Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen)"

Transkript

1 Übungsaufgaben zur Vorlesung Regelungssysteme (Grundlagen) TU Bergakademie Freiberg Institut für Automatisierungstechnik Prof. Dr.-Ing. Andreas Rehkopf 27. Januar 2014

2 Übung 1 - Vorbereitung zum Praktikum Prozessregelung 1. Modellierung des Streckenverhaltens a) Stellen Sie die nichtlineare Differentialgleichung für den Füllstandsbehälter (i V h) anhand der Bilanzgleichung auf. b) Linearisieren Sie die DGL mittels Taylorreihenentwicklung. c) Bestimmen Sie die Differentialgleichungen für die weiteren Teilsysteme (h i m, i m u m, u m u F ). d) Geben Sie die Gleichung des Gesamtsystems an. e) Leiten Sie die Übertragungsfunktion aus der DGL her. 2. Vorbereitung Reglerentwurf a) Stellen Sie den allgemeinen Regelkreis mit Führungsgröße, Last- und Speisestörung als Blockschaltbild dar. b) Identifizieren Sie die einzelnen Größen für das Beispiel der Füllstandsregelung. c) Geben Sie den funktionalen Zusammenhang für die Eingangs- und Ausgangsgrößen wieder. d) Geben Sie die Übertragungsfunktion des realen PID-Reglers an. e) Skizzieren Sie jeweils die Sprungantwort der einzelnen Anteile sowie die des gesamten Reglers. f) Welche Bedeutung hat der Tiefpassfilter für die Regelung? 3. (ZA) Lösung der Differentialgleichung a) Lösen Sie die linearisierte Differentialgleichung des Füllstandsbehälters für ein sprungförmiges Eingangssignal. b) Im Praktikumsversuch wird die Füllhöhe für verschiedene Ventilstellungen bestimmt. Ist nach einem Stellgrößensprung der Endwert mit einer vorgegebenen Genauigkeit (von bspw. 95 %) erreicht, so wird die zugehörige Höhe abgelesen. Welchen Einfluß hat die Sprunghöhe x e0 auf den Ablesezeitpunkt?

3 Übung 2 - Vorbereitung zum Praktikum Stabilität durch Regelung 1. Grundlagen Stabilität für PT 2 -Systeme a) Geben Sie die allgemeine Differentialgleichung eines PT 2 -Systems mit Dämpfungsfaktor D an und stellen Sie den Zusammenhang zur allgemeinen DGL n-ter Ordnung durch Parameterabgleich her. b) Geben Sie die allgemeine Berechnungvorschrift für die Pole des Systems an. c) Bestimmen Sie für D = 0, D = 1, D > 1, 0 < D < 1, D = 1, D < 1 und 1 < D < 0 Folgende Eigenschaften: Pole (mathematische Beschreibung und Lage im Pol-Nullstellen-Plan) Stabilität Schwingungsverhalten Verlauf der Sprungantwort (Skizze) 2. Modellierung des Schwebekörpersystems a) Geben Sie alle Kräfte an, welche auf den Schwebekörper einwirken. b) Bestimmen Sie die Differentialgleichung des Systems. c) Berechnen Sie die Pole und treffen Sie eine Aussage zur Stabilität. d) Lösen Sie die Differentialgleichung für einen sprungförmigen Eingangssteuerstrom der Höhe I St,0. 3. Regelung der Strecke Geben Sie die Differentialgleichungen für den jeweiligen Reglertyp an. Bestimmen Sie die Gleichung für den geschlossenen Kreis und treffen Sie eine Aussage zur Stabilität in Abhängigkeit der Reglerparameter. Welche bleibende Regelabweichung tritt beim jeweiligen Reglertyp auf? a) P-Regler b) PD-Regler c) PID-Regler

4 1. Systeme erster Ordnung Das dynamische Verhalten einer Strecke wird durch die Übertragungsfunktion beschrieben. F (p) = a) Wie nennt man dieses Übertragungsglied? K T p + 1 b) Geben Sie die korrespondierende Differentialgleichung an. Identifizieren Sie dazu zunächst a 0, b 0 und b 1. c) Charakterisieren Sie die DGL. d) Skizzieren und beschriften Sie die Übergangsfunktion h(t). Tragen Sie die Systemparameter K und T ein. e) Nennen Sie ein Beispiel für ein solches System.

5 2. Systeme erster Ordnung - Lösung der DGL Für das System sind folgende Parameter gegeben: T ẋ a (t) + x a (t) = Kx e (t) T = 10s und K = 2. a) Geben Sie die homogene Differentialgleichung an. b) Berechnen Sie alle Pole des Systems und stellen Sie deren Lage grafisch dar. c) Ist das vorliegende System stabil? Begründen Sie ihre Antwort. d) Geben Sie die homogene Lösung x h (t) der Differentialgleichung an. e) Das System wird durch einen Sprung der Höhe x e0 angeregt. Berechnen Sie die partikuläre Lösung x part (t) der Differentialgleichung. f) Geben Sie die Gesamtlösung der Differentialgleichung x ges (t) an. g) Bestimmen Sie den unbekannten Parameter aus der Gesamtlösung, wenn die Anfangsbedingung x ges (t = 0) = 0 gilt. h) Skizzieren und beschriften Sie die Übergangsfunktion h(t). Tragen Sie die Systemparameter K und T ein.

6 3. Systeme erster Ordnung - Regelung Die Strecke F S (p) = 3 15p + 1 soll mit einem P-Regler geregelt werden. a) Geben Sie die Übertragungsfunktion F R (p) des Reglers an. b) Bestimmen Sie die Übertragungsfunktion F W (p) für das Führungsverhalten des geschlossenen Kreises, wenn die Verstärkung des Reglers K R = 5 beträgt. c) Der Sollwert wird sprungartig um 1 erhöht. Bestimmen Sie den Faktor der bleibenden Regelabweichung x w. d) Am Eingang der Strecke greift eine sprungartige Störung z = 2 an. Wie groß ist die Abweichung vom Arbeitspunkt, wenn das System den stationären Zustand erreicht? e) Welcher Reglertyp ermöglicht es, die bleibende Regelabweichung zu eliminieren? Begründen Sie ihre Antwort.

