische Grundlagen der Verfahrenstechnik Günter Tovar, Thomas Hirth, Institut für Grenzflächenverfahrenstechnik guenter.tovar@igvt.uni-stuttgart.de Physikalisch-chemische Grundlagen der

Mehr

5. Entropie *), 2. Hauptsatz der Thermodynamik

5. Entropie *), 2. Hauptsatz der Thermodynamik 5. Entropie *), 2. Hauptsatz der Thermodynamik Was also ist Zeit? Wenn niemand mich danach fragt, weiß ich es; wenn ich es jemandem auf seine Frage hin erklären soll,, weiß ich es nicht zu sagen. Augustinus,

Mehr

Übungsaufgaben zur Thermodynamik

Übungsaufgaben zur Thermodynamik Übungsaufgaben zur Thermodynamik Übungsbeispiel 1 Ein ideales Gas hat bei einem Druck von 2,5 bar und ϑl = 27 C eine Dichte von ρ1 = 2,7 kg/m 3. Durch isobare Wärmezufuhr soll sich das Gasvolumen Vl verdoppeln

Mehr

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess

10. Thermodynamik Der erste Hauptsatz Der zweite Hauptsatz Thermodynamischer Wirkungsgrad Der Carnotsche Kreisprozess Inhalt 10.10 Der zweite Hauptsatz 10.10.1 Thermodynamischer Wirkungsgrad 10.10.2 Der Carnotsche Kreisprozess Für kinetische Energie der ungeordneten Bewegung gilt: Frage: Frage: Wie kann man mit U Arbeit

Mehr

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet

Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Kreisprozesse und Wärmekraftmaschinen: Wie ein Gas Arbeit verrichtet Unterrichtsmaterial - schriftliche Informationen zu Gasen für Studierende - Folien Fach Schultyp: Vorkenntnisse: Bearbeitungsdauer Thermodynamik

Mehr

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008

Thermodynamik. Basics. Dietmar Pflumm: KSR/MSE. April 2008 Thermodynamik Basics Dietmar Pflumm: KSR/MSE Thermodynamik Definition Die Thermodynamik... ist eine allgemeine Energielehre als Teilgebiet der Chemie befasst sie sich mit den Gesetzmässigkeiten der Umwandlungsvorgänge

Mehr

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau

Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau Aufgaben zur Vorlesung - Agrarwirtschaft / Gartenbau. Formen Sie die Größengleichung P = in eine Zahlenwertgleichung t /kj P /= α um und bestimmen Sie die Zahl α! t /h. Drücken Sie die Einheit V durch

Mehr

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2

D = 10 mm δ = 5 mm a = 0, 1 m L = 1, 5 m λ i = 0, 4 W/mK ϑ 0 = 130 C ϑ L = 30 C α W = 20 W/m 2 K ɛ 0 = 0, 8 ɛ W = 0, 2 Seminargruppe WuSt Aufgabe.: Kabelkanal (ehemalige Vordiplom-Aufgabe) In einem horizontalen hohlen Kabelkanal der Länge L mit einem quadratischen Querschnitt der Seitenlänge a verläuft in Längsrichtung

Mehr

Temperatur Wärme Thermodynamik

Temperatur Wärme Thermodynamik Temperatur Wärme Thermodynamik Stoffwiederholung und Übungsaufgaben... 2 Lösungen... 33 Thermodynamik / 1 Einführung: Temperatur und Wärme Alle Körper haben eine innere Energie, denn sie sind aus komplizierten

Mehr

9.Vorlesung EP WS2009/10

9.Vorlesung EP WS2009/10 9.Vorlesung EP WS2009/10 I. Mechanik 5. Mechanische Eigenschaften von Stoffen a) Deformation von Festkörpern b) Hydrostatik, Aerostatik c) Oberflächenspannung und Kapillarität 6. Hydro- und Aerodynamik

Mehr

erster Hauptsatz der Thermodynamik,

erster Hauptsatz der Thermodynamik, 1.2 Erster Hautsatz der hermodynamik Wir betrachten ein thermodynamisches System, dem wir eine beliebige Wärmemenge δq zuführen, und an dem wir eine Arbeit da leisten wollen. Werden umgekehrt dem System

Mehr

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l

Inhaltsverzeichnis XVII. Häufig verwendete Formelzeichen. 1 Allgemeine Grundlagen l Inhaltsverzeichnis Häufig verwendete Formelzeichen XVII 1 Allgemeine Grundlagen l 1.1 Thermodynamik 1 1.1.1 Von der historischen Entwicklung der Thermodynamik 1 1.1.2 Was ist Thermodynamik? 9 1.2 System

