INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

Größe: px
Ab Seite anzeigen:

Download "INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS"

Transkript

1 Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales 4. Übung Forschungszentrum Algorithmen in der Helmholtz-Gemeinschaft I Institut für Theoretische Informatik

2 Unbounded Hashtables 2 Julian Arz, Timo Bingmann, Sebastian Schlag

3 Unbounded Hashtables Amortisierung Problem Anzahl der einzufügenden Elemente nicht bekannt Was passiert wenn eine Hashtabelle zu voll wird? Hashing mit linearer Suche: Überlauf Hashing mit verk. Liste: Verlangsamerung der Operationen Lösung: Hashtabelle dynamisch vergrößern und verkleinern 3 Julian Arz, Timo Bingmann, Sebastian Schlag

4 Unbounded Hashtables mit verketteten Listen Modifizierte Operationen find: keine Veränderung insert: Größe verdoppeln, bei #Slots Elemente remove: Größe halbieren, bei 1 4 #Slots Elemente Erinnert an unbeschränkte Arrays 4 Julian Arz, Timo Bingmann, Sebastian Schlag

5 Unbounded Hashtables mit verketteten Listen Problem: Hashfunktion muss zur Tabellengröße passen Grund: Soll möglichst gleichverteilt streuen Nach Größenänderung nicht mehr der Fall Lösung: Bei Größenänderung neue Hashfunktion wählen Dann: vollständiger rehash D.h.: Elemente nicht nur kopieren, sondern alle neu einfügen 5 Julian Arz, Timo Bingmann, Sebastian Schlag

6 Unbounded Hashtable Laufzeit Laufzeit von insert, find, remove (exkl. rehash): Unverändert erwartet O(1) Laufzeit von rehash: Amortisiert O(1) Argumentation wie bei unbeschränkten Arrays Bankkontomethode 6 Julian Arz, Timo Bingmann, Sebastian Schlag

7 Neue Hashfunktion wählen Beispiel Hashen von Zahlen h(x) = x mod Tabellengröße Problem: Tabellengröße = 2 k Entspricht Extrahieren der k niedrigsten Bits Nur k niedrigsten Bits nehmen Einfluss Besser: Tabellengröße immer Primzahl Möglichst weit entfernt von Zweierpotenzen Implementierung: Primzahlentabelle Wähle bei Größenänderungen die nächstgrößere Primzahl aus Tabelle 7 Julian Arz, Timo Bingmann, Sebastian Schlag

8 Rehash Beispiel insert: 22, 42, 9, 25, 18 und 96 h 1 (x) = x mod 5, h 2 (x) = x mod Julian Arz, Timo Bingmann, Sebastian Schlag

9 Universalität von Hashfunktionen 9 Julian Arz, Timo Bingmann, Sebastian Schlag

10 Analyse für zufällige Hash-Funktionen Wiederholung Satz k : die erwartete Anzahl kollidierender Elemente ist O(1), falls M = O(m). für festes k definiere Kollisionslänge X := t[h(k)] die Anzahl der Element die auf den gleichen Slot gehasht werden 10 Julian Arz, Timo Bingmann, Sebastian Schlag

11 Wahrscheinlichkeit für Kollision Wiederholung M := {e M : key(e) k} 0-1 ZV X e : 1 für h(e) = h(k), e M, 0 sonst 11 Julian Arz, Timo Bingmann, Sebastian Schlag

12 Wahrscheinlichkeit für Kollision Wiederholung M := {e M : key(e) k} 0-1 ZV X e : 1 für h(e) = h(k), e M, 0 sonst E[X ] = E[ e M X e ] = e M E[X e ] = e M P [X e = 1] = M P [X e = 1] = = M Anzahl aller Hashfunktionen mit h(e)=h(k) {}}{ m Key 1 } m {{ Key } Anzahl aller Hashfunktionen = M 1 m = M m = O(1) Wichtig: Wahrscheinlichkeit über Wahl der Hashfunktion Hashfunktion zufällig aus Menge aller möglichen ausgewählt = 11 Julian Arz, Timo Bingmann, Sebastian Schlag

13 Universelles Hashing Idee: nutze nur bestimmte einfache Hash-Funktionen H {0..m 1} Key ist universell falls für alle x, y in Key mit x y und zufälligem h H, P [h(x) = h(y)] = 1 m. Theorem gilt auch für universelle Familien von Hashfunktionen 12 Julian Arz, Timo Bingmann, Sebastian Schlag

14 Universalität von Hashfunktionen Beispiele 13 Julian Arz, Timo Bingmann, Sebastian Schlag

15 Bit-Matrix-Multiplikation Universalität h M (x) = Mx M {0, 1} w k, Arithmetik mod 2 (XOR and AND) Anzahl Slots m in Hashtabelle m = 2 w Beachte: x {0, 1} k und Mx {0, 1} w 14 Julian Arz, Timo Bingmann, Sebastian Schlag

16 Bit-Matrix-Multiplikation Universalität h M (x) = Mx M {0, 1} w k, Arithmetik mod 2 (XOR and AND) Anzahl Slots m in Hashtabelle m = 2 w Beachte: x {0, 1} k und Mx {0, 1} w M = ( ) und x = (1, 0, 0, 1) T Mx mod 2 = (0, 1) T 14 Julian Arz, Timo Bingmann, Sebastian Schlag

17 Bit-Matrix-Multiplikation Universalität h M (x) = Mx, M {0, 1} w k, m = 2 w Zu zeigen, für alle x y und h M gilt P[h M (x) = h M (y)] = 1 m für ein M gewählt aus allen möglichen. h(x) = h(y) Mx = My i {1,..., w} : k M ij x j = j=1 k M ij y j j=1 15 Julian Arz, Timo Bingmann, Sebastian Schlag

18 Bit-Matrix-Multiplikation Universalität i {1,..., w} : k j=1 M ijx j = k j=1 M ijy j Anzahl Matrizen, die obiges Gleichungssystem lösen? w Gleichungen und wk Variablen M ij unterbestimmt, x y wk w Vektoren spannen Lösungsraum auf 2 wk w Lösungen 16 Julian Arz, Timo Bingmann, Sebastian Schlag

19 Bit-Matrix-Multiplikation Universalität i {1,..., w} : k j=1 M ijx j = k j=1 M ijy j Anzahl Matrizen, die obiges Gleichungssystem lösen? w Gleichungen und wk Variablen M ij unterbestimmt, x y wk w Vektoren spannen Lösungsraum auf 2 wk w Lösungen Anzahl möglicher Matrizen M: 2 wk 16 Julian Arz, Timo Bingmann, Sebastian Schlag