7 4. Systeme erster Ordnung - Parameterbestimmung (Identifikation) Für eine Strecke wird das Modell F (p) = K T p + 1 angenommen. Im Beharrungszustand wurde folgender Zusammenhang zwischen Ein- und Ausgangsgröße gemessen: x e x a Tabelle 1: Messwerte im Beharrungszustand Weiterhin wurde die Eingangsgröße x e sprungartig geändert (kein Einheitssprung) und der Verlauf der Ausgangsgröße aufgezeichnet. Abbildung 1: Sprungantwort (kein Einheitssprung) a) Zeichnen Sie die statische Kennlinie der Strecke. b) Ermitteln Sie grafisch die Verstärkung K und die Zeitkonstante T der Strecke. c) Bestimmen Sie die Höhe x e0 des Eingangssprunges und skizzieren Sie den Verlauf.

8 5. Systeme zweiter Ordnung - Lösung der DGL Gegeben ist folgende Differentialgleichung: 10ẍ a (t) + 7ẋ a (t) + x a (t) = x e (t) a) Welches regelungstechnische Übertragungsglied liegt vor? b) Wie lautet die homogene Gleichung des Systems? c) Wie lautet die charakteristische Gleichung? d) Berechnen Sie die Pole des Systems. e) Ist das System stabil? Begründen Sie Ihre Antwort. f) Geben Sie die homogene Lösung der Differentialgleichung an. g) Das System wird durch einen Sprung der Höhe x e0 angeregt. Berechnen Sie die partikuläre Lösung. h) Wie lautet die Gesamtlösung x ges (t)? i) Bestimmen Sie die unbekannten Parameter c 1 und c 2 durch die Anfangsbedingungen ẋ ges (0) = x ges (0) = 0. j) Skizzieren Sie die Übergangsfunktion h(t).

9 6. Systeme zweiter Ordnung - Regelung Ein System 2. Ordnung wird durch die folgende Differentialgleichung beschrieben: ẍ(t) 25ẋ(t) 5x(t) = 2y(t) a) Treffen Sie eine Aussage zur Stabilität des Systems und begründen Sie Ihre Antwort. b) Das System ist mit Hilfe eines PD-Reglers zu regeln. Geben Sie die Differentialgleichung für diesen Reglertyp an. c) Geben Sie die Differentialgleichung des geschlossenen Regelkreises an. d) Untersuchen Sie das Gesamtsystem bezüglich Stabilität in Abhängigkeit der zwei Reglerparameter. e) Die Reglerverstärkung sei 10, die Vorhaltezeit beträgt 3 s. Bestimmen Sie den Faktor der bleibenden Regelabweichung x w. f) Wie lässt sich die bleibende Regelabweichung eliminieren?

10 7. Blockschaltbildalgebra Stellen Sie die Gesamtübertragungsfunktion F Ges als Funktion der jeweiligen Teilübertragungsfunktionen mit Rechenweg dar. a) b) c) d)

11 8. Systeme erster Ordnung - Kenngrößen Für ein PT 1 -System sind die Parameter T = 10 s und K = 3 gegeben. a) Stellen Sie die zugehörige Differentialgleichung auf und geben Sie deren Lösung für ein Sprungsignal der Höhe x e0 an. b) Wie lange benötigt das System bei einem Einheitssprung, bis 99 % des Endwertes erreicht sind? c) Auf welche Zeitspanne verändert sich der in b) ermittelte Wert, wenn die Sprunghöhe x e0 verdoppelt wird? d) Das System ist mit einem P-Regler zu regeln. Wie groß muss die Reglerverstärkung K R sein, wenn die Abweichung vom Endwert maximal 5 % betragen soll? e) Die Zeitdauer, bis das geregelte System 99 % seines Endwertes erreicht hat, soll auf 1, 5 s begrenz werden. Wie muss K R gewählt werden?

12 9. Systeme erster Ordnung - Anstiegsantwort Für ein System erster Ordnung ist folgende Übertragungsfunktion gegeben: F (p) = X a(p) X e (p) = a) Welches regelungstechnische System liegt vor? b) Geben Sie die zugehörige Differentialgleichung an. K T p + 1 c) Bestimmen Sie die Polstellen des Systems und geben Sie die homogene Lösung der Differentialgleichung an. d) Bestimmen Sie die partikuläre Lösung, wenn am Eingang eine Rampenfunktion (Anstiegsfunktion) x e (t) = mt anliegt. e) Geben Sie die Gesamtlösung x ges (t) an und bestimmen Sie den Parameter c, wenn die Anfangsbedingung x ges (t = 0) = 0 gilt. f) Skizzieren Sie den Verlauf der Anstiegsantwort für eine Einheitsrampe (m = 1).

13 10. Systeme zweiter Ordnung - Schwingungsverhalten Ein System zweiter Ordnung wird durch die Differentialgleichung T 2 ẍ a (t) + 2DT ẋ a (t) + x a (t) = Kx e (t) beschrieben. Die Parameter sind mit T = 10 s, D = 0, 6 und K = 1 gegeben. a) Welches regelungstechnische System liegt vor? b) Bestimmen Sie die Polstellen des Systems und skizzieren Sie deren Lage. c) Geben Sie die homogene Lösung der Differentialgleichung an. d) Bestimmen Sie die partikuläre Lösung, wenn am Eingang eine Einheitssprungfunktion anliegt. e) Geben Sie die Gesamtlösung x ges (t) an und bestimmen Sie die unbekannten Parameter. f) Skizzieren Sie den Verlauf der Übergangsfunktion. g) Zu welchem Zeitpunkt erreicht die Übergangsfunktion ihr Maximum? Wie groß ist dieser Maximalwert?

14 11. Systeme mit integralem Verhalten Ein regelungstechnischer Prozess wird durch die Differentialgleichung T 1 ẋ a (t) + x a (t) = 1 x e (t) dt T N mit T 1 = 5 s und T N = 10 s beschrieben. a) Welches regelungstechnische Übertragungsglied liegt vor? b) Ist das vorliegende System stabil? Begründen Sie Ihre Antwort. c) Das System ist mit Hilfe eines idealen PD-Reglers zu regeln. Geben Sie die Differentialgleichung für den Regler an und bestimmen Sie die Differentialgleichung des geschlossenen Kreises für Führungs- und Speisestörverhalten. d) Wie groß ist die bleibende Regelabweichung nach einem Führungsgrößensprung der Höhe w 0? e) Die Reglerverstärkung sei K R 1. Das System befindet sich im Arbeitspunkt. Am Eingang der Strecke greift eine sprungförmige Störung der Höhe z 0 an. Wie groß ist die Auslenkung des Systems vom Arbeitspunkt im stationären Zustand? f) Für das Führungsverhalten sei die Reglerverstärkung 2. Wie groß ist die Vorhaltezeit, wenn der geschlossene Kreis ein nichtschwingendes Verhalten aufweisen soll.

