1 x. Eine kurze Erinnerung an die Definition der Betragsfunktion:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1 x. Eine kurze Erinnerung an die Definition der Betragsfunktion:"

Transkript

1 Wie rechne ich mit Ungleichungen? Die do s und don t s mit Beispielen aus der Miniklausur Lukas Steenvoort Addition und Subtraktion 1 ) Dies funktioniert ähnlich wie bei Gleichungen addieren wir denselben Ausdruck auf beiden Seiten, ist dies eine Äquivalenzumformung der Ungleichung, verändert ihren Wert also nicht. > + > + 7 > 7 > Multiplikation und Division ) Hier ist Vorsicht geboten multiplizieren wir beide Seiten mit derselben positiven Zahl, ändert sich die Richtung des Ungleichheitszeichens nicht. Multiplikation mit einer negativen Zahl hingegen dreht das Ungleichheitszeichen um! Multiplizieren wir mit einem Ausdruck, dessen Vorzeichen wir nicht kennen, müssen wir eine Fallunterscheidung durchführen! > 8 > < : ) 6 andere Möglichkeit: > + > : > Subtraktion von ist nichts anderes als Addition von. Division durch ist nichts anderes als Multiplikation mit 1.

2 Beträge Eine kurze Erinnerung an die Definition der Betragsfunktion: = für 0, für < 0. Der Betrag von R ist stets nichtnegativ und ist der Abstand der Zahl zur Zahl 0 auf der reellen Zahlengerade bzw. weniger formell ausgedrückt die Zahl, die herauskommt, wenn bei das Vorzeichen wegfällt Für den Betrag sollte man sich merken: < < < < < ). 1 1 < < < 3 1 < und 3 < < : und 1 < : < und 1 < Quadrate und Wurzeln, Teil 1: Quadratwurzeln Auch hier ist deutlich mehr Vorsicht geboten als beim Umgang mit Gleichungen. Zunächst sei angemerkt, dass Ausdrücke unter Quadratwurzeln nur dann ausgewertet werden können, wenn sie nichtnegativ sind. Was ist mit den kompleen Zahlen? Wir haben doch gelernt, dass 1 = i ist, mögen manche nun denken. Leider ist dies nicht so einfach. Wenn wir Gleichungen über den kompleen Zahlen lösen, ist 1 = i natürlich vollkommen plausibel. Leider funktioniert dieser Ansatz bei Ungleichungen nicht. Der Grund dafür ist recht simpel: Ungleichungen machen nur dann Sinn, wenn auf beiden Seiten Elemente eines angeordneten Körpers stehen. Die reellen Zahlen sind ein Beispiel für einen solchen Körper. Wir können stets zwei reelle Zahlen vergleichen und entscheiden, welche von beiden die größere ist. Auf den kompleen Zahlen eistiert jedoch keine solche Ordnung. Die Frage Welche Zahlen sind größer als i? ergibt keinen Sinn, da die kompleen Zahlen sich nicht anordnen lassen. Dies bitte nicht falsch verstehen es gibt durchaus Ungleichungen, in denen Ausdrücke mit kompleen Zahlen vorkommen; jedoch nur dann, wenn die Auswertung dieser Ausdrücke reelle Zahlen ergibt. Ist beispielsweise z C \ R eine Zahl, so können die Ausdrücke z, Rez) oder Imz) beispielsweise in einer Ungleichung auftreten sie sind nämlich reell. Hingegen darf eine Ungleichung wie z < nicht formuliert werden sie ergibt keinen Sinn.

3 Zurück zum ursprünglichen Thema wie löse ich Ungleichungen mit Quadratwurzeln? Wir sollten uns daran erinnern, dass < < nur für nichtnegative und gilt. Für beliebige, R gilt allgemein nur < <. Wir müssen also vorsichtig sein, wenn wir versuchen, aus beiden Seiten der Ungleichung die Quadratwurzel zu ziehen! Aber besprechen wir eins nach dem anderen zunächst: Ungleichungen der Form < liefern uns zwei Einschränkungen: einerseits muss < sein, andererseits aber auch < + 1 < + 1 < und und und + 1 < 1 1 < Ähnlich gehen wir bei Ungleichungen mit Quadratwurzeln auf beiden Seiten vor: 16 < 16 < 16 < und und < 1 : 3 und 16 : und : < und 16 und Keine Lösung haben Ungleichungen der Form < mit < 0: 1 < < < 1 und Defn. der Wurzel)

4 Quadrate und Wurzeln, Teil : Quadratische Ungleichungen Betrachten wir nun quadratische Ungleichungen. Die bevorzugte Vorgehensweise ist die quadratische Ergänzung, die bekannt sein sollte, die ich aber nochmal kurz erläutern werde: Die Hauptidee der quadratischen Ergänzung, ist es, einen Term der Form a + b + c zwecks einfacherer Rechnung mithilfe der 1. oder. binomischen Formel in die Form a ± d) + e zu überführen. Binomische Ausdrücke haben stets die Form A ± B) = A ± AB + B. Nehmen wir nun A = an, können wir die Gleichung AB = b nach B auflösen und somit das fehlende Quadrat B finden, das den Term zu einem binomischen Ausdruck ergänzt. Beispiel. Möchten wir 3 + quadratisch ergänzen, gehen wir wie folgt vor: Es ist 3 + = 3 ) +. Mit B = 3 folgt B = 3. Wir addieren B B, dies ist 0 und ändert den Wert nicht: 3 ) + = 3 ) ) 3 3 ) + +. Ziehen wir nun B aus der Klammer, so hat die Klammer die Gestalt A ± AB + B. 3 ) ) 3 3 ) + + = 3 ) ) ) Nun schreiben wir die Klammer als binomischen Quadratterm und rechnen den Rest aus: 3 ) ) ) = 3 ) Anmerkung. Auch wenn ich dies persönlich nicht empfehlen würde, da es schwieriger anzuwenden ist, können wir uns die quadratische Ergänzung auch als allgemeine Formel merken: a + b + c = a + ba ) + c = a + b ) ) ) b b a + + c a a = a + b ) ) ) b b a + a + c a a = a + b ) b a a a + c = a + b ) ) + c b. a a