20 Bit-Matrix-Multiplikation Universalität i {1,..., w} : k j=1 M ijx j = k j=1 M ijy j Anzahl Matrizen, die obiges Gleichungssystem lösen? w Gleichungen und wk Variablen M ij unterbestimmt, x y wk w Vektoren spannen Lösungsraum auf 2 wk w Lösungen Anzahl möglicher Matrizen M: 2 wk P[h M (x) = h M (y)] = 2wk w 2 wk = 2 w = 1 2 w = 1 m 16 Julian Arz, Timo Bingmann, Sebastian Schlag

21 Anwendung von Hashing in der Computersicherheit Passwort-Hashes Zertifikate (z.b. zur Verwendung von https) SSH-Fingerprint etwas andere Anforderungen: typischerweise längere Ausgabe Geschwindigkeit der Berechnung weniger entscheidend wenig Hinweise vom Bild auf das Urbild Kollisionen schwer zu erzeugen Beispiele: MD5, SHA-1 17 Julian Arz, Timo Bingmann, Sebastian Schlag

22 Hashing von Zeichenketten Nicht: kryptographische Message Digests (MD5, SHA, etc)! 18 Julian Arz, Timo Bingmann, Sebastian Schlag

23 Hashing von Zeichenketten Gegeben Zeichenkette s = x 0, x 1,..., x n 1. Ganz schlechte Hashfunktion: n 1 h(s) = i=0 x i mod 2 k 19 Julian Arz, Timo Bingmann, Sebastian Schlag

24 Hashing von Zeichenketten Gegeben Zeichenkette s = x 0, x 1,..., x n 1. Ganz schlechte Hashfunktion: n 1 h(s) = i=0 x i mod 2 k Etwas weniger schlechte Hashfunktion: h(s) = 1 x x x x 3 + mod 2 k 19 Julian Arz, Timo Bingmann, Sebastian Schlag

25 Hashing von Zeichenketten Hashfunktion aus frühen BerkeleyDB/SDBM: Als Bitoperationen: uint32 hash(string str) { uint32 h = 0; for (int i = 0; i < str.size(); ++i) h = h * str[i]; return h; } h = (h << 6) + (h << 16) - h + str[i]; 20 Julian Arz, Timo Bingmann, Sebastian Schlag

26 Moderne Hashfunktionen Fowler Noll Vo Hashfunktion (DNS-Server, Databases) unsigned int hash(string str) { unsigned int h = offset; for (int i = 0; i < str.size(); ++i) { h = h * prime; h = h XOR str[i]; } return h; } Für 32-bit: offset = , prime = Für 64-bit: offset = , prime = Noch aktueller: MurmerHash (Perl, Hadoop, etc) 21 Julian Arz, Timo Bingmann, Sebastian Schlag

27 Sortieren Rebooted (1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 2, 5, 4, 3), (1, 3, 2, 4, 5), (1, 3, 2, 5, 4), (1, 3, 4, 2, 5), (1, 3, 4, 5, 2), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 4, 2, 3, 5), (1, 4, 2, 5, 3), (1, 4, 3, 2, 5), (1, 4, 3, 5, 2), (1, 4, 5, 2, 3), (1, 4, 5, 3, 2), (1, 5, 2, 3, 4), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (1, 5, 4, 2, 3), (1, 5, 4, 3, 2), (2, 1, 3, 4, 5), (2, 1, 3, 5, 4), (2, 1, 4, 3, 5), (2, 1, 4, 5, 3), (2, 1, 5, 3, 4), (2, 1, 5, 4, 3), (2, 3, 1, 4, 5), (2, 3, 1, 5, 4), (2, 3, 4, 1, 5), (2, 3, 4, 5, 1), (2, 3, 5, 1, 4), (2, 3, 5, 4, 1), (2, 4, 1, 3, 5), (2, 4, 1, 5, 3), (2, 4, 3, 1, 5), (2, 4, 3, 5, 1), (2, 4, 5, 1, 3), (2, 4, 5, 3, 1), (2, 5, 1, 3, 4), (2, 5, 1, 4, 3), (2, 5, 3, 1, 4), (2, 5, 3, 4, 1), (2, 5, 4, 1, 3), (2, 5, 4, 3, 1), (3, 1, 2, 4, 5), (3, 1, 2, 5, 4), (3, 1, 4, 2, 5), (3, 1, 4, 5, 2), (3, 1, 5, 2, 4), (3, 1, 5, 4, 2), (3, 2, 1, 4, 5), (3, 2, 1, 5, 4), (3, 2, 4, 1, 5), (3, 2, 4, 5, 1), (3, 2, 5, 1, 4), (3, 2, 5, 4, 1), (3, 4, 1, 2, 5), (3, 4, 1, 5, 2), (3, 4, 2, 1, 5), (3, 4, 2, 5, 1), (3, 4, 5, 1, 2), (3, 4, 5, 2, 1), (3, 5, 1, 2, 4), (3, 5, 1, 4, 2), (3, 5, 2, 1, 4), (3, 5, 2, 4, 1), (3, 5, 4, 1, 2), (3, 5, 4, 2, 1), (4, 1, 2, 3, 5), (4, 1, 2, 5, 3), (4, 1, 3, 2, 5), (4, 1, 3, 5, 2), (4, 1, 5, 2, 3), (4, 1, 5, 3, 2), (4, 2, 1, 3, 5), (4, 2, 1, 5, 3), (4, 2, 3, 1, 5), (4, 2, 3, 5, 1), (4, 2, 5, 1, 3), (4, 2, 5, 3, 1), (4, 3, 1, 2, 5), (4, 3, 1, 5, 2), (4, 3, 2, 1, 5), (4, 3, 2, 5, 1), (4, 3, 5, 1, 2), (4, 3, 5, 2, 1), (4, 5, 1, 2, 3), (4, 5, 1, 3, 2), (4, 5, 2, 1, 3), (4, 5, 2, 3, 1), (4, 5, 3, 1, 2), (4, 5, 3, 2, 1), (5, 1, 2, 3, 4), (5, 1, 2, 4, 3), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 1, 4, 2, 3), (5, 1, 4, 3, 2), (5, 2, 1, 3, 4), (5, 2, 1, 4, 3), (5, 2, 3, 1, 4), (5, 2, 3, 4, 1), (5, 2, 4, 1, 3), (5, 2, 4, 3, 1), (5, 3, 1, 2, 4), (5, 3, 1, 4, 2), (5, 3, 2, 1, 4), (5, 3, 2, 4, 1), (5, 3, 4, 1, 2), (5, 3, 4, 2, 1), (5, 4, 1, 2, 3), (5, 4, 1, 3, 2), (5, 4, 2, 1, 3), (5, 4, 2, 3, 1), (5, 4, 3, 1, 2), (5, 4, 3, 2, 1). 22 Julian Arz, Timo Bingmann, Sebastian Schlag