15 12. Systeme mit differentiellem Verhalten Ein regelungstechnischer Prozess besitzt die Übertragungsfunktion mit T 1 = 6 s, T 2 = 5 s und K D = 2. F (p) = X a(p) X e (p) = K D p (T 1 p + 1)(T 2 p + 1) a) Welches regelungstechnische Übertragungsglied liegt vor? b) Ist das vorliegende System stabil? Begründen Sie Ihre Antwort. c) Berechnen sie die Übergangsfunktion des Systems mit Hilfe der Laplacetransformation. Hinweis: σ(t) 1 p e at 1 p + a d) Welchen Endwert nimmt h(t) im stationären Zustand ein? e) Das System ist mit Hilfe eines I-Reglers zu regeln. Welches regelungstechnische Verhalten zeigt der geschlossenen Kreis? f) Ist das Gesamtsystem für eine Nachstellzeit von T N = 1 s schwingungsfähig? g) Wie groß ist der Faktor der bleibenden Regelabweichung bei gleicher Nachstellzeit?

16 Lösungen ( ) 2 g) x ges (t) = 2x e0 1 e t 10 x 3 c) w = d) x = b) K 1, 7 T 6 s c) x e0 1, 6 5 h) x ges (t) = c 1 e t 2 + c 2 e t 5 + x e0 i) c 1 = 2 3 x e0 c 2 = 5 3 x e0 6 d) K R > 5 2 T V > 25 2 K R x e) w = 4 3 F 7 a) F = F 7 (F 2 F 3 + F 4 1 ( F b) F = F 1 F 2 6 ) 1+F 4 F 5 F) 6 1 F 2 F 5 (F 3 F 4 ) ) c) F = F 6 (F 4 F 5 + F 1F 2 1+F 1 F 2 F 3 1 ( ) F F 6 F 4 +F F 2 d) F = F 1 ) F 1+F 5 F 1 (F 6 F 4 +F F 2 8 b) t 4, 61 T d) K R > 19 3 e) K R = 9, 9 [ ( )] 9 e) x ges (t) = Km t + T e t [ T 1 ( ) 10 e) x ges (t) = e 3 50 t cos 2 25 t g) t max = 25 2 π x ges (t max ) = e 3 4 π d) x a = w 0 e) x a = z 0 K R f) T V 5 ( ) 12 c) h(t) = 2 e t 6 e t 5 d) lim h(t) = 0 t g) x a w = sin ( 2 25 t )] + 1

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s)

Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) 1. Teilklausur SS 16 Gruppe A Name: Matr.-Nr.: Für beide Aufgaben gilt: Gegeben sei folgender Regelkreis mit der Führungsgröße r, dem Regelfehler e und der Ausgangsgröße y: r e R(s) P (s) y Aufgabe 1 (6

Mehr

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik Brandenburgische Technische Universität Cottbus-Senftenberg Fakultät 1 Professur Systemtheorie Prof. Dr.-Ing. D. Döring Prüfung im Modul Grundlagen der Regelungstechnik Studiengänge Medizintechnik / Elektrotechnik

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes.

a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. 144 Minuten Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Beschreiben Sie den Unterschied zwischen einer Regelung und einer Steuerung an Hand eines Blockschaltbildes. b) Was ist ein Mehrgrößensystem?

Mehr

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 8 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: Regelkreis Aufgabe 3.1. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 2 2 ẋ 1 = 6 5 x 1 + 1 u 1 6 2 3 [ ] y 1 = 2 x 1 (3.1a) (3.1b) und [ ] [ ] 8 15 1 ẋ 2 = x 2 + 6 1 4 [ ]

Mehr

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik

UNIVERSITÄT DUISBURG - ESSEN Fakultät für Ingenieurwissenschaften, Abt. Maschinenbau, Professur für Steuerung, Regelung und Systemdynamik Regelungstechnik I (PO95), Regelungstechnik (PO02 Schiffstechnik), Regelungstechnik (Bachelor Wi.-Ing.) (180 Minuten) Seite 1 NAME VORNAME MATRIKEL-NR. Aufgabe 1 (je 2 Punkte) a) Erläutern Sie anhand eines

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Nächste Termine: 28.., 4.2. Wiederholung vom letzten Mal Regelkreis Geschlossener Regelkreis

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C.

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Regelungstechnik B. Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Regelungstechnik B Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski 10.03.2011 Übungsaufgaben zur Regelungstechnik B Aufgabe 0

Mehr

SYNTHESE LINEARER REGELUNGEN

SYNTHESE LINEARER REGELUNGEN Synthese Linearer Regelungen - Formelsammlung von 8 SYNTHESE LINEARER REGELUNGEN FORMELSAMMLUNG UND MERKZETTEL INHALT 2 Grundlagen... 2 2. Mathematische Grundlagen... 2 2.2 Bewegungsgleichungen... 2 2.3

Mehr

Schriftliche Prüfung aus Control Systems 2 am

Schriftliche Prüfung aus Control Systems 2 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Sstems 2 am 23.01.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Bonuspunkte aus den MATLAB-Übungen:

Mehr

Lösungen zur 8. Übung

Lösungen zur 8. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung

ka (s + c 0 )(s + c 1 )s 1 c 0 (c 0 c 1 ) e c 0t + lim = k R k max = π 4T t b2) und aus der Hauptlösung der Phasenbedingung die Reglerverstärkung Aufgabe 1: Systemanalyse a) Sprungantwort des Übertragungssystems: X(s) = ka (s + c 0 )(s + c 1 )s a1) Zeitlicher Verlauf der Sprungantwort: [ 1 x(t) = ka + c 0 c 1 a2) Man erhält dazu den Endwert: 1 c