5 Die andere Vorgehensweise, die per se nicht falsch, aber weniger elegant ist, besteht aus Nullstellenbestimmung mit der p, q-formel und Untersuchung des Vorzeichens von a. Wichtig ist hierbei uns interessieren nur reelle Nullstellen! Komplee Nullstellen sind beim Lösen quadratischer Ungleichungen nicht von Belang, da wir, wie zuvor besprochen, Ungleichungen mit kompleen Zahlen nicht auswerten können, da diese keinen Sinn haben. Betrachten wir nun beide Lösungsmöglichkeiten am Beispiel der Ungleichung > Möglichkeit 1: Quadratische Ergänzung. Wir ergänzen und stellen das Binom auf die eine und die Konstante auf die andere Seite: > 3 + 7) > ) ) ) > ) 17 > ) > ) > > : 3 Betragsstriche! Wichtig: Es gilt zwar a < b b < a < b, aber a < b ergibt zwei oder -Ungleichungen. + 7 > > 9 oder + 7 ) > > 9 7 oder 7 > > 1 oder 8 > Die Lösungsmenge ist somit gegeben durch R < 8 > 1} =, 8) 1, ).

6 > Möglichkeit : Nullstellenbestimmung. Zur Erinnerung: Die p, q-formel folgt direkt durch quadratische Ergänzung und besagt: + p + q = 0 = p ± p ) q Wir behandeln die Ungleichung zunächst als Gleichung und lösen für : = = 0 : = 0 p, q-formel = 7 ± 7 ) 8) p, q-formel = 7 ± = 7 ± 81 = 7 ± 9 = 8 = 1 Da quadratische Funktionen wie alle reellen Polnome) stetig sind, erhalten wir genau drei Intervalle, auf denen das Vorzeichen jeweils gleich ist:, 8), 8, 1) und 1, ). Untersuchen wir nun die Vorzeichen von auf diesen Intervallen: Intervall I I Funktionswert Vorzeichen auf I, 8) = = 86 > 0 positiv 8, 1) = < 0 negativ 1, ) = 1 + = 30 > 0 positiv Da > > ist positiv) gilt, erhalten wir auch mit dieser Methode offensichtlich die Lösungsmenge, 8) 1, ). Zusammenfassung. Während wir in der Schule eher die p, q-formel als die quadratische Ergänzung angewandt haben, ist letztere für Ungleichungen offensichtlich die elegantere und bevorzugte Methode.

7 Die Aufgabe der Miniklausur Version Viel Erfolg! + 3 > > + 3) + 3 An dieser Stelle müssen wir eine Fallunterscheidung durchführen, da Multiplikation mit neg. Zahlen die Ungleichung umkehrt und wir die Vorzeichen von und +3 nicht kennen. Fall VZ von VZ von < 3 3 < < < + + In Fall 1 sind beide Vorzeichen negativ, also wird die Ungleichung zweimal umgekehrt, bleibt also so wie sie ist; in Fall 3 sind beide VZ positiv, also ändert sich auch hier nichts: + 3 > ) + 3) > > 9 6 > 9 : 6 > 3. Im Fall 1 steht > 3 im Widerspruch zur Voraussetzung < 3, also erhalten wir keine Lösungen. Im Fall 3 ist > 3 offenbar für alle > 0 wahr, also sind alle > 0 Lösungen. Im Fall ist nur einer der beiden Faktoren negativ, also wird die Ungleichung umgekehrt: + 3 > + 3) ) < analog zu Fall 1 & 3 < 3. Somit erfüllen alle 3 < < 0 mit < 3, also alle 3 < < 3 die Ungleichung. Insgesamt erhalten wir nun die Lösung 3, 3) 0, ) = R 3 < < 3 > 0}.

8 Die Aufgabe der Miniklausur Version Viel Erfolg! 3 3 > > 3 3) 3 An dieser Stelle müssen wir eine Fallunterscheidung durchführen, da Multiplikation mit neg. Zahlen die Ungleichung umkehrt und wir die Vorzeichen von und 3 nicht kennen. Fall VZ von VZ von 3 1 < 0 0 < < < + + Im Fall 1 sind beide Vorzeichen negativ, also wird die Ungleichung zweimal umgekehrt, bleibt also so wie sie ist; im Fall 3 sind beide VZ positiv, also ändert sich auch hier nichts: > 3 3 3) 3) > 3 1 > > 1 : > 1. Im Fall 1 steht > 1 im Widerspruch zur Voraussetzung < 0, also erhalten wir keine Lösungen. Im Fall 3 sind alle > 3 mit > 1 und somit natürlich alle > 1 Lösungen. Im Fall ist nur einer der beiden Faktoren negativ, also wird die Ungleichung umgekehrt: > 3 3 3) 3) < 3 analog zu Fall 1 & 3 < 1. Die Aussage < 1 ist für alle 0 < < 3 wahr, also lösen alle 0 < < 3 die Ungleichung. Insgesamt erhalten wir nun die Lösung 0, 3) 1, ) = R 0 < < 3 > 1}.