28 Sortieren Rebooted Die meisten intuitiven Sortieralgorithmen basieren auf: 1 Selection: finde das kleinste (oder größte) Element, und trenne es von den übrigen. Wiederhole bis alle ausgewählt wurden. 2 Insertion: betrachte Elemente einzeln und füge in sortierte Teilfolgen ein. 3 Exchange: vertauscht ungeordnete Paare von Elemente, bis keine weitere Vertauschungen notwendig sind. 4 Enumeration: vergleiche ein Element mit allen anderen. Dann platziere es endgültig an Hand der Anzahl kleiner Elemente. In der Regel erreichen diese nicht die untere Schranke Θ(n log n). 23 Julian Arz, Timo Bingmann, Sebastian Schlag

29 Selection Sort Function selectionsort(a : Array of Element; n : N) for i := 0 to n 1 do min := i for j := i + 1 to n 1 do // Suche kleinstes Element if A[j] < A[min] then min := j endfor swap(a[i], A[min]) // Tausche Element an Anfang invariant A[0] A[i] endfor 24 Julian Arz, Timo Bingmann, Sebastian Schlag

30 Selection Sort Function selectionsort(a : Array of Element; n : N) for i := 0 to n 1 do min := i for j := i + 1 to n 1 do // Suche kleinstes Element if A[j] < A[min] then min := j endfor swap(a[i], A[min]) // Tausche Element an Anfang invariant A[0] A[i] endfor Wieviele Vergleiche? 24 Julian Arz, Timo Bingmann, Sebastian Schlag

31 Selection Sort Function selectionsort(a : Array of Element; n : N) for i := 0 to n 1 do min := i for j := i + 1 to n 1 do // Suche kleinstes Element if A[j] < A[min] then min := j endfor swap(a[i], A[min]) // Tausche Element an Anfang invariant A[0] A[i] endfor Wieviele Vergleiche? immer n(n 1) 2 = Θ ( n 2)! 24 Julian Arz, Timo Bingmann, Sebastian Schlag

32 Insertion Sort Function insertionsort(a : Array of Element; n : N) for i := 1 to n 1 do // {A[0]} ist sortiert j := i x := A[j] while (j > 0) & (A[j 1] > x) // Finde richtige Stelle j A[j] := A[j 1] // Schiebe größere Elemente j := j 1 // nach hinten. endwhile A[j] := x // Setze Element invariant A[0] A[i] endfor 25 Julian Arz, Timo Bingmann, Sebastian Schlag

33 Insertion Sort Function insertionsort(a : Array of Element; n : N) for i := 1 to n 1 do // {A[0]} ist sortiert j := i x := A[j] while (j > 0) & (A[j 1] > x) // Finde richtige Stelle j A[j] := A[j 1] // Schiebe größere Elemente j := j 1 // nach hinten. endwhile A[j] := x // Setze Element invariant A[0] A[i] endfor Vermeide j > 0 mit einem Sentinel A[ 1] :=. 25 Julian Arz, Timo Bingmann, Sebastian Schlag

34 Insertion Sort Function insertionsort(a : Array of Element; n : N) for i := 1 to n 1 do // {A[0]} ist sortiert j := i x := A[j] while (j > 0) & (A[j 1] > x) // Finde richtige Stelle j A[j] := A[j 1] // Schiebe größere Elemente j := j 1 // nach hinten. endwhile A[j] := x // Setze Element invariant A[0] A[i] endfor Wieviele Vergleiche? worst-case? 25 Julian Arz, Timo Bingmann, Sebastian Schlag

35 Insertion Sort Function insertionsort(a : Array of Element; n : N) for i := 1 to n 1 do // {A[0]} ist sortiert j := i x := A[j] while (j > 0) & (A[j 1] > x) // Finde richtige Stelle j A[j] := A[j 1] // Schiebe größere Elemente j := j 1 // nach hinten. endwhile A[j] := x // Setze Element invariant A[0] A[i] endfor Wieviele Vergleiche? worst-case: n (n 1) 2 = Θ ( n 2), average? 25 Julian Arz, Timo Bingmann, Sebastian Schlag

36 Insertion Sort Function insertionsort(a : Array of Element; n : N) for i := 1 to n 1 do // {A[0]} ist sortiert j := i while (j > 0) & (A[j 1] > A[j]) // Finde richtige Stelle j swap(a[j 1], A[j]) // Schiebe größere Elemente j := j 1 // nach hinten. endwhile invariant A[0] A[i] endfor Wieviele Swaps? worst-case: n (n 1) 2 = Θ ( n 2), average? 25 Julian Arz, Timo Bingmann, Sebastian Schlag

37 Insertion Sort Average Case Annahme: Alle Elemente verschieden und die Eingabe ist eine zufällige Permutation davon. Jede der n! Permutationen σ S n ist gleich wahrscheinlich. σ = ( ) 26 Julian Arz, Timo Bingmann, Sebastian Schlag

38 Insertion Sort Average Case Annahme: Alle Elemente verschieden und die Eingabe ist eine zufällige Permutation davon. Jede der n! Permutationen σ S n ist gleich wahrscheinlich. Eine Paar (i, j) N 1 mit i < j ist eine Inversion, wenn σ(i) > σ(j). σ = ( ) Ein σ S n hat zwischen 0 und ( ) n Inversionen. 2 Beispiele: (1, 2, 3, 4, 5) und (5, 4, 3, 2, 1). 26 Julian Arz, Timo Bingmann, Sebastian Schlag

39 Insertion Sort Average Case σ = ( ) Jeder Austausch falsch sortierter, benachbarter Positionen (swap) reduziert die Anzahl der Inversionen um genau 1. Die Anzahl von swaps in Insertion-Sort ist genau die Anzahl Inversionen in der Eingabe-Permutation. Nenne diese Anzahl X (σ). Wir suchen den Erwartungswert: E(X (σ)). 27 Julian Arz, Timo Bingmann, Sebastian Schlag