Mehr

Ergänzung zur Regelungstechnik

Ergänzung zur Regelungstechnik Ergänzung zur Regelungstechnik mathematische Erfassung Weil die einzelnen Regelkreisglieder beim Signaldurchlauf ein Zeitverhalten haben, muss der Regler den Wert der Regelabweichung verstärken und gleichzeitig

Mehr

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie

Institut für Elektrotechnik und Informationstechnik. Aufgabensammlung zur. Systemtheorie Institut für Elektrotechnik und Informationstechnik Aufgabensammlung zur Systemtheorie Prof. Dr. techn. F. Gausch Dipl.-Ing. C. Balewski Dipl.-Ing. R. Besrat 05.04.2013 Übungsaufgaben zur Systemtheorie

Mehr

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s)

(s + 3) 1.5. w(t) = σ(t) W (s) = 1 s. G 1 (s)g 2 (s) 1 + G 1 (s)g 2 (s)g 3 (s)g 4 (s) = Y (s) Y (s) W (s)g 1 (s) Y (s)g 1 (s)g 3 (s)g 4 (s) Aufgabe : LAPLACE-Transformation Die Laplace-Transformierte der Sprungantwort ist: Y (s) = 0.5 s + (s + 3).5 (s + 4) Die Sprungantwort ist die Reaktion auf den Einheitssprung: w(t) = σ(t) W (s) = s Die

Mehr

- Analoge Regelung -

- Analoge Regelung - Labor Mechatronik Versuch V1 - Analoge Regelung - 1. Zielstellung... 2 2. Theoretische Grundlagen... 2 3. Versuchsdurchführung... 4 3.1. Versuchsaufbau... 4 3.2. Aufgabenstellung und Versuchsdurchführung...

Mehr

60 Minuten Seite 1. Einlesezeit

60 Minuten Seite 1. Einlesezeit 60 Minuten Seite 1 Einlesezeit Für die Durchsicht der Klausur wird eine Einlesezeit von 10 Minuten gewährt. Während dieser Zeitdauer ist es Ihnen nicht gestattet, mit der Bearbeitung der Aufgaben zu beginnen.

Mehr

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung

BSc PRÜFUNGSBLOCK 2 / D-MAVT VORDIPLOMPRÜFUNG / D-MAVT. Musterlösung Institut für Mess- und Regeltechnik BSc PRÜFUNGSBLOCK / D-MAVT.. 005. VORDIPLOMPRÜFUNG / D-MAVT REGELUNGSTECHNIK I Musterlösung Dauer der Prüfung: Anzahl der Aufgaben: Bewertung: Zur Beachtung: Erlaubte

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 3..7 Arbeitszeit: 5 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3

Mehr

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K

Stellen Sie für das im folgenden Signalflussbild dargestellte dynamische System ein Zustandsraummodell K Aufgaben Aufgabe : Stellen Sie für das im folgenden Signalflussbild dargestellte dnamische Sstem ein Zustandsraummodell auf. u 2 7 5 Aufgabe 2: Wir betrachten das folgende Regelsstem vierter Ordnung: r

Mehr

INSTITUT FÜR REGELUNGSTECHNIK

INSTITUT FÜR REGELUNGSTECHNIK Aufgabe 9: Regler mit schaltendem Stellglied führen auf besonders einfache technische Lösungen. Durch pulsbreitenmoduliertes Schalten mit genügend hoher Frequenz ist auch hier eine angenähert lineare Betriebsweise

Mehr

x 1 + u y 2 = 2 0 x 2 + 4u 2.

x 1 + u y 2 = 2 0 x 2 + 4u 2. 3. Übung: gelkreis Aufgabe 3.. Gegeben sind die beiden linearen zeitkontinuierlichen Systeme 3 ẋ = 6 x + u 6 3 [ ] y = x (3.a) (3.b) und [ ] [ ] 8 ẋ = x + 6 4 [ ] y = x + 4u. u (3.a) (3.b) Berechnen Sie

Mehr

Klausur im Fach: Regelungs- und Systemtechnik 1

Klausur im Fach: Regelungs- und Systemtechnik 1 (in Druckschrift ausfüllen!) Univ.-Prof. Dr.-Ing. habil. Ch. Ament Name: Vorname: Matr.-Nr.: Sem.-Gr.: Anzahl der abgegebenen Blätter: 3 Klausur im Fach: Prüfungstermin: 26.03.2013 Prüfungszeit: 11:30

Mehr

Schriftliche Prüfung aus Control Systems 1 am

Schriftliche Prüfung aus Control Systems 1 am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1 Schriftliche Prüfung aus Control Systems 1 am 24.11.2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer: Prüfungsmodus: O VO+UE (TM) O VO (BM)

Mehr

Zusammenfassung der 9. Vorlesung

Zusammenfassung der 9. Vorlesung Zusammenfassung der 9. Vorlesung Analyse des Regelkreises Stationäres Verhalten des des Regelkreises Bleibende Regelabweichung für ffür r FFührungs- und und Störverhalten Bleibende Regelabweichung für

Mehr

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den

Labor RT Versuch RT1-1. Versuchsvorbereitung. Prof. Dr.-Ing. Gernot Freitag. FB: EuI, FH Darmstadt. Darmstadt, den Labor RT Versuch RT- Versuchsvorbereitung FB: EuI, Darmstadt, den 4.4.5 Elektrotechnik und Informationstechnik Rev., 4.4.5 Zu 4.Versuchvorbereitung 4. a.) Zeichnen des Bode-Diagramms und der Ortskurve

Mehr

Regelung. Roddeck, W.: Einführung in die Mechatronik; Teubner Verlag, 2. Auflage, 2003, Kapitel 7

Regelung. Roddeck, W.: Einführung in die Mechatronik; Teubner Verlag, 2. Auflage, 2003, Kapitel 7 Regelung Die Regelung ist ein Vorgang, bei dem der vorgegebene Wert einer Größe fortlaufend durch Eingriff aufgrund von Messungen dieser Größe hergestellt und aufrechterhalten wird. Hierdurch entsteht

Mehr

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s)