9 Die Aufgabe der Miniklausur Version Viel Erfolg! 30 6 > > ) An dieser Stelle müssen wir eine Fallunterscheidung durchführen, da Multiplikation mit negativen Zahlen die Ungleichung umkehrt und wir das Vorzeichen von nicht kennen. Fall VZ von 1 < < + Im Fall 1 ist das Vorzeichen negativ, also wird die Ungleichung umgekehrt: 6 > ) 6 < + 7 quadr. Ergänzung) + 1 < 3 1) < 3. An dieser Stelle können wir bereits aufhören, da der Ausdruck 1) offenbar für jedes R nichtnegativ ist und somit nicht kleiner als 3 sein kann: wir erhalten keine Lösungen. Im Fall ist das Vorzeichen positiv, also bleibt die Ungleichung so, wie sie ist: 6 > ) 6 > analog zu Fall 1 1) > 3. An dieser Stelle können wir bereits aufhören, da der Ausdruck 1) offenbar für jedes R nichtnegativ ist und somit stets größer als 3 ist. Somit sind alle > Lösungen. Insgesamt erhalten wir also die Lösung, ) = R > }. Anmerkung. Wir können auch die Nullstellenmethode anstatt quadratischer Ergänzung benutzen: + 1 = 3 + = 0 = ± ) = 1 ± 3; somit hat die quadratische Funktion keine reellen Nullstellen 3 und liegt, da der Leitkoeffizient positiv ist, komplett über der -Achse, ist also auf ganz R strikt positiv somit ergeben sich auch hier im Fall 1 keine Lösungen da + negativ sein müsste) und im Fall alle >. 3 Auf keinen Fall ist hieraus etwas wie > 1 + i 3 zu folgern dies ergibt nämlich keinen Sinn!

10 Die Aufgabe der Miniklausur Version Viel Erfolg! > > 0 + 3) + 3 An dieser Stelle müssen wir eine Fallunterscheidung durchführen, da Multiplikation mit negativen Zahlen die Ungleichung umkehrt und wir das Vorzeichen von +3 nicht kennen. Fall VZ von < 3 3 < + Im Fall 1 ist das Vorzeichen negativ, also wird die Ungleichung umgekehrt: > ) < 0 : < 0. Die Aussage < 0 ist offenbar für alle < 3 wahr, also lösen alle < 3 die Ungleichung. Im Fall ist das Vorzeichen positiv, also bleibt die Ungleichung so, wie sie ist: > ) > 0 : > 0. Somit lösen alle > 3 mit > 0 und somit genau alle > 0 die Ungleichung. Insgesamt erhalten wir nun die Lösung, 3) 0, ) = R 3 < > 0}.

Zahlen und Funktionen

Zahlen und Funktionen Kapitel Zahlen und Funktionen. Mengen und etwas Logik Aufgabe. : Kreuzen Sie an, ob die Aussagen wahr oder falsch sind:. Alle ganzen Zahlen sind auch rationale Zahlen.. R beschreibt die Menge aller natürlichen

Mehr

Mathematischer Vorbereitungskurs für Ökonomen

Mathematischer Vorbereitungskurs für Ökonomen Mathematischer Vorbereitungskurs für Ökonomen Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Ungleichungen Inhalt: 1. Grundlegendes 2. Lineare Ungleichungen 3. Ungleichungen mit

Mehr

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen):

Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Wiederholung von Äquivalenzumformungen (Lösen von Ungleichungen): Prof. U. Stephan WiIng 1. Wiederholung von Äquivalenzumformungen (Lösen linearer Gleichungen): Bitte lösen Sie die folgenden Aufgaben und prüfen Sie, ob Sie Lücken dabei haben. Bestimmen Sie jeweils die

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. ISBN (Buch):

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. ISBN (Buch): Leseprobe Michael Knorrenschild Vorkurs Mathematik Ein Übungsbuch für Fachhochschulen ISBN (Buch): 978-3-446-43798-2 ISBN (E-Book): 978-3-446-43628-2 Weitere Informationen oder Bestellungen unter http://www.hanser-fachbuch.de/978-3-446-43798-2

Mehr

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen ISBN:

Leseprobe. Michael Knorrenschild. Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen ISBN: Leseprobe Michael Knorrenschild Vorkurs Mathematik Ein Übungsbuch für Fachhochschulen ISBN: 978-3-446-42066-3 Weitere Informationen oder Bestellungen unter http://www.hanser.de/978-3-446-42066-3 sowie

Mehr

6 Gleichungen und Gleichungssysteme

6 Gleichungen und Gleichungssysteme 03.05.0 6 Gleichungen und Gleichungssysteme Äquivalente Gleichungsumformungen ( ohne Änderung der Lösungsmenge ).) a = b a c = b c Addition eines beliebigen Summanden c.) a = b a - c = b - c Subtraktion

Mehr

J Quadratwurzeln Reelle Zahlen

J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen J Quadratwurzeln Reelle Zahlen 1 Quadratwurzeln Ein Quadrat habe einen Flächeninhalt von 64 cm. Will man wissen, wie lang die Seiten des Quadrates sind, so muss man herausfinden,

Mehr

Wirtschaftsmathematik: Mathematische Grundlagen

Wirtschaftsmathematik: Mathematische Grundlagen Wirtschaftsmathematik: Mathematische Grundlagen 1. Zahlen 2. Potenzen und Wurzeln 3. Rechenregeln und Vereinfachungen 4. Ungleichungen 5. Intervalle 6. Beträge 7. Lösen von Gleichungen 8. Logarithmen 9.

Mehr

Gleichungen, Ungleichungen, Beträge

Gleichungen, Ungleichungen, Beträge KAPITEL 2 Gleichungen, Ungleichungen, Beträge Man bestimme alle reellen Lösungen der Gleichung x + 2 x 2 4 = 1. Nach Multiplikation beider Seiten mit x 2 4 ergibt sich die quadratische Gleichung x + 2

Mehr

Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. Bearbeitet von Michael Knorrenschild

Vorkurs Mathematik. Ein Übungsbuch für Fachhochschulen. Bearbeitet von Michael Knorrenschild Vorkurs Mathematik Ein Übungsbuch für Fachhochschulen Bearbeitet von Michael Knorrenschild 1. Auflage 2004. Buch. 176 S. Hardcover ISBN 978 3 446 22818 4 Format (B x L): 14,6 x 21,2 cm Gewicht: 259 g Weitere

Mehr

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren

Wurzelgleichungen. 1.1 Was ist eine Wurzelgleichung? 1.2 Lösen einer Wurzelgleichung. 1.3 Zuerst die Wurzel isolieren 1.1 Was ist eine Wurzelgleichung? Wurzelgleichungen Beispiel für eine Wurzelgleichung Eine Wurzelgleichung ist eine Gleichung bei der in mindestens einem Radikanten (Term unter der Wurzel) die Unbekannte

Mehr

Quadratische Ungleichungen

Quadratische Ungleichungen Quadratische Ungleichungen W. Kippels 7. Oktober 014 Inhaltsverzeichnis 1 Einleitung 3 Lösungsprinzip 3 3 Verdeutlichung an zwei Beispielen 5 3.1 Beispiel 1................................... 5 3. Beispiel...................................