40 Permutationen von 1,..., 5 (1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 2, 5, 4, 3), (1, 3, 2, 4, 5), (1, 3, 2, 5, 4), (1, 3, 4, 2, 5), (1, 3, 4, 5, 2), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 4, 2, 3, 5), (1, 4, 2, 5, 3), (1, 4, 3, 2, 5), (1, 4, 3, 5, 2), (1, 4, 5, 2, 3), (1, 4, 5, 3, 2), (1, 5, 2, 3, 4), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (1, 5, 4, 2, 3), (1, 5, 4, 3, 2), (2, 1, 3, 4, 5), (2, 1, 3, 5, 4), (2, 1, 4, 3, 5), (2, 1, 4, 5, 3), (2, 1, 5, 3, 4), (2, 1, 5, 4, 3), (2, 3, 1, 4, 5), (2, 3, 1, 5, 4), (2, 3, 4, 1, 5), (2, 3, 4, 5, 1), (2, 3, 5, 1, 4), (2, 3, 5, 4, 1), (2, 4, 1, 3, 5), (2, 4, 1, 5, 3), (2, 4, 3, 1, 5), (2, 4, 3, 5, 1), (2, 4, 5, 1, 3), (2, 4, 5, 3, 1), (2, 5, 1, 3, 4), (2, 5, 1, 4, 3), (2, 5, 3, 1, 4), (2, 5, 3, 4, 1), (2, 5, 4, 1, 3), (2, 5, 4, 3, 1), (3, 1, 2, 4, 5), (3, 1, 2, 5, 4), (3, 1, 4, 2, 5), (3, 1, 4, 5, 2), (3, 1, 5, 2, 4), (3, 1, 5, 4, 2), (3, 2, 1, 4, 5), (3, 2, 1, 5, 4), (3, 2, 4, 1, 5), (3, 2, 4, 5, 1), (3, 2, 5, 1, 4), (3, 2, 5, 4, 1), (3, 4, 1, 2, 5), (3, 4, 1, 5, 2), (3, 4, 2, 1, 5), (3, 4, 2, 5, 1), (3, 4, 5, 1, 2), (3, 4, 5, 2, 1), (3, 5, 1, 2, 4), (3, 5, 1, 4, 2), (3, 5, 2, 1, 4), (3, 5, 2, 4, 1), (3, 5, 4, 1, 2), (3, 5, 4, 2, 1), (4, 1, 2, 3, 5), (4, 1, 2, 5, 3), (4, 1, 3, 2, 5), (4, 1, 3, 5, 2), (4, 1, 5, 2, 3), (4, 1, 5, 3, 2), (4, 2, 1, 3, 5), (4, 2, 1, 5, 3), (4, 2, 3, 1, 5), (4, 2, 3, 5, 1), (4, 2, 5, 1, 3), (4, 2, 5, 3, 1), (4, 3, 1, 2, 5), (4, 3, 1, 5, 2), (4, 3, 2, 1, 5), (4, 3, 2, 5, 1), (4, 3, 5, 1, 2), (4, 3, 5, 2, 1), (4, 5, 1, 2, 3), (4, 5, 1, 3, 2), (4, 5, 2, 1, 3), (4, 5, 2, 3, 1), (4, 5, 3, 1, 2), (4, 5, 3, 2, 1), (5, 1, 2, 3, 4), (5, 1, 2, 4, 3), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 1, 4, 2, 3), (5, 1, 4, 3, 2), (5, 2, 1, 3, 4), (5, 2, 1, 4, 3), (5, 2, 3, 1, 4), (5, 2, 3, 4, 1), (5, 2, 4, 1, 3), (5, 2, 4, 3, 1), (5, 3, 1, 2, 4), (5, 3, 1, 4, 2), (5, 3, 2, 1, 4), (5, 3, 2, 4, 1), (5, 3, 4, 1, 2), (5, 3, 4, 2, 1), (5, 4, 1, 2, 3), (5, 4, 1, 3, 2), (5, 4, 2, 1, 3), (5, 4, 2, 3, 1), (5, 4, 3, 1, 2), (5, 4, 3, 2, 1). 28 Julian Arz, Timo Bingmann, Sebastian Schlag

41 Permutationen von 1,..., 5 (1, 2, 3, 4, 5), (1, 2, 3, 5, 4), (1, 2, 4, 3, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 2, 5, 4, 3), (1, 3, 2, 4, 5), (1, 3, 2, 5, 4), (1, 3, 4, 2, 5), (1, 3, 4, 5, 2), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 4, 2, 3, 5), (1, 4, 2, 5, 3), (1, 4, 3, 2, 5), (1, 4, 3, 5, 2), (1, 4, 5, 2, 3), (1, 4, 5, 3, 2), (1, 5, 2, 3, 4), (1, 5, 2, 4, 3), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (1, 5, 4, 2, 3), (1, 5, 4, 3, 2), (2, 1, 3, 4, 5), (2, 1, 3, 5, 4), (2, 1, 4, 3, 5), (2, 1, 4, 5, 3), (2, 1, 5, 3, 4), (2, 1, 5, 4, 3), (2, 3, 1, 4, 5), (2, 3, 1, 5, 4), (2, 3, 4, 1, 5), (2, 3, 4, 5, 1), (2, 3, 5, 1, 4), (2, 3, 5, 4, 1), (2, 4, 1, 3, 5), (2, 4, 1, 5, 3), (2, 4, 3, 1, 5), (2, 4, 3, 5, 1), (2, 4, 5, 1, 3), (2, 4, 5, 3, 1), (2, 5, 1, 3, 4), (2, 5, 1, 4, 3), (2, 5, 3, 1, 4), (2, 5, 3, 4, 1), (2, 5, 4, 1, 3), (2, 5, 4, 3, 1), (3, 1, 2, 4, 5), (3, 1, 2, 5, 4), (3, 1, 4, 2, 5), (3, 1, 4, 5, 2), (3, 1, 5, 2, 4), (3, 1, 5, 4, 2), (3, 2, 1, 4, 5), (3, 2, 1, 5, 4), (3, 2, 4, 1, 5), (3, 2, 4, 5, 1), (3, 2, 5, 1, 4), (3, 2, 5, 4, 1), (3, 4, 1, 2, 5), (3, 4, 1, 5, 2), (3, 4, 2, 1, 5), (3, 4, 2, 5, 1), (3, 4, 5, 1, 2), (3, 4, 5, 2, 1), (3, 5, 1, 2, 4), (3, 5, 1, 4, 2), (3, 5, 2, 1, 4), (3, 5, 2, 4, 1), (3, 5, 4, 1, 2), (3, 5, 4, 2, 1), (4, 1, 2, 3, 5), (4, 1, 2, 5, 3), (4, 1, 3, 2, 5), (4, 1, 3, 5, 2), (4, 1, 5, 2, 3), (4, 1, 5, 3, 2), (4, 2, 1, 3, 5), (4, 2, 1, 5, 3), (4, 2, 3, 1, 5), (4, 2, 3, 5, 1), (4, 2, 5, 1, 3), (4, 2, 5, 3, 1), (4, 3, 1, 2, 5), (4, 3, 1, 5, 2), (4, 3, 2, 1, 5), (4, 3, 2, 5, 1), (4, 3, 5, 1, 2), (4, 3, 5, 2, 1), (4, 5, 1, 2, 3), (4, 5, 1, 3, 2), (4, 5, 2, 1, 3), (4, 5, 2, 3, 1), (4, 5, 3, 1, 2), (4, 5, 3, 2, 1), (5, 1, 2, 3, 4), (5, 1, 2, 4, 3), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 1, 4, 2, 3), (5, 1, 4, 3, 2), (5, 2, 1, 3, 4), (5, 2, 1, 4, 3), (5, 2, 3, 1, 4), (5, 2, 3, 4, 1), (5, 2, 4, 1, 3), (5, 2, 4, 3, 1), (5, 3, 1, 2, 4), (5, 3, 1, 4, 2), (5, 3, 2, 1, 4), (5, 3, 2, 4, 1), (5, 3, 4, 1, 2), (5, 3, 4, 2, 1), (5, 4, 1, 2, 3), (5, 4, 1, 3, 2), (5, 4, 2, 1, 3), (5, 4, 2, 3, 1), (5, 4, 3, 1, 2), (5, 4, 3, 2, 1). 29 Julian Arz, Timo Bingmann, Sebastian Schlag