() 2. K I Aufgabe 5: x(t) W(s) - X(s) G 1 (s) Z 1 (s) Z 2 (s) G 3 (s) G 2 (s) G 4 (s) X(s) Seite 1 von 2 Name: Matr. Nr.: Note: Punkte: Aufgabe 1: Ermitteln Sie durch grafische Umwandlung des dargestellten Systems die Übertragungsfunktion X () G s =. Z s 2 () W(s) G 1 (s) G 2 (s) Z 1 (s) G 3

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierung am 8.7.211 Arbeitszeit: 12 min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am TU Graz, Institut für Regelungs- und Automatisierungstechnik 1/3 Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am 06. 10. 2014 Name / Vorname(n): Kennzahl / Matrikel-Nummer:

Mehr

INSTITUT FÜR REGELUNGSTECHNIK

INSTITUT FÜR REGELUNGSTECHNIK Lösung Übung 3 Aufgabe: Kaskadenregelung a Berechnung der Teilübertragungsfunktion G 3 s: V4 G 3 s Y 3s Xs T 4 s + + V 5 V 3 T 5 s + T 3 s + V4 T 5 s + T 4 s + V 5 V 3 T 4 s +T 5 s + T 3 s + V 3 [V 4 T

Mehr

Regelung einer Luft-Temperatur-Regelstrecke

Regelung einer Luft-Temperatur-Regelstrecke Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Regelung einer Luft-Temperatur-Regelstrecke

Mehr

Autonome Mobile Systeme

Autonome Mobile Systeme Autonome Mobile Systeme Teil II: Systemtheorie für Informatiker Dr. Mohamed Oubbati Institut für Neuroinformatik Universität Ulm SS 2007 Wiederholung vom letzten Mal! Die Übertragungsfunktion Die Übertragungsfunktion

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am..9 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 3 4 erreichbare

Mehr

Reglerentwurf mit dem Frequenzkennlinienverfahren

Reglerentwurf mit dem Frequenzkennlinienverfahren Kapitel 5 Reglerentwurf mit dem Frequenzkennlinienverfahren 5. Synthese von Regelkreisen Für viele Anwendungen genügt es, Standard Regler einzusetzen und deren Parameter nach Einstellregeln zu bestimmen.

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am.. Arbeitszeit: min Name: Vorname(n): Matrikelnummer: Note: Aufgabe

Mehr

Vorlesung 3. Struktur Ofensystem

Vorlesung 3. Struktur Ofensystem Regelkreisglieder Struktur Ofensystem Das Ofensystem besteht aus einzelnen Übertragungsgliedern, allgemein als Regelkreisglieder bezeichnet Es gibt für Regelkreisglieder die Unterscheidung linear/nichtlinear

Mehr

Mehrgrößenregelung. Aufgabensammlung

Mehrgrößenregelung. Aufgabensammlung Fakultät für Elektrotechnik und Informationstechnik Professur Regelungstechnik und Systemdynamik Prof. Dr.-Ing. Stefan Streif Mehrgrößenregelung Aufgabensammlung Dr.-Ing. Arne-Jens Hempel M.Sc. Thomas

Mehr

Vorstellung des Großen Belegs: Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess

Vorstellung des Großen Belegs: Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten Prozess Fakultät Informatik Institut für angewandte Informatik- Professur Technische Informationssysteme Vorstellung des Großen Belegs: Entwurf eines modellbasierten Regelungssystems für einen totzeitbehafteten

Mehr

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn )

Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/1201 Zeit: Mo Uhr (Beginn ) Vorlesung : Dozent: Professor Ferdinand Svaricek Ort: 33/040 Zeit: Do 5.00 6.30Uhr Seminarübungen: Dozent: PD Dr. Gunther Reißig Ort: 33/20 Zeit: Mo 5.00 6.30 Uhr (Beginn 8.0.206 Vorlesungsskript: https://www.unibw.de/lrt5/institut/lehre/vorlesung/rt_skript.pdf

Mehr

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage

Regelungstechnik I. Heinz JUnbehauen. Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme. 3., durchgesehene Auflage Heinz JUnbehauen Regelungstechnik I Klassische Verfahren zur Analyse und Synthese linearer kontinuierlicher Regelsysteme 3., durchgesehene Auflage Mit 192 Bildern V] Friedr. Vieweg & Sohn Braunschweig/Wiesbaden

Mehr

Automatisierungstechnik 1

Automatisierungstechnik 1 Automatisierungstechnik Hinweise zum Laborversuch Motor-Generator. Modellierung U a R Last Gleichstrommotor Gleichstromgenerator R L R L M M G G I U a U em = U eg = U G R Last Abbildung : Motor-Generator

Mehr

Frequenzgangmessung, Entwurf eines PID-Reglers nach dem Frequenzkennlinienverfahren

Frequenzgangmessung, Entwurf eines PID-Reglers nach dem Frequenzkennlinienverfahren Technische Universität Berlin Fakultät IV Elektrotechnik und Informatik Fachgebiet Regelungssysteme Leitung: Prof. Dr.-Ing. Jörg Raisch Praktikum Grundlagen der Regelungstechnik Frequenzgangmessung, Entwurf

Mehr

Lösungen zur 7. Übung

Lösungen zur 7. Übung Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Vladislav Nenchev M.Sc. Arne Passon Dipl.-Ing. Thomas Seel Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 10.12.2010 Arbeitszeit: 120 min Name: Vorname(n): Matrikelnummer:

Mehr

Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN

Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Fakultät Informatik, Institut für Angewandte Informatik, Professur Technische Informationssysteme Übung 9 zur Vorlesung SYSTEMORIENTIERTE INFORMATIK HW-, SW-CODESIGN Übungsleiter: Dr.-Ing. H.-D. Ribbecke

Mehr

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am

Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am TU Graz, Institut für Regelungs- und Automatisierungstechnik Schriftliche Prüfung aus Nichtlineare elektrische Systeme Teil: Dourdoumas am..9 Name / Vorname(n): Kennzahl/ Matrikel-Nummer.: erreichbare

Mehr

Optimierung von Regelkreisen. mit P-, PI und PID Reglern

Optimierung von Regelkreisen. mit P-, PI und PID Reglern mit P-, PI und PID Reglern Sollwert + - Regler System Istwert Infos: Skript Regelungstechnisches Praktikum (Versuch 2) + Literatur Seite 1 Ziegler und Nichols Strecke: Annäherung durch Totzeit- und PT1-Glied

Mehr

Klausur. Grundlagen der Mechatronik

Klausur. Grundlagen der Mechatronik 21.02.2011 Klausur Grundlagen der Mechatronik Name: Matrikel-Nr.: Hinweise zur Bearbeitung: Die Klausur besteht aus 4 Aufgaben. Es sind alle Aufgaben zu bearbeiten. Die Bearbeitungszeit beträgt 120 Minuten.