Mehr

Zahlen und elementares Rechnen

Zahlen und elementares Rechnen und elementares Rechnen Christian Serpé Universität Münster 7. September 2011 Christian Serpé (Universität Münster) und elementares Rechnen 7. September 2011 1 / 51 Gliederung 1 2 Elementares Rechnen 3

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 2. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8. Semester ARBEITSBLATT 8 DIE REELLEN ZAHLEN Bisher kennen wir bereits folgende Zahlenbereiche: N Natürliche Zahlen Z Ganze Zahlen Q Rationale Zahlen Bei

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 4. Semester ARBEITSBLATT 5 WURZELGLEICHUNGEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 4. Semester ARBEITSBLATT 5 WURZELGLEICHUNGEN ARBEITSBLATT 5 WURZELGLEICHUNGEN Definition: Gleichungen, in denen eine Variable unter dem Wurzelzeichen auftritt, nennt man Wurzelgleichungen. Das Rechnen mit diesen Gleichungen können wir nach der Anzahl

Mehr

Reelle Zahlen, Gleichungen und Ungleichungen

Reelle Zahlen, Gleichungen und Ungleichungen 9 2. Vorlesung Reelle Zahlen, Gleichungen und Ungleichungen 4 Zahlenmengen und der Körper der reellen Zahlen 4.1 Zahlenmengen * Die Menge der natürlichen Zahlen N = {0,1,2,3,...}. * Die Menge der ganzen

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN ARBEITSBLATT 11 GLEICHUNGEN UND ÄQUIVALENZUMFORMUNGEN Mathematische Gleichungen ergeben sich normalerweise aus einem textlichen Problem heraus. Hier folgt nun ein zugegebenermaßen etwas künstliches Problem:

Mehr

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können:

Wiederholung. Diese Fragen sollten Sie ohne Skript beantworten können: Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet ein negativer Eponent? Wie kann man den Grad einer Wurzel noch darstellen? Wie werden Potenzen potenziert? Was bewirkt

Mehr

Zusammenfassung: Stichworte: Stellen Sie Ihre optimale Schriftgröße ein: Größere Schriftzeichen. 2x + 3 = 7. (1)

Zusammenfassung: Stichworte: Stellen Sie Ihre optimale Schriftgröße ein: Größere Schriftzeichen. 2x + 3 = 7. (1) 1 von 5 21.05.2015 14:30 Zusammenfassung: Eine Ungleichung ist die "Behauptung", dass ein Term kleiner, größer, kleiner-gleich oder größer-gleich einem andereren Term ist. Beim Auffinden der Lösungsmenge

Mehr

Stichwortverzeichnis. Symbole. Stichwortverzeichnis

Stichwortverzeichnis. Symbole. Stichwortverzeichnis Stichwortverzeichnis Stichwortverzeichnis Symbole ( ) (Runde Klammern) 32, 66 (Betragszeichen) 32 (Multiplikations-Zeichen) 31 + (Plus-Zeichen) 31, 69 - (Minus-Zeichen) 31, 69 < (Kleiner-als-Zeichen) 33,

Mehr

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=%

Basistext Lineare Gleichungssysteme. Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Basistext Lineare Gleichungssysteme Eine lineare Gleichung mit einer Unbekannten hat die allgemeine Form! #=% Mit zwei Unbekannten gibt es die allgemeine Form:! #+% '=( Gelten mehrere dieser Gleichungen

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

3.1. Die komplexen Zahlen

3.1. Die komplexen Zahlen 3.1. Die komplexen Zahlen Es gibt viele Wege, um komplexe Zahlen einzuführen. Wir gehen hier den wohl einfachsten, indem wir C R als komplexe Zahlenebene und die Punkte dieser Ebene als komplexe Zahlen

Mehr

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium

Gruber I Neumann. Erfolg in VERA-8. Vergleichsarbeit Mathematik Klasse 8 Gymnasium Gruber I Neumann Erfolg in VERA-8 Vergleichsarbeit Mathematik Klasse 8 Gymnasium . Zahlen Zahlen Tipps ab Seite, Lösungen ab Seite 0. Zahlen und Zahlenmengen Es gibt verschiedene Zahlenarten, z.b. ganze

Mehr

Schranken von Folgen

Schranken von Folgen Schranken von Folgen W. Kippels 30. März 2011 Inhaltsverzeichnis 1 Definitionen 2 2 Übungsaufgaben 2 2.1 Aufgabe 1................................... 2 2.2 Aufgabe 2...................................

Mehr

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5

Als Untersuchungsbeispiel diene die Funktion: f(x) = x 6x + 5 R. Brinkmann http://brinkmann-du.de Seite 07..009 Achsenschnittpunkte quadratischer Funktionen y P y ( 0 y ) s P ( 0) S y s f() P ( 0) s Bei der Betrachtung des Graphen in nebenstehender Abbildung fallen

Mehr

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch

Mathematikvorkurs. Fachbereich I. Sommersemester Elizaveta Buch Mathematikvorkurs Fachbereich I Sommersemester 2017 Elizaveta Buch Themenüberblick Montag Grundrechenarten und -regeln Bruchrechnen Binomische Formeln Dienstag Potenzen, Wurzeln und Logarithmus Summen-

Mehr

Mathe Leuchtturm Übungsleuchtturm 5.Kl.