42 Insertion Sort Average Case Wir zählen die erwartete Anzahl von Inversionen: Für eine Permutation σ S n sei { 1 falls (i, j) eine Inversion in σ, X i,j (σ) := 0 sonst. Also ist X := i<j X i,j (σ) die Anzahl von Inversionen und ( ) E(X (σ)) = E X i,j (σ) = E(X i,j (σ)). i<j i<j Da E(X i,j (σ)) = 1 2, ist so mit E(X (σ)) = ( n 2 Worst case n (n 1) 2 = ) 1 2. ( ) n und average case 2 ( ) n Julian Arz, Timo Bingmann, Sebastian Schlag

Erinnerung VL vom

Erinnerung VL vom Erinnerung VL vom 09.05.2016 Analyse von Hashtabellen mit verketteten Listen Erwartete Laufzeit O(1) bei zuf. Hashfkt. und falls M O(m) Guter Ersatz (hier) für zuf. Hashfkt.: universelle Hashfunktionen

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 18.5.16 Lukas Barth lukas.barth@kit.edu (Mit Folien von Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Sortieren Kleine Wiederholung Visualisierungen Adaptives

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 24.5.17 Sascha Witt sascha.witt@kit.edu (Mit Folien von Lukas Barth, Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Organisatorisches Übungsklausur Am 21.06.2017

Mehr

4. Übung zu Algorithmen I 17. Mai 2017

4. Übung zu Algorithmen I 17. Mai 2017 4. Übung zu Algorithmen I 17. Mai 2017 Björn Kaidel bjoern.kaidel@kit.edu (mit Folien von Julian Arz, Timo Bingmann, Lisa Kohl, Christian Schulz, Sebastian Schlag und Christoph Striecks) Organisatorisches

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 20.5.15 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Organisation Mergesort, Quicksort Dual Pivot Quicksort

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n)

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) AVL-Bäume: Ausgabe aller Elemente in O(n) Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) Frage: Kann man Einfügen, Löschen und Suchen in O(1) Zeit? 1 Hashing einfache Methode

Mehr

7. Übung Algorithmen I

7. Übung Algorithmen I Timo Bingmann, Dennis Luxen INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Timo Bingmann, Dennis Luxen KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Mehr

Algorithmen I. Prof. Peter Sanders Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Peter Sanders Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Peter Sanders 16.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik 1

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales

Mehr

Grundlagen der Algorithmen und Datenstrukturen Kapitel 4

Grundlagen der Algorithmen und Datenstrukturen Kapitel 4 Grundlagen der Algorithmen und Datenstrukturen Kapitel 4 Christian Scheideler + Helmut Seidl SS 2009 06.05.09 Kapitel 4 1 Wörterbuch-Datenstruktur S: Menge von Elementen Jedes Element e identifiziert über

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 6 (7.5.2018) Dictionaries, Binäre Suche, Hashtabellen I / Yannic Maus Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary:

Mehr

Programmiertechnik II

Programmiertechnik II Hash-Tabellen Überblick Hashfunktionen: Abbildung von Schlüsseln auf Zahlen Hashwert: Wert der Hashfunktion Hashtabelle: Symboltabelle, die mit Hashwerten indiziert ist Kollision: Paar von Schlüsseln mit

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen

6/23/06. Universelles Hashing. Nutzen des Universellen Hashing. Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen Universelles Hashing Problem: h fest gewählt es gibt ein S U mit vielen Kollisionen wir können nicht annehmen, daß die Keys gleichverteilt im Universum liegen (z.b. Identifier im Programm) könnte also

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Hashing Maike Buchin 2. und 4.5.2017 Motivation häufig werden Daten anhand eines numerischen Schlüssel abgespeichert Beispiele: Studenten der RUB nach Matrikelnummer Kunden einer

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 9 (28.5.2014) Hashtabellen III Algorithmen und Komplexität Offene Adressierung : Zusammenfassung Offene Adressierung: Alle Schlüssel/Werte

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln.

4.4.1 Statisches perfektes Hashing. des Bildbereichs {0, 1,..., n 1} der Hashfunktionen und S U, S = m n, eine Menge von Schlüsseln. 4.4 Perfektes Hashing Das Ziel des perfekten Hashings ist es, für eine Schlüsselmenge eine Hashfunktion zu finden, so dass keine Kollisionen auftreten. Die Größe der Hashtabelle soll dabei natürlich möglichst

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (12 Hashverfahren: Verkettung der Überläufer) Prof. Dr. Susanne Albers Möglichkeiten der Kollisionsbehandlung Kollisionsbehandlung: Die Behandlung

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 9 (25.5.2016) Hashtabellen II, Binäre Suchbäume I Algorithmen und Komplexität Hashtabellen mit Chaining Jede Stelle in der Hashtabelle

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 10.5.17 Sascha Witt sascha.witt@kit.edu (Mit Folien von Lukas Barth, Julian Arz, Timo Bingmann, Sebastian Schlag und Christoph Striecks) Roadmap Listen Skip List Hotlist Amortisierte

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Vorstellen des vierten Übungsblatts 2. Vorbereitende Aufgaben für das vierte Übungsblatt

Mehr

3. Übung Algorithmen I

3. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

7. Übung zu Algorithmen I 1. Juni 2016

7. Übung zu Algorithmen I 1. Juni 2016 7. Übung zu Algorithmen I 1. Juni 2016 Lukas Barth lukas.barth@kit.edu (mit Folien von Lisa Kohl) Roadmap Ganzzahliges Sortieren mit reellen Zahlen Schnellere Priority Queues Bucket Queue Radix Heap Organisatorisches

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Hashing. Übersicht. 5 Hashing