Mehr

Bestimmung der Reglerparameter aus den Frequenzkennlinien

Bestimmung der Reglerparameter aus den Frequenzkennlinien 1 Kapitel Bestimmung der Reglerparameter aus den Frequenzkennlinien Mit PSPICE lassen sich die Frequenzgänge der Amplitude und der Phase von Regelkreisen simulieren, graphisch darstellen und mit zwei Cursors

Mehr

Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik FH Jena

Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik FH Jena Grundlagen der Regelungstechnik I (Prof. Dr.-Ing. habil. Jörg Grabow Fachgebiet Mechatronik 1. Einführung in die Regelungstechnik 1.1 Zielsetzung der Regelungstechnik und Begriffsdefinitionen 1.2 Beispiele

Mehr

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am 22.11.2008 Universität des Saarlandes Aufgabe 1.1: Gegeben ist der schematische Aufbau eines Mischers: Auf den Antriebsstrang Antriebsstrang

Mehr

Regelungstechnik I (WS 12/13) Klausur ( )

Regelungstechnik I (WS 12/13) Klausur ( ) Regelungstechnik I (WS 12/13) Klausur (05.03.2013) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine

A. Modellierung: Standardstrecken anhand der Gleichstrommaschine Bewegungssteuerung durch geregelte elektrische Antriebe Übung 1 (WS17/18) Alle Abbildungen und Übungsunterlagen (Einführungsfolien, Übungsblätter, Musterlösungen, MATLAB-Übungen/Lösungen und Formelsammlung)

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Zeitkonstantenform

Mehr

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am

Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik. SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am Technische Universität Wien Institut für Automatisierungs- und Regelungstechnik SCHRIFTLICHE PRÜFUNG zur VU Automatisierungstechnik am 26.2.21 Name: Vorname(n): Matrikelnummer: Note: Aufgabe 1 2 3 4 erreichbare

Mehr

Ausarbeitung Regelungstechnik

Ausarbeitung Regelungstechnik Ausarbeitung Regelungstechnik by Poth & Fiechtner 2005 by Poth & Fiechtner Seite 1/14 Inhalt Grundsätzliches zur Regelungstechnik Untersuchung des als Regelstrecke verwendeten Heizlüfters Regelkreis als

Mehr

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016

Regelungs- und Systemtechnik 1 - Übung 6 Sommer 2016 4 6 Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger Regelungs- und Systemtechnik - Übung 6 Sommer 26 Vorbereitung Wiederholen Sie Vorlesungs- und Übungsinhalte zu folgenden Themen: Standardregelkreis

Mehr

Grundlagen der Regelungstechnik

Grundlagen der Regelungstechnik Grundlagen der Regelungstechnik Dr.-Ing. Georg von Wichert Siemens AG, Corporate Technology, München Termine Dies ist der letzte Termin in diesem Jahr 17.12.2004 fällt aus Nächste Termine: 14.1., 28.1.,

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Bachelorprüfung MM I 15. Oktober Vorname: Name: Matrikelnummer:

Bachelorprüfung MM I 15. Oktober Vorname: Name: Matrikelnummer: Institut für Mechatronische Systeme Prof. Dr.-Ing. S. Rinderknecht Erreichbare Punktzahl: 40 Bearbeitungszeit: 60 Min Prüfung Maschinenelemente & Mechatronik I 15. Oktober 2010 Rechenteil Name: Matr. Nr.:...

Mehr

Regelungstechnik. Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder. i c =C du dt. Zustands.- und Ausgangsgleichungen:

Regelungstechnik. Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder. i c =C du dt. Zustands.- und Ausgangsgleichungen: Regelungstechnik Zustandsgleichungcen / Übertragungsfunktionen normaler Übertragungsglieder Energiespeicher: Zustandsgröße: Kondensator Spannung i c C du Zustands.- und Ausgangsgleichungen: Aus den Knoten:

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 2007 Allgemeine Informationen: Der deutschsprachige Eingangstest

Mehr

Grundkurs der Regelungstechnik

Grundkurs der Regelungstechnik Grundkurs der Regelungstechnik Einführung in die praktischen und theoretischen Methoden von Dr.-Ing. Ludwig Merz em. o. Professor und Direktor des Instituts für Meßund Regelungstechnik der Technischen

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Einführung in die Regelungstechnik Alexander Schaefer 1 Inhalt Was ist Regelungstechnik? Modellbildung Steuerung Anwendungsbeispiel Regelung Reglertypen 2 Was ist Regelungstechnik? Ingenieurwissenschaft

Mehr

Einstieg in die Regelungstechnik

Einstieg in die Regelungstechnik Hans-Werner Philippsen Einstieg in die Regelungstechnik Vorgehensmodell für den praktischen Reglerentwurf mit 263 Bildern und 17 Tabellen Fachbuchverlag Leipzig im Carl Hanser Verlag 1 Einführung 13 1.1

Mehr

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler

4. Der geschlossene Regelkreis mit P-Strecke und P-Regler FELJC 4a_Geschlossener_ Regelkreis_Störverhalten.odt 1 4. Der geschlossene Regelkreis mit P-Strecke und P-Regler 4.1. Störverhalten (disturbance behaviour, comportement au perturbations) 4.1.1 Angriffspunkt

Mehr

1 Reglerentwurf nach dem Betragsoptimum

1 Reglerentwurf nach dem Betragsoptimum Reglerentwurf nach dem Betragsoptimum Für einfache d.h. einschleifige, lineare Regelungen mit ausgesprägtem Tiefpassverhalten ist der Entwurf nach dem Betragsoptimum relativ leicht anwendbar. w G K (s)

Mehr

Eingebettete Systeme

Eingebettete Systeme Institut für Informatik Lehrstuhl für Eingebettete Systeme Prof. Dr. Uwe Brinkschulte Benjamin Betting Eingebettete Systeme 1. Aufgabe (Regelsystem) 3. Übungsblatt Lösungsvorschlag a) Das Fahrzeug kann