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 2010 17. 21. Mai 2010 Physik für Bauingenieure Übungsblatt 5 Gruppenübungen 1. Wärmepumpe Eine Wärmepumpe hat eine Leistungszahl

Mehr

9.10.2 Der Carnotsche Kreisprozess

9.10.2 Der Carnotsche Kreisprozess 9. Thermodynamik 99 9.9 Der erste Hauptsatz 9.10 Der zweite Hauptsatz 9101 9.10.1 Thermodynamischer Wirkungsgrad 9.10.2 Der Carnotsche Kreisprozess 9.9 Der erste Hauptsatz Für kinetische Energie der ungeordneten

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C.

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik II - Lösung 04. Aufgabe 6: (1): p 1 = 1 bar, t 1 = 15 C. Aufgabe 6: 2) 3) ): p = bar, t = 5 C 2): p 2 = 5 bar ) 3): p 3 = p 2 = 5 bar, t 3 = 5 C Die skizzierte Druckluftanlage soll V3 = 80 m 3 /h Luft vom Zustand 3) liefern. Dazu wird Luft vom Zustand ) Umgebungszustand)

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Für den Fall, dass die Kraft während des Vorgangs konstant wirkt, lässt sich das Integral leicht berechnen. Man erhält:

Für den Fall, dass die Kraft während des Vorgangs konstant wirkt, lässt sich das Integral leicht berechnen. Man erhält: 3 Der erste Hauptsatz der Thermodynamik Der Erste Hauptsatz der Thermodynamik bringt das Prinzip von der Erhaltung der Energie zum Ausdruck. Der Erfahrungssatz der Mechanik, der sich auf kinetische und

Mehr

Thermodynamik I SS 2010

Thermodynamik I SS 2010 1 Thermodynamik I SS 2010 Prof. Dr.-Ing. G. Wilhelms Größen/Größengleichungen (GR) GR 1 - Größen, Größengleichungen Basisgrößen (BGR) BGR 1 - Masse, Stoffmenge BGR 2 - Länge, Längenausdehnung BGR 3 - Temperatur

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 3. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 3 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Grenzflächen-Phänomene

Grenzflächen-Phänomene Grenzflächen-Phänomene Oberflächenspannung Betrachtet: Grenzfläche Flüssigkeit-Gas Kräfte Fl Fl grösser als Fl Gas im Inneren der Flüssigkeit: kräftefrei an der Oberfläche: resultierende Kraft ins Innere

Mehr

Kapitel 2 Thermodynamik

Kapitel 2 Thermodynamik Kapitel 2 hermodynami Dieses Kapitel soll eine urze Einführung in die hermodynami geben. Das Verständnis der hermodynami ist eine der wichtigsten Grundlagen, um Prozesse zu erlären, bei denen vorhandene

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Hans-Joachim Kretzschmar, Ingo Kraft Kleine Formelsammlung Technische Thermodynamik ISBN-10: 3-446-22882-9 ISBN-13: 978-3-446-22882-5 Inhaltsverzeichnis Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-22882-5

Mehr

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3

b ) den mittleren isobaren thermischen Volumenausdehnungskoeffizienten von Ethanol. Hinweis: Zustand 2 t 2 = 80 C = 23, kg m 3 Aufgabe 26 Ein Pyknometer ist ein Behälter aus Glas mit eingeschliffenem Stopfen, durch den eine kapillarförmige Öffnung führt. Es hat ein sehr genau bestimmtes Volumen und wird zur Dichtebestimmung von

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. September 2014 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ;

Erhöhung der inneren Energie durch Temperaturerhöhung um ΔT: 1. Hauptsatz (einfache Form): ΔU = ΔQ + ΔW ; 4.11. Innere Energie (ideals. Gas): U =!! nr Erhöhung der inneren Energie durch emperaturerhöhung um Δ: bei konstanten olumen (isochor): ΔU = C! Δ Differentiell: du = C v d δq=du=c d => d=δq/c 1. Hauptsatz

Mehr

U. Nickel Irreversible Volumenarbeit 91

U. Nickel Irreversible Volumenarbeit 91 U. Nickel Irreversible Volumenarbeit 91 geben, wird die bei unterschiedlichem Innen- und Außendruck auftretende Arbeit als irreversible Volumenarbeit irr bezeichnet. Die nachfolgend angegebene Festlegung

Mehr

Klausur zur Vorlesung. Thermodynamik

Klausur zur Vorlesung. Thermodynamik Institut für Thermodynamik 25. August 2010 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Übungsblatt 2 ( )