Hashing. Übersicht. 5 Hashing Übersicht 5 Hashing Hashtabellen Hashing with Chaining Universelles Hashing Hashing with Linear Probing Anpassung der Tabellengröße Perfektes Hashing Diskussion / Alternativen H. Täubig (TUM) GAD SS 14

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 17.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Datenstrukturen und Algorithmen. Vorlesung 9

Datenstrukturen und Algorithmen. Vorlesung 9 Datenstrukturen und Algorithmen Vorlesung 9 Inhaltsverzeichnis Vorige Woche: ADT Deque ADT Prioritätsschlange Binomial-Heap Heute betrachten wir: Aufgaben Hashtabellen Aufgabe I Rot-Schwarz Kartenspiel:

Mehr

1. Übung Algorithmen I

1. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

2.3.1 Einleitung Einfache Sortierverfahren Höhere Sortierverfahren Komplexität von Sortierverfahren Spezielle Sortierverfahren

2.3.1 Einleitung Einfache Sortierverfahren Höhere Sortierverfahren Komplexität von Sortierverfahren Spezielle Sortierverfahren 2.3 Sortieren 2.3.1 Einleitung 2.3.2 Einfache Sortierverfahren 2.3.3 Höhere Sortierverfahren 2.3.4 Komplexität von Sortierverfahren 2.3.5 Spezielle Sortierverfahren 1 Selection-Sort Idee: Suche kleinstes

Mehr

2. Übung Algorithmen I

2. Übung Algorithmen I 1 KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft Institut für Theoretische www.kit.edu Informatik Amortisierte Analyse Beispiel Binärzähler

Mehr

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik

Humboldt-Universität zu Berlin Berlin, den Institut für Informatik Humboldt-Universität zu Berlin Berlin, den 15.06.2015 Institut für Informatik Prof. Dr. Ulf Leser Übungen zur Vorlesung M. Bux, B. Grußien, J. Sürmeli, S. Wandelt Algorithmen und Datenstrukturen Übungsblatt

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2015/16 12. Vorlesung Hashing Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Übungen Begründen Sie grundsätzlich alle Behauptungen außer die Aufgabe

Mehr

3. Übungsblatt zu Algorithmen I im SoSe 2017

3. Übungsblatt zu Algorithmen I im SoSe 2017 Karlsruher Institut für Technologie Prof. Dr. Jörn Müller-Quade Institut für Theoretische Informatik Björn Kaidel, Sebastian Schlag, Sascha Witt 3. Übungsblatt zu Algorithmen I im SoSe 2017 http://crypto.iti.kit.edu/index.php?id=799

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 011 Übungsblatt 6. August 011 Grundlagen: Algorithmen und Datenstrukturen

Mehr

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS

INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS Julian Arz, Timo Bingmann, Sebastian Schlag INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS KIT Julian Universität Arz, des Timo LandesBingmann, Baden-Württemberg Sebastian und Schlag nationales 7.

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Sortierverfahren 1. Schreibtischtest 2. Stabilität 3. Sortierung spezieller Arrays 4. Untere

Mehr

Teil VII. Hashverfahren

Teil VII. Hashverfahren Teil VII Hashverfahren Überblick 1 Hashverfahren: Prinzip 2 Hashfunktionen 3 Kollisionsstrategien 4 Aufwand 5 Hashen in Java Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 7 1 Hashverfahren:

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser

Algorithmen und Datenstrukturen (für ET/IT) Programm heute. Sommersemester Dr. Tobias Lasser Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 06 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 7 Fortgeschrittene Datenstrukturen 8 Such-Algorithmen

Mehr

Vorlesung Informatik 2 Algorithmen und Datenstrukturen

Vorlesung Informatik 2 Algorithmen und Datenstrukturen Vorlesung Informatik 2 Algorithmen und Datenstrukturen (11 Hashverfahren: Allgemeiner Rahmen) Prof. Dr. Susanne Albers Das Wörterbuch-Problem (1) Das Wörterbuch-Problem (WBP) kann wie folgt beschrieben

Mehr

Wie beim letzten Mal - bitte besucht: http://pingo.upb.de/549170 Ihr seid gleich wieder gefragt... Übung Algorithmen I 4.5.16 Lukas Barth lukas.barth@kit.edu (Mit Folien von Julian Arz, Timo Bingmann,

Mehr

Themen. Hashverfahren. Stefan Szalowski Programmierung II Hashverfahren

Themen. Hashverfahren. Stefan Szalowski Programmierung II Hashverfahren Themen Hashverfahren Einleitung Bisher: Suchen in logarithmischer Zeit --> Binärsuche Frage: Geht es eventuell noch schneller/effektiver? Finden von Schlüsseln in weniger als logarithmischer Zeit Wichtig

Mehr

Lineare Kongruenzgeneratoren und Quicksort

Lineare Kongruenzgeneratoren und Quicksort Seminar Perlen der theoretischen Informatik Dozenten: Prof. Johannes Köbler und Olaf Beyersdorff Lineare Kongruenzgeneratoren und Quicksort Ausarbeitung zum Vortrag Mia Viktoria Meyer 12. November 2002

Mehr

Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2

Sortieralgorithmen. Jan Pöschko. 18. Januar Problemstellung Definition Warum Sortieren?... 2 Jan Pöschko 18. Januar 2007 Inhaltsverzeichnis 1 Problemstellung 2 1.1 Definition................................... 2 1.2 Warum Sortieren?.............................. 2 2 Einfache Sortieralgorithmen

Mehr

Hashing. Überblick Aufgabe Realisierung

Hashing. Überblick Aufgabe Realisierung Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion mit Verkettung der Überläufer Offene Universelles 2/33 Überblick Aufgabe Realisierung Aufgabe Dynamische Verwaltung

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005

Fibonacci-Suche. Informatik I. Fibonacci-Suche. Fibonacci-Suche. Einführung. Rainer Schrader. 24. Mai 2005 Fibonacci-Suche Informatik I Einführung Rainer Schrader Zentrum für Angewandte Informatik Köln 4. Mai 005 Grundidee wie bei der Binärsuche, aber andere Aufteilung Fibonacci-Zahlen: F 0 = 0 F 1 = 1 F m

Mehr

Programmiertechnik II

Programmiertechnik II Sortieren: Einfache Algorithmen Sortieren Abstrakte Operation geg: Menge von items (Elemente) jedes Element besitzt Sortierschlüssel Schlüssel unterliegen einer Ordnung eventuell sind doppelte Schlüssel

Mehr

Abschnitt 19: Sortierverfahren

Abschnitt 19: Sortierverfahren Abschnitt 19: Sortierverfahren 19. Sortierverfahren 19.1 Allgemeines 19.2 Einfache Sortierverfahren 19.3 Effizientes Sortieren: Quicksort 19.4 Zusammenfassung 19 Sortierverfahren Informatik 2 (SS 07) 758

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 2 (22.4.2016) Sortieren II Algorithmen und Komplexität SelectionSort: Programm Schreiben wir doch das gleich mal als Java/C++ - Programm

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 013/14 7. Vorlesung Zufall! Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Ein Experiment Ein Franke und ein Münchner gehen (unabhängig voneinander)

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2014/15 7. Vorlesung Zufall! Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Inhaltsverzeichnis Ein Zufallsexperiment InsertionSort: erwartete bzw.