Mathe Leuchtturm Übungsleuchtturm 5.Kl. 1 by Mathe Leuchtturm Übungsleuchtturm 5.Kl. 014 Übungskapitel Erforderlicher Wissensstand (->Stoffübersicht im Detail siehe auch Wissensleuchtturm der 5.Klasse) Verschiedene Lösungsmethoden von quadratischen

Mehr

Quadratische Ungleichungen lösen mit Hilfe von Äquivalenzumformungen (Übungsvideo)

Quadratische Ungleichungen lösen mit Hilfe von Äquivalenzumformungen (Übungsvideo) Arbeitsblätter zum Ausdrucken von sofatutor.com Quadratische Ungleichungen lösen mit Hilfe von Äquivalenzumformungen (Übungsvideo) 2 Gib an, wie du allgemein eine quadratische Ungleichung lösen kannst.

Mehr

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen

1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen Komplexe Zahlen Mathe I / 12.11.08 1. Definition der komplexen Zahlen Ziel: neuerliche Zahlbereichserweiterung, so dass auch Quadratwurzeln aus negativen Zahlen gezogen werden können (in nicht möglich!).

Mehr

Polynome und ihre Nullstellen

Polynome und ihre Nullstellen Polynome und ihre Nullstellen 29. Juli 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Explizite Berechnung der Nullstellen 2.1 Polynome vom Grad 0............................. 2.2 Polynome vom Grad 1.............................

Mehr

Mathematik I. Vorlesung 9. Die eulersche Zahl e

Mathematik I. Vorlesung 9. Die eulersche Zahl e Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 9 Die eulersche Zahl e Wir besprechen eine Beschreibung der sogenannten eulerschen Zahl e. Lemma 9.1. Die Intervalle I n = [a n,b n ],

Mehr

Betrags-Gleichungen und -Ungleichungen

Betrags-Gleichungen und -Ungleichungen Betrags-Gleichungen und -Ungleichungen W. Kippels 16. August 2014 Inhaltsverzeichnis 1 Grundlagen zu Beträgen 2 1.1 Gleichungen mit Beträgen.......................... 2 1.2 Ungleichungen mit Beträgen.........................

Mehr

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung.

Diplom Mathematiker Wolfgang Kinzner. 17. Oktober Technische Universität München. Die abc-formel. W. Kinzner. Problemstellung. Diplom Mathematiker Wolfgang Kinzner Technische Universität München 17. Oktober 2013 1 / 9 Inhaltsverzeichnis 1 2 / 9 Inhaltsverzeichnis 1 2 2 / 9 Inhaltsverzeichnis 1 2 3 2 / 9 Inhaltsverzeichnis 1 2

Mehr

Quadratische Funktion - Übungen

Quadratische Funktion - Übungen Quadratische Funktion - Übungen 1a) "Verständnisfragen" zu "Scheitel und Allgemeine Form" - mit Tipps. Teilweise: Trotz der Tipps nicht immer einfach! Wir haben die Formeln: Allgemeine Form: y = a x 2

Mehr

Bruchterme. Klasse 8

Bruchterme. Klasse 8 ALGEBRA Terme Bruchterme Teil Noch ohne Korrekturlesung! Klasse Datei Nr. Friedrich W. Buckel November 00 Geändert: Oktober 00 Internatsgymnasium Schloß Torgelow Inhalt DATEI. Werte berechnen. Definitionsbereiche

Mehr

1.3 Gleichungen und Ungleichungen

1.3 Gleichungen und Ungleichungen 1.3 Gleichungen und Ungleichungen Ein zentrales Thema der Algebra ist das Lösen von Gleichungen. Ganz einfach ist dies für sogenannte lineare Gleichungen a x = b Wenn hier a 0 ist, können wir beide Seiten

Mehr

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen

Komplexe Zahlen. Allgemeines. Definition. Darstellungsformen. Umrechnungen Komplexe Zahlen Allgemeines Definition Eine komplexe Zahl z x + y i besteht aus einem Realteil Re(z) x und einem Imaginärteil Im(z) y. Der Imaginärteil wird mit der Imaginären-Einheit i multipliziert.

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Alle aufgezeigten Lösungswege gelten für Gleichungen, die schon vereinfacht und zusammengefasst wurden. Es darf nur noch + vorhanden sein!!! (Also nicht + und auch nicht 3 ; bitte

Mehr

Ungleichungen. Franz Embacher

Ungleichungen. Franz Embacher mathe online Skripten http://www.mathe-online.at/skripten/ Ungleichungen Franz Embacher Fakultät für Mathematik der Universität Wien E-mail: franz.embacher@univie.ac.at WWW: http://homepage.univie.ac.at/franz.embacher/

Mehr

Online Vorlesung Wirtschaftswissenschaft. Gleichungen verstehen, umstellen und lösen. Fernstudium-Guide präsentiert. Mathe-Basics

Online Vorlesung Wirtschaftswissenschaft. Gleichungen verstehen, umstellen und lösen. Fernstudium-Guide präsentiert. Mathe-Basics Fernstudium-Guide präsentiert Online Vorlesung Wirtschaftswissenschaft Mathe-Basics Gleichungen verstehen, umstellen und lösen Dieses Werk ist urheberrechtlich geschützt. Jegliche unzulässige Form der

Mehr

( ) ( ). Dann heißt die Zahl

( ) ( ). Dann heißt die Zahl Der Euklidische Abstand Seite 1 von 6 Der Euklidische Abstand Der Abstand zweier Punkte P und Q in der Modellebene ist eine Zahl, die von den Koordinaten der Punkte abhängt. Der Term, mit dem die Berechnung

Mehr

Polynomiale Gleichungen

Polynomiale Gleichungen Vorlesung 5 Polynomiale Gleichungen Definition 5.0.3. Ein polynomiale Funktion p(x) in der Variablen x R ist eine endliche Summe von Potenzen von x, die Exponenten sind hierbei natürliche Zahlen. Wir haben

Mehr

Polynomgleichungen. Gesetzmäßigkeiten

Polynomgleichungen. Gesetzmäßigkeiten Polynomgleichungen Gesetzmäßigkeiten Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable x nur in der 1. Potenz, so spricht

Mehr

Die Umkehrung des Potenzierens ist das Logarithmieren.