Übungsblatt 2 ( ) Experimentalphysik für Naturwissenschaftler Universität Erlangen Nürnberg SS 01 Übungsblatt (11.05.01) 1) Geschwindigkeitsverteilung eines idealen Gases (a) Durch welche Verteilung lässt sich die Geschwindigkeitsverteilung

Mehr

Temperatur. Gebräuchliche Thermometer

Temperatur. Gebräuchliche Thermometer Temperatur Wärme ist Form von mechanischer Energie Umwandlung Wärme mechanische Energie ist möglich! Thermometer Messung der absoluten Temperatur ist aufwendig Menschliche Sinnesorgane sind schlechte "Thermometer"!

Mehr

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt

Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung Ferienkurs Experimentalphysik 2 - Donnerstag-Übungsblatt 1 Aufgabe: Entropieänderung a) Ein Kilogramm Wasser bei = C wird in thermischen Kontakt mit einem Wärmereservoir bei

Mehr

Thermodynamik: Definition von System und Prozess

Thermodynamik: Definition von System und Prozess Thermodynamik: Definition von System und Prozess Unter dem System verstehen wir den Teil der elt, an dem wir interessiert sind. Den Rest bezeichnen wir als Umgebung. Ein System ist: abgeschlossen oder

Mehr

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert.

Der Zustand eines Systems ist durch Zustandsgrößen charakterisiert. Grundbegriffe der Thermodynamik Die Thermodynamik beschäftigt sich mit der Interpretation gegenseitiger Abhängigkeit von stofflichen und energetischen Phänomenen in der Natur. Die Thermodynamik kann voraussagen,

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 9. März 2015 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme

6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme 6. Energieumwandlungen als reversible und nichtreversible Prozesse 6. 1 Reversibel-isotherme Arbeitsprozesse 1. Hauptsatz für geschlossene Systeme Für isotherme reversible Prozesse gilt und daher mit der

Mehr

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3

Aufgaben zum Stirlingschen Kreisprozess Ein Stirling-Motor arbeite mit 50 g Luft ( M= 30g mol 1 )zwischen den Temperaturen = 350 C und T3 Aufgaben zum Stirlingschen Kreisrozess. Ein Stirling-Motor arbeite mit 50 g Luft ( M 0g mol )zwischen den emeraturen 50 C und 50 C sowie den olumina 000cm und 5000 cm. a) Skizzieren Sie das --Diagramm

Mehr

Energie, mechanische Arbeit und Leistung

Energie, mechanische Arbeit und Leistung Grundwissen Physik Klasse 8 erstellt am Finsterwalder-Gymnasium Rosenheim auf Basis eines Grundwissenskatalogs des Klenze-Gymnasiums München Energie, mechanische Arbeit und Leistung Mit Energie können

Mehr

Formel X Leistungskurs Physik WS 2005/2006

Formel X Leistungskurs Physik WS 2005/2006 Die Therodynaik ist die Lehre von der Energie. Sie lehrt Energieforen zu unterscheiden, sie zeigt deren Verknüfungen auf (Energiebilanz, 1. Hautsatz) und sie klärt die Bedingungen und Grenzen für die Uwandelbarkeit

Mehr

Thermodynamik. oder Website der Fachhochschule Osnabrück

Thermodynamik.  oder Website der Fachhochschule Osnabrück Thermodynamik Prof. Dr.-Ing. Matthias Reckzügel Vorlesung, Übung und Praktikum im 3. Semester für die Studiengänge: Maschinenbau Fahrzeugtechnik Maschinenbauinformatik Integrierte Produktentwicklung EMS

Mehr

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2

Leseprobe. Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer. PHYSIK in Aufgaben und Lösungen. ISBN (Buch): 978-3-446-43235-2 Leseprobe Hilmar Heinemann, Heinz Krämer, Peter Müller, Hellmut Zimmer PHYSIK in Aufgaben und Lösungen ISBN Buch: 978-3-446-4335- Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-4335-

Mehr

1. Aufgabe (18,5 Punkte)

1. Aufgabe (18,5 Punkte) TECHNISCHE UNIVERSITÄT MÜNCHEN LEHRSTUHL FÜR THERMODYNAMIK Prof. Dr.-Ing. T. Sattelmayer Prof. W. Polifke, Ph.D. Diplomvorprüfung Thermodynamik I Wintersemester 2008/2009 5. März 2009 Teil II: Wärmetransportphänomene