Mehr

12. Übung Algorithmen I

12. Übung Algorithmen I 12. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und 12. Übung Algorithmen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen

Mehr

Implementierung von Mengen (und Wörterbücher): Alternative zu Suchbäumen

Implementierung von Mengen (und Wörterbücher): Alternative zu Suchbäumen 5.8 HashVerfahren und Anwendungen Implementierung von Mengen (und Wörterbücher): Alternative zu Suchbäumen hash: zerhacken, Hackfleisch Grundidee: Indexierung der Tabelle mit geeignet transformierten Schlüsselwerten

Mehr

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1}

4. Hashverfahren. geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D. Menge A von Speicheradressen; oft: A = {0,..., m 1} 105 4. Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen

Mehr

Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min

Klausur Algorithmen und Datenstrukturen SS August Arbeitszeit 90 min TU Ilmenau, Fakultät für Informatik und Automatisierung FG Komplexitätstheorie und Effiziente Algorithmen Univ.-Prof. Dr. M. Dietzfelbinger, Dipl.-Ing. C. Mattern Klausur Algorithmen und Datenstrukturen

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

Kollision Hashfunktion Verkettung Offenes Hashing Perfektes Hashing Universelles Hashing Dynamisches Hashing. 4. Hashverfahren

Kollision Hashfunktion Verkettung Offenes Hashing Perfektes Hashing Universelles Hashing Dynamisches Hashing. 4. Hashverfahren 4. Hashverfahren geg.: Wertebereich D, Schlüsselmenge S = {s 1,..., s n } D Menge A von Speicheradressen; oft: A = {0,..., m 1} jedes Speicherverfahren realisiert h : D A mögliche Implementierungen von

Mehr

Elementare Sortierverfahren

Elementare Sortierverfahren Algorithmen und Datenstrukturen I Elementare Sortierverfahren Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 18.03.2018 18:16 Inhaltsverzeichnis Sortieren.......................................

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 15.7.15 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Wiederholung bzw. Zusammenfassung der Übung Effizienz

Mehr

P ( Mindestens zwei Personen haben am gleichen Tag Geb. ) (1) = 1 P ( Alle Personen haben an verschiedenen Tagen Geb. ) (2)

P ( Mindestens zwei Personen haben am gleichen Tag Geb. ) (1) = 1 P ( Alle Personen haben an verschiedenen Tagen Geb. ) (2) 1 Hashing Einleitung Eine sehr naive Herangehensweise zur Implementierung eines Wörterbuchs ist die Benutzung eines hinreichend grossen unsortierten Arrays, in dem jeweils an eine freie Position eingefügt

Mehr

Kapitel 3: Sortierverfahren Gliederung

Kapitel 3: Sortierverfahren Gliederung Gliederung 1. Grundlagen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. Ausgewählte Datenstrukturen 5. Dynamisches Programmieren 6. Graphalgorithmen 7. String-Matching 8. Kombinatorische Algorithmen

Mehr

Algorithmen auf Zeichenketten

Algorithmen auf Zeichenketten Algorithmen auf Zeichenketten Rabin-Karp Algorithmus Christoph Hermes hermes@hausmilbe.de Zeichenketten: Rabin-Karp Algorithmus p. 1/19 Ausblick auf den Vortrag theoretische Grundlagen... Zeichenketten:

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 4 (7.5.2014) Asymptotische Analyse, Sortieren IV Algorithmen und Komplexität Erfahrungen 1. Übung C++ / Java sind komplett ungewohnt Struktur

Mehr

4. Sortieren 4.1 Vorbemerkungen

4. Sortieren 4.1 Vorbemerkungen . Seite 1/21 4. Sortieren 4.1 Vorbemerkungen allgemeines Sortierproblem spezielle Sortierprobleme Ordne a 1,..., a n so um, dass Elemente in aufsteigender Reihenfolge stehen. Die a i stammen aus vollständig

Mehr

Konvexe Hülle im R 3 + WSPD

Konvexe Hülle im R 3 + WSPD Übung Algorithmische Geometrie Konvexe Hülle im R 3 + WSPD LEHRSTUHL FÜR ALGORITHMIK I INSTITUT FÜR THEORETISCHE INFORMATIK FAKULTÄT FÜR INFORMATIK Andreas Gemsa 12.07.2012 Ablauf Konvexe Hülle im R 3

Mehr

Die mittlere Zeit zum Auffinden eines Elements in einer Hash-Tabelle beträgt, unter realistischen Annahmen, O(1).

Die mittlere Zeit zum Auffinden eines Elements in einer Hash-Tabelle beträgt, unter realistischen Annahmen, O(1). Algorithmen und Datenstrukturen 213 9 Hash-Tabellen Viele Anwendungen erfordern dynamische Mengen, für welche die sog. Wörterbuch-Operationen INSERT, SEARCH und DELETE verfügbar sind. Beispiel: Symboltabelle

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

Hashing Hashfunktionen Kollisionen Ausblick. Hashverfahren. Dank an: Beate Bollig, TU Dortmund! 1/42. Hashverfahren

Hashing Hashfunktionen Kollisionen Ausblick. Hashverfahren. Dank an: Beate Bollig, TU Dortmund! 1/42. Hashverfahren Dank an: Beate Bollig, TU Dortmund! 1/42 Hashing Überblick Aufgabe Realisierung Aufgabe Realisierung Anforderungen Wahl einer Hashfunktion mit Verkettung der Überläufer Offene Universelles Hashing 2/42

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A)

8.1.3 Operation Build-Max-Heap Operation zur Konstruktion eines Heaps Eingabe: Feld A[1..n], n = länge(a) BUILD-MAX-HEAP (A) Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 011 Übungsblatt 30. Mai 011 Grundlagen: Algorithmen und Datenstrukturen

Mehr

Technische Universität München

Technische Universität München Stand der Vorlesung: Datenstruktur Heap: fast vollständiger Binärbaum MaxHeap: sortierter Heap, größtes Element an Wurzel Sortierverfahren: HeapSort: Sortieren eines Feldes A[1.. n] Idee: in place: Feld

Mehr

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen. Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 6, Donnerstag 27.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 6, Donnerstag 27. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 6, Donnerstag 27. November 2013 (Hashing Kollisionsbehandlung, Prioritätswarteschlangen)