Die Umkehrung des Potenzierens ist das Logarithmieren. Die Umkehrung des Potenzierens ist das Logarithmieren. Gilt a x = b, a,b > 0, a 1, so heißt x der Logarithmus von b zur Basis a. Bezeichnung: x = log a (b). Manchmal lassen wir die Angabe der Basis auch

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

Lineare Funktionen. Die lineare Funktion

Lineare Funktionen. Die lineare Funktion 1 Die lineare Funktion Für alle m, t, aus der Zahlenmenge Q heißt die Funktion f: x m x + t lineare Funktion. Die Definitionsmenge ist Q (oder je nach Zusammenhang ein Teil davon). Der Graph der linearen

Mehr

01. Zahlen und Ungleichungen

01. Zahlen und Ungleichungen 01. Zahlen und Ungleichungen Die natürlichen Zahlen bilden die grundlegendste Zahlenmenge, die durch das einfache Zählen 1, 2, 3,... entsteht. N := {1, 2, 3, 4,...} (bzw. N 0 := {0, 1, 2, 3, 4,...}) Dabei

Mehr

Kurze Motivation warum quadratische Gleichungen

Kurze Motivation warum quadratische Gleichungen Quadratische Gleichungen Quadratische Gleichungen sind die nächste Stufe nach den linearen Gleichungen und den gebrochen rationalen Gleichungen. Auch diese Art von Gleichungen gibt es in verschiedenen

Mehr

Modul quadratische Gleichungen

Modul quadratische Gleichungen Modul quadratische Gleichungen Quadratische Gleichungen sind die nächste Stufe nach den linearen Gleichungen und den gebrochen rationalen Gleichungen. Auch diese Art von Gleichungen gibt es in verschiedenen

Mehr

x 4, t 3t, y 2y y 4, 5z 3z 1 2z 4, usw. Jede quadratische Gleichung kann durch elementare Umformungen auf die Form

x 4, t 3t, y 2y y 4, 5z 3z 1 2z 4, usw. Jede quadratische Gleichung kann durch elementare Umformungen auf die Form 14 14.1 Einführung und Begriffe Gleichungen, in denen die Unbekannte in der zweiten Potenz vorkommt, heissen quadratische Gleichungen oder Gleichungen zweiten Grades. Beispiele: 4, t 3t, y y y 4, 5z 3z

Mehr

Lösung: Serie 2 - Komplexe Zahlen I

Lösung: Serie 2 - Komplexe Zahlen I Dr. Meike Akveld HS 05. (Induktion) : Serie - Komplexe Zahlen I a) Zeigen Sie die Ungleichung von Bernoulli: Für alle x > und n N gilt: b) Zeigen Sie für alle n N: ( + x) n + nx. n n, wobei a b bedeutet,

Mehr

Lösen von Gleichungen mittels Ungleichungen

Lösen von Gleichungen mittels Ungleichungen Lösen von Gleichungen mittels Ungleichungen. März 00 Die Aufgaben sind mit Schwierigkeitsstufen leicht, mittel, schwer markiert. Aufgabe (leicht) Ermittle alle nichtnegativen reellen Zahlen a, b, c, für

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Grundlage für das Lösen von Quadratischen Gleichungen ist die Lösungsformel, auch als p-q-formel bekannt. Diese Formel bezieht sich auf die Quadratische Gleichung in Normalform:

Mehr

Betragsungleichungen

Betragsungleichungen GS -..5 - h_betragsungl.mcd Betragsungleichungen Definition: Betrag einer Zahl: a = a if a> if a = a if a< Betrag eines Terms: a b = ( a b) if a> b if a = b ( b a) if a< b Anschaulich kann man unter a

Mehr

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper

4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper 40 Andreas Gathmann 4. Weitere Eigenschaften der reellen Zahlen: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Sätze über ganzrationale Funktionen

Sätze über ganzrationale Funktionen Sätze über ganzrationale Funktionen 1. Sind alle Koeffizienten a i ganzzahlig und ist x 0 eine ganzzahlige Nullstelle, so ist x 0 ein Teiler von a 0. 2. Haben alle Koeffizienten dasselbe Vorzeichen, so

Mehr

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt

Nullstellen. Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt. Man schreibt Nullstellen Aufgabe 1 Gegeben ist die folgende quadratische Funktion: Bestimme die Nullstellen. f( x) x² 3 x² 3 : x² 16 16 x² 16 Somit ergibt sich x = 4 oder x = -4, da das Quadrat beider Zahlen 16 ergibt.

Mehr

Graphen quadratischer Funktionen und deren Nullstellen

Graphen quadratischer Funktionen und deren Nullstellen Binomische Formeln Mithilfe der drei binomischen Formeln kann man Funktionen bzw. Gleichungen vereinfachen. 1. Binomische Formel ( Plusformel ) a 2 + 2 a b+ b 2 = (a+ b) 2 Herleitung: (a+ b) 2 = (a+ b)

Mehr

Zahlen 25 = = 0.08

Zahlen 25 = = 0.08 2. Zahlen Uns bisher bekannte Zahlenbereiche: N Z Q R ( C). }{{} später Schreibweisen von rationalen/reellen Zahlen als unendliche Dezimalbrüche = Dezimalentwicklungen. Beispiel (Rationale Zahlen) 1 10

Mehr

6 Polynomielle Gleichungen und Polynomfunktionen

6 Polynomielle Gleichungen und Polynomfunktionen 6 Polynomielle Gleichungen und Polynomfunktionen Lineare Gleichungen Eine lineare Gleichung in einer Variablen ist eine Gleichung der Form ax + b = cx + d mit festen Zahlen a und c mit a c. Dies kann man