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

Kleine Formelsammlung Technische Thermodynamik

Kleine Formelsammlung Technische Thermodynamik Kleine Formelsammlung Technische Thermodynamik von Prof. Dr.-Ing. habil. Hans-Joachim Kretzschmar und Prof. Dr.-Ing. Ingo Kraft unter Mitarbeit von Dr.-Ing. Ines Stöcker 2., aktualisierte Auflage Fachbuchverlag

Mehr

Allgemeine Vorgehensweise

Allgemeine Vorgehensweise Allgemeine Vorgehensweise 1. Skizze zeichnen und Systemgrenze ziehen 2. Art des Systems festlegen (offen, geschlossen, abgeschlossen) und Eigenschaften charakterisieren (z.b. adiabat, stationär, ruhend...)

Mehr

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten

B H 0 H definieren, die somit die Antwort des Ordnungsparameters auf eine Variation der dazu konjugierten In Anwesenheit eines äußeren magnetischen Felds B entsteht in der paramagnetischen Phase eine induzierte Magnetisierung M. In der ferromagnetischen Phase führt B zu einer Verschiebung der Magnetisierung

Mehr

Physik 2 (B.Sc. EIT) 2. Übungsblatt

Physik 2 (B.Sc. EIT) 2. Übungsblatt Institut für Physik Werner-Heisenberg-Weg 9 Fakultät für Elektrotechnik 85577 München / Neubiberg Universität der Bundeswehr München / Neubiberg Prof Dr H Baumgärtner Übungen: Dr-Ing Tanja Stimpel-Lindner,

Mehr

Hydr. Druck, Luftdruck

Hydr. Druck, Luftdruck Hydr. Druck, Luftdruck Den Begriff Druck verwenden wir oft im täglichen Leben. Wir hören im Zusammenhang mit den Wettervorhersagen täglich vom. oder. (z.b.oder..). Wir haben einen bestimmten.in unseren

Mehr

Thermodynamik des Kraftfahrzeugs

Thermodynamik des Kraftfahrzeugs Cornel Stan Thermodynamik des Kraftfahrzeugs Mit 199 Abbildungen Inhaltsverzeichnis Liste der Formelzeichen... XV 1 Grundlagen der Technischen Thermodynamik...1 1.1 Gegenstand und Untersuchungsmethodik...1

Mehr

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18)

Physik 2 ET, SoSe 2013 Aufgaben mit Lösung 2. Übung (KW 17/18) 2. Übung (KW 17/18) Aufgabe 1 (T 3.1 Sauerstoffflasche ) Eine Sauerstoffflasche, die das Volumen hat, enthält ab Werk eine Füllung O 2, die bei Atmosphärendruck p 1 das Volumen V 1 einnähme. Die bis auf

Mehr

Technische Thermodynamik / Energielehre. 3. Band eines Kompendiums zur Lehrveranstaltung. Formelsammlung

Technische Thermodynamik / Energielehre. 3. Band eines Kompendiums zur Lehrveranstaltung. Formelsammlung Fakultät Maschinenwesen Institut für Energietechnik Technische Thermodynamik / Energielehre 3. Band eines Kompendiums zur Lehrveranstaltung Formelsammlung für das Grundstudium Maschinenbau, Verfahrenstechnik

Mehr

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2014 Kapitel 5. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2014 Kapitel 5 Prof. Dr.-Ing. Heinz Pitsch Kapitel 5: Übersicht 5. Energieumwandlungen als reversible und nichtreversible Prozesse 5.1 Reversibel-isotherme Arbeitsprozesse

Mehr

Übungsaufgaben Physikalische Chemie

Übungsaufgaben Physikalische Chemie Übungsaufgaben Physikalische Chemie A1. Welchen Druck übt gasförmiger Stickstoff mit einer Masse von 2,045 g bei 21 C in einem Gefäß mit einem Volumen von 2,00 l aus? A2. In Haushaltgeräten zur Erzeugung

Mehr

Physikalische Chemie: Kreisprozesse

Physikalische Chemie: Kreisprozesse Physikalische Chemie: Kreisprozesse Version vom 29. Mai 2006 Inhaltsverzeichnis 1 Diesel Kreisprozess 2 1.1 Wärmemenge Q.................................. 2 1.2 Arbeit W.....................................