Mehr

Das Generalized Birthday Problem

Das Generalized Birthday Problem Das Generalized Birthday Problem Problem Birthday Gegeben: L 1, L 2 Listen mit Elementen aus {0, 1} n Gesucht: x 1 L 1 und x 2 L 2 mit x 1 x 2 = 0. Anwendungen: Meet-in-the-Middle Angriffe (z.b. für RSA,

Mehr

Sortieralgorithmen. Selection Sort

Sortieralgorithmen. Selection Sort intuitivster Suchalgorithmus Sortieralgorithmen Selection Sort In jedem Schritt wird das kleinste Element im noch unsortierten Array gesucht und ans Ende des bisher sortierten Teilarrays gehangen 3 1 4

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Algorithmen und Datenstrukturen SS09. Foliensatz 15. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik

Algorithmen und Datenstrukturen SS09. Foliensatz 15. Michael Brinkmeier. Technische Universität Ilmenau Institut für Theoretische Informatik Foliensatz 15 Michael Brinkmeier Technische Universität Ilmenau Institut für Theoretische Informatik Sommersemester 2009 TU Ilmenau Seite 1 / 16 Untere Schranken für das Vergleichsbasierte Sortieren TU

Mehr

QuickSort ist ein Sortieralgorithmus, der auf der Idee des Teile & Beherrsche beruht, und das gegebene Array an Ort und Stelle (in place) sortiert

QuickSort ist ein Sortieralgorithmus, der auf der Idee des Teile & Beherrsche beruht, und das gegebene Array an Ort und Stelle (in place) sortiert 4.3.6 QuickSort QuickSort ist ein Sortieralgorithmus, der auf der Idee des Teile & Beherrsche beruht, und das gegebene Array an Ort und Stelle (in place) sortiert QuickSort teilt das gegebene Array anhand

Mehr

Informatik I 5. Kapitel. Hashverfahren. Hashverfahren. Hashverfahren. Rainer Schrader. 3. Juni Gliederung

Informatik I 5. Kapitel. Hashverfahren. Hashverfahren. Hashverfahren. Rainer Schrader. 3. Juni Gliederung Informatik I 5. Kapitel Rainer Schrader Zentrum für Angewandte Informatik Köln 3. Juni 2008 1 / 86 2 / 86 Gliederung Adressberechnung durch Hashing Hashfunktionen Kollisionsbehandlung Anwendung von Hashfunktionen

Mehr

Motivation Überblick

Motivation Überblick Kap. ff: Untere Laufzeitschranke und Lineare Verfahren Professor Dr. Lehrstuhl für Algorithm Engineering, LS Fakultät für Informatik, TU Dortmund 8. VO DAP SS 009. Mai 009. Übungstest Termin: Di 9. Mai

Mehr

(08 - Einfache Sortierverfahren)

(08 - Einfache Sortierverfahren) Vorlesung Informatik 2 Algorithmen und Datenstrukturen (08 - Einfache Sortierverfahren) Prof. Dr. Susanne Albers Sortieren Motivation, Einführung Datenbestände müssen sehr oft sortiert werden, etwa um

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8]

Heapsort / 1 A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 1 Heap: Ein Array heißt Heap, falls A [i] A [2i] und A[i] A [2i + 1] (für 2i n bzw. 2i + 1 n) gilt. Beispiel: A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[8] Heapsort / 2 Darstellung eines Heaps als

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Prof. Martin Lercher Institut für Informatik Heinrich-Heine-Universität Düsseldorf Teil Hash-Verfahren Version vom: 18. November 2016 1 / 28 Vorlesung 9 18. November 2016

Mehr

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 )

Kapitel 4. Streuen. (h K injektiv) k 1 k 2 K = h(k 1 ) h(k 2 ) Kapitel 4 Streuen Wir behandeln nun Ipleentationen ungeordneter Wörterbücher, in denen die Schlüssel ohne Beachtung ihrer Sortierreihenfolge gespeichert werden dürfen, verlangen aber, dass es sich bei

Mehr

9. Übung Algorithmen I

9. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Informatik I (D-ITET)

Informatik I (D-ITET) Ablauf Informatik I (D-ITET) Übungsstunde 5, 26.10.2009 simonmayer@student.ethz.ch ETH Zürich Nachbesprechung Übung 3 Besprechung/Vertiefung der Vorlesung [21.10.2009] Vorbesprechung Übung 5 2.c) Test

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 9.6.2017 Giuseppe Accaputo g@accaputo.ch 1 Aufbau des PVK Tag 1: Java Teil 1 Tag 2: Java Teil 2 Tag 3: Algorithmen & Komplexität Tag 4: Dynamische Datenstrukturen,

Mehr

Übersicht. Einfache Verfahren MergeSort Untere Schranke QuickSort Selektieren Schnelleres Sortieren Externes Sortieren. 6 Sortieren.

Übersicht. Einfache Verfahren MergeSort Untere Schranke QuickSort Selektieren Schnelleres Sortieren Externes Sortieren. 6 Sortieren. Übersicht 6 Sortieren Einfache Verfahren MergeSort Untere Schranke QuickSort Selektieren Schnelleres Sortieren Externes Sortieren H. Täubig (TUM) GAD SS 14 221 Statisches Wörterbuch Sortieren Lösungsmöglichkeiten:

Mehr

Programmieren I. Kapitel 7. Sortieren und Suchen

Programmieren I. Kapitel 7. Sortieren und Suchen Programmieren I Kapitel 7. Sortieren und Suchen Kapitel 7: Sortieren und Suchen Ziel: Varianten der häufigsten Anwendung kennenlernen Ordnung Suchen lineares Suchen Binärsuche oder Bisektionssuche Sortieren

Mehr

Algorithmen I - Tutorium 28 Nr. 11

Algorithmen I - Tutorium 28 Nr. 11 Algorithmen I - Tutorium 28 Nr. 11 13.07.2017: Spaß mit Schnitten, Kreisen und minimalen Spannbäumen Marc Leinweber marc.leinweber@student.kit.edu INSTITUT FÜR THEORETISCHE INFORMATIK (ITI), PROF. DR.

Mehr

Kap. 3: Sortieren. Überblick. Unser Sortierproblem. Motivation. Laufzeitmessung. Warum soll ich hier bleiben? Sortierverfahren sind WICHTIG!!!

Kap. 3: Sortieren. Überblick. Unser Sortierproblem. Motivation. Laufzeitmessung. Warum soll ich hier bleiben? Sortierverfahren sind WICHTIG!!! Kap. 3: Sortieren Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund Überblick Einführung in das Sortierproblem Insertion-Sort Selection-Sort Merge-Sort 4. VO

Mehr