Mehr

Über das Entstehen neuer Funktionen

Über das Entstehen neuer Funktionen Leittet Über das Entstehen neuer Funktionen Bernhard Reuß Eine Anleitung zum Selbststudium c 2 beim Verfasser Vorgehensweise Mit Hilfe der nachfolgenden Informationen und Aufgaben werden Sie sehen, dass

Mehr

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1

Musterlösung zum Weihnahchtsübungsblatt. Teil 1 von Martin Fabricius. Aufgabe 1 Musterlösung zum Weihnahchtsübungsblatt Teil von Martin Fabricius Aufgabe a) Diese Aufgabe kann z. B. durch ausmultiplizieren gelöst werden: (433) 7 = 4 7 3 +3 7 + 7 +3 7 0 = 4 343+3 49+ 7+3 = 37+47+4+3

Mehr

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1

Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Übungsblatt 1 Technische Universität München Zentrum Mathematik Mathematik 1 (Elektrotechnik) Prof. Dr. Anusch Taraz Dr. Michael Ritter Übungsblatt 1 Hausaufgaben Aufgabe 1.1 Zeigen Sie mit vollständiger Induktion:

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie

Mathematik für Studierende der Biologie und des Lehramtes Chemie Mathematik für Studierende der Biologie und des Lehramtes Chemie ominik Schillo Universität des Saarlandes 7 Vorlesung, 007 (Stand: 007, 4: Uhr) Notation Seien A R n n sowie b R n und betrachte das LGS

Mehr

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik

Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Prof. Dr. Elmar Grosse-Klönne Institut für Mathematik Lineare Algebra Analytische Geometrie I* Übungsaufgaben, Blatt Musterlösungen Aufgabe. Es seien A, B, C Teilmengen einer Menge X. Zeige: i A B C =

Mehr

2 QUADRATISCHE FUNKTION

2 QUADRATISCHE FUNKTION P - MATHEMATIK P. Rendulić 007 QUADRATICHE FUNKTION 8 QUADRATICHE FUNKTION. Definition Eine quadratische Funktion f ist eine Funktion, die als Funktionsterm ein Polnom vom. Grad esitzt. Darunter versteht

Mehr

Rechnen mit Klammern

Rechnen mit Klammern Rechnen mit Klammern W. Kippels 28. Juli 2012 Inhaltsverzeichnis 1 Gesetze und Formeln zum Rechnen mit Klammern 3 1.1 Kommutativgesetze.............................. 3 1.2 Assoziativgesetze...............................

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen Wolfgang Kippels 3. September 2017 Inhaltsverzeichnis 1 Lösungsverfahren 1.1 Lösung mit Formel.............................. 1.1.1 Beispiel 1:............................... 1.1.2

Mehr

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11.

Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version 1.0 (11. Mathematik für Ökonomen Kompakter Einstieg für Bachelorstudierende Lösungen der Aufgaben aus Kapitel 5 Version.0. September 05) E. Cramer, U. Kamps, M. Kateri, M. Burkschat 05 Cramer, Kamps, Kateri, Burkschat

Mehr

1.9 Ungleichungen (Thema aus dem Gebiet Algebra)

1.9 Ungleichungen (Thema aus dem Gebiet Algebra) 1.9 Ungleichungen (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Ungleichungen 2 2 Intervalle 2 3 Äquivalenzumformungen bei Ungleichungen 3 4 Doppelungleichungen 5 4.1 Verfahren, um Doppelungleichungen

Mehr

Körper der komplexen Zahlen (1)

Körper der komplexen Zahlen (1) Die komplexen Zahlen Körper der komplexen Zahlen (1) Da in angeordneten Körpern stets x 2 0 gilt, kann die Gleichung x 2 = 1 in R keine Lösung haben. Wir werden nun einen Körper konstruieren, der die reellen

Mehr

Zusammenfassung: Beweisverfahren

Zusammenfassung: Beweisverfahren LGÖ Ks VMa 11 Schuljahr 216/217 Zusammenfassung: Beweisverfahren Inhaltsverzeichnis Teilbarkeitslehre... 1 Mathematische Sätze... 1 Bedingungen für innere Extremstellen... 3 Beweisverfahren... 3 Für Experten...

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de April 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik April 2017 1 / 74 Ein paar Tipps vorab Be gritty : Perseverance and

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

Zahlen und elementares Rechnen (Teil 1)

Zahlen und elementares Rechnen (Teil 1) und elementares Rechnen (Teil 1) Dr. Christian Serpé Universität Münster 6. September 2010 Dr. Christian Serpé (Universität Münster) und elementares Rechnen (Teil 1) 6. September 2010 1 / 40 Gliederung

Mehr

Funktionen einer Variablen

Funktionen einer Variablen Funktionen einer Variablen 1 Zahlen 1.1 Zahlmengen Im täglichen Gebrauch trifft man vor allem auf die natürlichen Zahlen N = {1,2,3,...}. Gelegentlich wird auch die Bezeichnung N 0 = {0,1,2,...} benutzt.