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 3, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 3, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 3, Teil 2: Übersicht 3 Energiebilanz 3.3 Bilanzgleichungen 3.3.1 Massebilanz 3.3.2 Energiebilanz und 1. Hauptsatz

Mehr

Gase, Flüssigkeiten, Feststoffe

Gase, Flüssigkeiten, Feststoffe Gase, Flüssigkeiten, Feststoffe Charakteristische Eigenschaften der Aggregatzustände Gas: Flüssigkeit: Feststoff: Nimmt das Volumen und die Form seines Behälters an. Ist komprimierbar. Fliesst leicht.

Mehr

Elektrische Energie, Arbeit und Leistung

Elektrische Energie, Arbeit und Leistung Elektrische Energie, Arbeit und Leistung Wenn in einem Draht ein elektrischer Strom fließt, so erwärmt er sich. Diese Wärme kann so groß sein, dass der Draht sogar schmilzt. Aus der Thermodynamik wissen

Mehr

(ohne Übergang der Wärme)

(ohne Übergang der Wärme) Adiabatische Zustandsänderungen Adiabatische Zustandsänderungen δq= 0 (ohne Übergang der Wärme) Adiabatischer Prozess (Q = const) Adiabatisch = ohne Wärmeaustausch, Temperatur ändert sich bei Expansion/Kompression

Mehr

Klausur zur Vorlesung Thermodynamik

Klausur zur Vorlesung Thermodynamik Institut für Thermodynamik 23. August 2013 Technische Universität Braunschweig Prof. Dr. Jürgen Köhler Klausur zur Vorlesung Thermodynamik Für alle Aufgaben gilt: Der Rechen- bzw. Gedankengang muss stets

Mehr

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14)

Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Ergänzungsübungen zur Physik für Nicht-Physikerinnen und Nicht-Physiker(SoSe 14) Prof. W. Meyer Übungsgruppenleiter: A. Berlin & J. Herick (NB 2/28) Ergänzung E Flüssigkeiten In der Hydrostatik wird das

Mehr

1 Grundwissen Energie. 2 Grundwissen mechanische Energie

1 Grundwissen Energie. 2 Grundwissen mechanische Energie 1 Grundwissen Energie Die physikalische Größe Energie E ist so festgelegt, dass Energieerhaltung gilt. Energie kann weder erzeugt noch vernichtet werden. Sie kann nur von einer Form in andere Formen umgewandelt

Mehr

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen

Übung 2. Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Ziel: Bedeutung/Umgang innere Energie U und Enthalpie H verstehen Wärmekapazitäten isochore/isobare Zustandsänderungen Standardbildungsenthalpien Heizwert/Brennwert adiabatische Flammentemperatur WS 2013/14

Mehr

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig

Thermodynamik. Eine Einführung in die Grundlagen. Von. Dr.-Ing. Hans Dieter Baehr. o. Professor an der Technischen Hochschule Braunschweig Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Von Dr.-Ing. Hans Dieter Baehr o. Professor an der Technischen Hochschule Braunschweig Mit 325 Abbildungen und zahlreichen

Mehr

Physik für Bauingenieure

Physik für Bauingenieure Fachbereich Physik Prof. Dr. Rudolf Feile Dipl. Phys. Markus Domschke Sommersemster 010 10. 14. Mai 010 Physik für Bauingenieure Übungsblatt 4 1. Wie viele Luftmoleküle befinden sich im Hörsaal Gruppenübungen

Mehr

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch

Thermodynamik Prof. Dr.-Ing. Peter Hakenesch peter.hakenesch@hm.edu www.lrz-muenchen.de/~hakenesch herodynaik _ herodynaik Prof. Dr.-Ing. Peter Hakenesch eter.hakenesch@h.edu www.lrz-uenchen.de/~hakenesch _ herodynaik Einleitung Grundbegriffe 3 Systebeschreibung 4 Zustandsgleichungen 5 Kinetische Gastheorie

Mehr

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage

Hans Dieter Baehr. Thermodynamik. Eine Einführung in die Grundlagen und ihre technischen Anwendungen. Vierte, berichtigte Auflage Hans Dieter Baehr Thermodynamik Eine Einführung in die Grundlagen und ihre technischen Anwendungen Vierte, berichtigte Auflage Mit 271 Abbildungen und zahlreichen Tabellen sowie 80 Beispielen Springer-Verlag

Mehr

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 1. Einleitende Fragen

Institut für Thermodynamik Prof. Dr. rer. nat. M. Pfitzner Thermodynamik I - Lösung 1. Einleitende Fragen Einleitende Fragen 1. Was versteht man unter Thermodynamik? Thermodynamik ist die Lehre von den Energieumwandlungen und den Zusammenhängen zwischen den Eigenschaften der Stoffe. 2. Erklären Sie folgende

Mehr