Mehr

Versuchsanleitung. Labor Mechatronik. Versuch DV_5 Regelkreis mit analogen Reglern. Labor Mechatronik Versuch BV-5 analoge Regelung

Versuchsanleitung. Labor Mechatronik. Versuch DV_5 Regelkreis mit analogen Reglern. Labor Mechatronik Versuch BV-5 analoge Regelung Fachbereich 2 Ingenieurwissenschaften II Labor Mechatronik Steuerungund Regelung Lehrgebiet: Mechatronik Versuchsanleitung Versuch DV_5 Regelkreis mit analogen Reglern FB2 Stand April 2009 Seite1von 9

Mehr

Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen

Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen 2008 AGI-Information Management Consultants May be used for personal purporses only or by libraries associated to dandelon.com network. Jan Lunze Regelungstechnik 1 Systemtheoretische Grundlagen, Analyse

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Einführung in die Regelungstechnik Heinz Mann, Horst Schiffelgen, Rainer Froriep Analoge und digitale Regelung, Fuzzy-Regler, Regel- Realisierung, Software ISBN 3-446-40303-5 Inhaltsverzeichnis Weitere

Mehr

Übung 2 Einschwingvorgänge 2 Diode Linearisierung

Übung 2 Einschwingvorgänge 2 Diode Linearisierung Universität Stuttgart Übung 2 Einschwingvorgänge 2 Diode Linearisierung Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Aufgabe 2.1

Mehr

Übungsskript Regelungstechnik 2

Übungsskript Regelungstechnik 2 Seite 1 von 11 Universität Ulm, Institut für Mess-, Regel- und Mikrotechnik Prof. Dr.-Ing. Klaus Dietmayer / Seite 2 von 11 Aufgabe 1 : In dieser Aufgabe sollen zeitdiskrete Systeme untersucht werden.

Mehr

Probeklausur Signale + Systeme Kurs TIT09ITA

Probeklausur Signale + Systeme Kurs TIT09ITA Probeklausur Signale + Systeme Kurs TIT09ITA Dipl.-Ing. Andreas Ströder 13. Oktober 2010 Zugelassene Hilfsmittel: Alle außer Laptop/PC Die besten 4 Aufgaben werden gewertet. Dauer: 120 min 1 Aufgabe 1

Mehr

G R. Vorlesung 9. Identifiziert durch Sprungantwort. Sinnvoll selbst gestalten. Regler. Einschleifiger Regelkreis: Xd(s) W(s) Y(s) U(s) GFeder S

G R. Vorlesung 9. Identifiziert durch Sprungantwort. Sinnvoll selbst gestalten. Regler. Einschleifiger Regelkreis: Xd(s) W(s) Y(s) U(s) GFeder S Einschleifiger Regelkreis: Identifiziert durch prungantwort W(s) - Xd(s) G R? U(s) trecke GFeder Dreh- Magnet c Masse m lm Dämpfer d lf ld ollwertgeber Winkelsensor Y(s) innvoll selbst gestalten 1 typen:

Mehr

Synthese durch Rechner-Optimierung

Synthese durch Rechner-Optimierung 4.2.4. Synthese durch Rechner-Optimierung Möglichkeiten zum Finden passender Reglerparameter: 1. Theoretische Synthese (Herleitung der optimalen Werte) 2. Einstellregeln Messungen an der Strecke (z. B.

Mehr

Diplomhauptprüfung / Masterprüfung

Diplomhauptprüfung / Masterprüfung Diplomhauptprüfung / Masterprüfung "Regelung linearer Mehrgrößensysteme" 6. März 2009 Aufgabenblätter Die Lösungen sowie der vollständige und nachvollziehbare Lösungsweg sind in die dafür vorgesehenen

Mehr

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs :

FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ. RT - Praktikum. Thema des Versuchs : FACHHOCHSCHULE KÖLN FAKULTÄT IME NT BEREICH REGELUNGSTECHNIK PROF. DR. H.M. SCHAEDEL / PROF. DR. R. BARTZ Gruppe: RT - Praktikum Thema des Versuchs : Analyse von Ausgleichsstrecken höherer Ordnung im Zeit-

Mehr

Rechnergestützter ENTWURF und UNTERSUCHUNG einer PROZESSREGELUNG - DIGITALE SIMULATION

Rechnergestützter ENTWURF und UNTERSUCHUNG einer PROZESSREGELUNG - DIGITALE SIMULATION Rechnergestützter ENTWURF und UNTERSUCHUNG einer PROZESSREGELUNG - DIGITALE SIMULATION 1 LABORRICHTLINIEN 2 EINFÜHRUNG 3 PROZESS-STRUKTUR UND -DATEN 4 VERSUCHSVORBEREITUNG 5 VERSUCHSDURCHFÜHRUNG 6 DOKUMENTATION

Mehr

3. Übung zur Vorlesung Steuer- und Regelungstechnik

3. Übung zur Vorlesung Steuer- und Regelungstechnik 3. Übung zur Vorlesung Steuer- und Regelungstechnik Linearisierung Felix Goßmann M.Sc. Institut für Steuer- und Regelungstechnik Fakultät für Luft- und Raumfahrttechnik Universität der Bundeswehr München

Mehr

Regelungstechnik Aufgaben

Regelungstechnik Aufgaben Serge Zacher Regelungstechnik Aufgaben Lineare, Zweipunkt- und digitale Regelung 2., überarbeitete und erweiterte Auflage Mit 126 Aufgaben und MATLAB-Simulationen ZACHE VII Inhalt 1. Formelsammlung 1 1.1

Mehr

Bearbeitungszeit: 120 Min

Bearbeitungszeit: 120 Min 4 6 Fachgebiet gelungstechnik Leiter: Prof. Dr.-Ing. Johann ger gelungs- und Systemtechnik - Übungsklausur 9 Bearbeitungszeit: Min Modalitäten Es sind keine Hilfsmittel zugelassen. Bitte schreiben Sie

Mehr

Praktikum Grundlagen Regelungstechnik

Praktikum Grundlagen Regelungstechnik Praktikum Grundlagen Regelungstechnik Versuch P-GRT 01 Versuchsziel Versuch 1 Füllstandsregelung Analyse und Optimierung unterschiedlicher Regelstrecken Datum Versuchsdurchführung: Datum Protokoll: Versuchsgruppe:

Mehr

^ Springer Vieweg. Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse. und Entwurf einschleifiger Regelungen. 10., aktualisierte Auflage

^ Springer Vieweg. Regelungstechnik 1. Systemtheoretische Grundlagen, Analyse. und Entwurf einschleifiger Regelungen. 10., aktualisierte Auflage Jan Lunze Regelungstechnik 1 Systemtheoretische Grundlagen, Analyse und Entwurf einschleifiger Regelungen 10., aktualisierte Auflage mit 419 Abbildungen, 75 Beispielen, 172 Übungsaufgaben sowie einer Einführung

Mehr

Bildmaterial zur Vorlesung Regelungstechnik Teil III Der Regelkreis. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge

Bildmaterial zur Vorlesung Regelungstechnik Teil III Der Regelkreis. Wintersemester 2014 Prof. Dr.-Ing. habil. Klaus-Peter Döge Bildmaterial zur Vorlesung Regelungstechnik Teil III Der Regelkreis Wintersemester 04 Prof. Dr.-Ing. habil. Klaus-Peter Döge Regelkreis nach DIN 96 Teil 5 Vereinfachter Regelkreis 3 Einführendes Beispiel

Mehr

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover

Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsprüfung für den Master-Studiengang in Elektrotechnik und Informationstechnik an der Leibniz Universität Hannover Zulassungsjahr: 04 (Sommersemester) Allgemeine Informationen: Der deutschsprachige

Mehr

Übungsaufgaben zu Mathematik III (ohne Lösungen)

Übungsaufgaben zu Mathematik III (ohne Lösungen) Übungsaufgaben zu Mathematik III (ohne Lösungen) 1. Lösen Sie intuitiv (d.h. ohne spezielle Verfahren) die folgenden DGLn (allgemeine Lösung): = b) =! c) = d)!! = e at. Prüfen Sie, ob die gegebenen Funktionen

Mehr

Einführung in die Regelungstechnik

Einführung in die Regelungstechnik Heinz Mann t Horst Schiffeigen t Rainer Froriep Einführung in die Regelungstechnik Analoge und digitale Regelung, Fuzzy-Regler, Regler-Realisierung, Software 10., neu bearbeitete Auflage mit 379 Bildern

Mehr

Umdruck RT: Grundlagen der Regelungstechnik. 1 Grundbegriffe der Steuerungs- und Regelungstechnik. 1.2 Regelung

Umdruck RT: Grundlagen der Regelungstechnik. 1 Grundbegriffe der Steuerungs- und Regelungstechnik. 1.2 Regelung Universität Stuttgart Institut für Leistungselektronik und lektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow.2 Regelung ÜBUG ZU LKRISCH RGICHIK II Umdruck R: Grundlagen der Regelungstechnik Grundbegriffe

Mehr

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET

1. Laborpraktikum. Abbildung 1: Gleichstrommotor Quanser QET Prof. Dr.-Ing. Jörg Raisch Dipl.-Ing. Stephanie Geist Fachgebiet Regelungssysteme Fakultät IV Elektrotechnik und Informatik Technische Universität Berlin Integrierte Lehrveranstaltung Grundlagen der Regelungstechnik

Mehr

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten

Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen 1. und 2. Ordnung mit konstanten Koeffizienten Übungsaufgaben Mathematik 3 ASW Blatt 8 Lineare Differentialgleichungen und Ordnung mit konstanten Koeffizienten Prof Dr BGrabowski Lösung linearer Dgl Ordnung mittels Zerlegungssatz Aufgabe ) Lösen Sie

Mehr

Regelung. Max Meiswinkel. 8. Dezember Max Meiswinkel () Regelung 8. Dezember / 12

Regelung. Max Meiswinkel. 8. Dezember Max Meiswinkel () Regelung 8. Dezember / 12 Regelung Max Meiswinkel 8. Dezember 2008 Max Meiswinkel () Regelung 8. Dezember 2008 1 / 12 Übersicht 1 Einführung Der Regelkreis Regelschleife 2 stetige Regelung P-Regler I-Regler PI-Regler PD-Regler

Mehr

Regelungs-und Steuerungstechnik

Regelungs-und Steuerungstechnik Modul: Labor und Statistik OPTIMIERUNG M.SC.KRUBAJINI KRISHNAPILLAI; PROF.DR.ROBBY ANDERSSON Regelungs-und Steuerungstechnik Optimierung Regelungs-und Steuerungstechnik Inhaltsverzeichnis Einleitung Grundlagen

Mehr

Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler.

Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler. Ziel des vierten Versuchs: Berechnung, Simulation und Messungen an einem Regelkreises aus I-Strecke und P-Regler. 4. Berechnung, Simulation und Messung des Frequenzgangs einer I-Strecke F R (s) F S (s)

Mehr

14 Übungen zu Regelung im Zustandsraum Teil 2

14 Übungen zu Regelung im Zustandsraum Teil 2 Zoltán Zomotor Versionsstand: 9. März 25, :32 This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3. Germany License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3./de/

Mehr

Linearisierung. Vorlesung 4. Realität: nichtlinear. Wunsch: Vorteil: Anwendung einfacher Rechenmethoden (lineare DGL, lineare Gleichung) A=F(Y)

Linearisierung. Vorlesung 4. Realität: nichtlinear. Wunsch: Vorteil: Anwendung einfacher Rechenmethoden (lineare DGL, lineare Gleichung) A=F(Y) Realität: nichtlinear Y AF(Y) A Wunsch: im Betriebspunkt linear Y K A Vorteil: Anwendung einfacher Rechenmethoden (lineare DGL, lineare Gleichung) 1 Beispiel für Nichtlineare Systemkomponente: Ventil in

Mehr

Regelungstechnik I (WS 13/14) Klausur ( )

Regelungstechnik I (WS 13/14) Klausur ( ) Regelungstechnik I (WS 13/14) Klausur (13.03.2014) Prof. Dr. Ing. habil. Thomas Meurer Lehrstuhl für Regelungstechnik Name: Matrikelnummer: Bitte beachten Sie: a) Diese Klausur enthält 4 Aufgaben auf den

Mehr