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik September/Oktober 2017 1 / 74 Ein paar Tipps vorab Be gritty

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 8 1. Semester ARBEITSBLATT 8 RECHNEN MIT POTENZEN. 1) Potenzen mit negativer Basis ARBEITSBLATT 8 RECHNEN MIT POTENZEN ) Potenzen mit negativer Basis Zur Erinnerung: = = 6 Der Eponent gibt also an, wie oft die Basis mit sich selbst multipliziert werden muss. Die Basis muss natürlich

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3 2. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN. 1. Kürzen von Bruchtermen Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 3. Semester ARBEITSBLATT 3 RECHNEN MIT BRUCHTERMEN 1. Kürzen von Bruchtermen Zunächst einmal müssen wir klären, was wir unter einem Bruchterm verstehen. Definition:

Mehr

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf

Quadratische Funktionen und Gleichungen Mathematik Jahrgangsstufe 9 (G8) Bergstadt-Gymnasium Lüdenscheid. Friedrich Hattendorf Mathematik Jahrgangsstufe 9 (G8) Lüdenscheid Friedrich Hattendorf 4. September 2014 Vorbemerkung Die Datei entsteht noch; noch nicht alles ist optimal Hinweis zum Ausdruck: (Fast) Alles sollte noch gut

Mehr

Mathematik für Naturwissenschaftler I WS 2009/2010

Mathematik für Naturwissenschaftler I WS 2009/2010 Mathematik für Naturwissenschaftler I WS 2009/2010 Lektion 4 23. Oktober 2009 Kapitel 1. Mengen, Abbildungen und Funktionen (Fortsetzung) Berechnung der Umkehrfunktion 1. Man löst die vorgegebene Funktionsgleichung

Mehr

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ):

Addition, Subtraktion und Multiplikation von komplexen Zahlen z 1 = (a 1, b 1 ) und z 2 = (a 2, b 2 ): Komplexe Zahlen Definition 1. Eine komplexe Zahl z ist ein geordnetes Paar reeller Zahlen (a, b). Wir nennen a den Realteil von z und b den Imaginärteil von z, geschrieben a = Re z, b = Im z. Komplexe

Mehr

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN

Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Schule Thema Bundesgymnasium für Berufstätige Salzburg Mathematik Modul 3 -Arbeitsblatt A 3-7: LINEARE GLEICHUNGSSYSTEME MIT ZWEI VARIABLEN Unterlagen LehrerInnenteam Sehr oft treten in der Mathematik

Mehr

Ganzrationale Funktionen

Ganzrationale Funktionen Eine Dokumentation von Sandro Antoniol Klasse 3f Mai 2003 Inhaltsverzeichnis: 1. Einleitung...3 2. Grundlagen...4 2.1. Symmetrieeigenschaften von Kurven...4 2.1.1. gerade Exponenten...4 2.1.2. ungerade

Mehr

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA

VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA VORKURS MATHEMATIK DRAISMA JAN, ÜBERARBEITET VON BÜHLER IRMGARD UND TURI LUCA Dienstag: (Un)Gleichungen in einer Variable, Reelle Funktionen Reelle Funktionen und Lineare Gleichungen. Funktionen sind von

Mehr

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK

ALGEBRA Lineare Gleichungen Teil 1. Klasse 8. Datei Nr Friedrich W. Buckel. Dezember 2005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK ALGEBRA Lineare Gleichungen Teil Klasse 8 Lineare Gleichungen mit einer Variablen Datei Nr. 40 Friedrich W. Buckel Dezember 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 40 Grundlagen und ein

Mehr

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe

1 Rechnen. Addition rationaler Zahlen gleicher Vorzeichen Summand + Summand = Summe Rationale Zahlen Die ganzen Zahlen zusammen mit allen positiven und negativen Bruchzahlen heißen rationale Zahlen. Die Menge der rationalen Zahlen wird mit Q bezeichnet. Je weiter links eine Zahl auf dem

Mehr

1.3. Beträge, Gleichungen und Ungleichungen

1.3. Beträge, Gleichungen und Ungleichungen .3. Beträge, Gleichungen und Ungleichungen Das Maimum zweier Zahlen a, b (also die größere von beiden) wird mit ma(a,b) bezeichnet, ihr Minimum (also die kleinere von beiden) mit min(a,b). Der Absolutbetrag

Mehr

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen

Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Gleichungen Lineare Gleichungen Exkurs: Binomische Formeln Quadratische Gleichungen Exkurs: Polynomdivision Polynomgleichungen Lineare Gleichungen Lineare Gleichungen ax + b = 0 Lineare Gleichungen ax

Mehr

Kölner Mathematikturnier 2011 Das Turnierlogo

Kölner Mathematikturnier 2011 Das Turnierlogo Kölner Mathematikturnier 2011 Das Turnierlogo Was sind denn das für komische Punkte im Turnierlogo?, fragt Ihr Euch sicherlich. Unser Turnierlogo stellt einee Visualisierung der Primzahlen in den Gaußschen

Mehr

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen.

= T 2. Lösungsmenge ist die Menge aller Elemente des Definitionsbereiches D G, die die Gleichung zu einer Wahre Aussage machen. Gleichungen Eine Gleichung ist eine Aussage, in der die Gleichheit zweier Terme durch Mathematische Symbol ausgedrückt wird. Dies wird durch das Gleichheitssymbol = symbolisiert G : = T 2 Definitionsmenge

Mehr

ADDIEREN UND SUBTRAHIEREN VON TERMEN POTENZSCHREIBWEISE

ADDIEREN UND SUBTRAHIEREN VON TERMEN POTENZSCHREIBWEISE ADDIEREN UND SUBTRAHIEREN VON TERMEN UND DIE POTENZSCHREIBWEISE ) VARIABLE Beispiel: Ein Rechteck habe einen Umfang von 0 cm. Gib Länge und Breite des Rechtecks in einer Formel an. Es ist natürlich leicht

Mehr

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis

Mathematik 1 -Arbeitsblatt 1-8: Rechnen mit Potenzen. 1F Wintersemester 2012/2013 Unterlagen: LehrerInnenteam GFB. Potenzen mit negativer Basis Schule Thema Personen Bundesgymnasium für Berufstätige Salzburg Mathematik -Arbeitsblatt -8: Rechnen mit Potenzen F Wintersemester 0/0 Unterlagen: LehrerInnenteam GFB ) Potenzen mit negativer Basis Zur

Mehr

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper

Vorkurs Mathematik. Vorlesung 8. Angeordnete Körper Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Vorkurs Mathematik Vorlesung 8 Angeordnete Körper Definition 8.1. Ein Körper K heißt angeordnet, wenn es eine totale Ordnung auf K gibt, die die beiden Eigenschaften

Mehr