3. Übungsblatt zur Lineare Algebra I für Physiker

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "3. Übungsblatt zur Lineare Algebra I für Physiker"

Transkript

1 Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte die folgenden Teilmengen des R : U = V = W =. Bei welchen handelt es sich um ein Erzeugendensystem und bei welchen um eine Basis des R? Lösung: Die Vektoren der Menge U sind linear abhängig da der erste die Summe der beiden anderen ist. Folglich ist U keine Basis. Da die Dimension von lin(u) zwei ist kann U kein Erzeugendensystem des dreidimensionalen Vektorraumes R sein. Die Vektoren der Menge V sind offensichtlich linear unabhängig. Daher hat lin(v ) die Dimension drei und folglich muß lin(v ) = R gelten. Somit ist V sowohl ein Erzeugendensystem als auch eine Basis von R. Vier Vektoren aus einem dreidimensionalen Vektorraum sind immer linear abhängig. Folglich ist die Menge W keine Basis. Da V W und V ein Erzeugendensystem ist ist auch W eines. Aufgabe G (Basen und Koordinaten) Betrachte ein Quadrat mit Seitenlänge dessen Ecken jeweils auf einer der Koordinatenachsen liegen. Gib die Koordinaten der Ecken bezüglich der Standardbasis e = ( ) e = ( ) an. Finde eine Basis bezüglich derer die Ecken ganzzahlige Koordinaten besitzen. Lösung: Nach dem Satz des Phytagoras haben die Ecken des Quadrates die Koordinaten ( ) ( ) ( ) ( ).

2 Bezüglich der Basis (( haben die Ecken die Koordinaten ( ) ) ( ) ( )) ( ) ( ). Aufgabe G (Berechnung der Dimension und der Basis einer linearen Hülle) Gegeben seien die m Vektoren v... v m R n. Es soll die Dimension und eine Basis der linearen Hülle der Vektoren bestimmt werden. Betrachte dazu das folgende Verfahren: Schreibe die Vektoren v... v m R n als Zeilen in eine Matrix V : v v n V =.. v m v mn Hierbei bezeichne v ij die j-te Komponente des Vektors v i. Erzeuge dann aus der Matrix V mittels der elementaren Zeilenoperationen (E) Addiere zu einer Zeile das λ-fache einer anderen Zeile für beliebige λ R. (E) Vertausche zwei Zeilen. (E) Multipliziere eine Zeile mit λ R \ {}. eine Matrix W in Zeilenstufenform das heißt w w n W = w rr w rn... Hierbei sind die ersten r Zeilen keine Nullzeilen und die Einträge von W erfüllen für i {... m} und k {... n} die folgende Eigenschaft: w ik w il = l {... k } w jl = j {i+... m} l {... k}. Die Anzahl r der Nichtnullzeilen in W ist die Dimension von lin(v... v m ) und die ersten r Zeilen von W bilden eine Basis von lin(v... v m ). (a) Es soll bewiesen werden daß das Verfahren das gewünschte Ergebnis liefert. Zeige dazu zunächst daß wenn eine Matrix W mittels elementarer Zeilenumformungen aus einer Matrix V erzeugt wird dann erzeugen die Zeilen der beiden Matrizen die gleiche lineare Hülle. Zeige dann daß die ersten r Zeilen von W eine Basis von lin(v... v m ) bilden. (b) Wie muß die Zeilenstufenform aussehen damit die Vektoren v... v m eine Basis von lin(v... v m ) bilden?

3 Lösung: (a) Sei W durch das Vertauschen zweier Zeilen (E) von V entstanden. Da beim Bilden der linearen Hülle die Reihenfolge der Vektoren keine Rollen spielt erzeugen die Zeilen der Matrizen die gleiche lineare Hülle. Daraus folgt daß es im Folgenden genügt nur die Anwendung der Operationen (E) und (E) auf die erste Zeile zu betrachten. Es bezeichne v... v m die Zeilen von V und w... w m die von W. Sei λ R und es gelte w = v + λv sowie v i = w i für i {... m} (E). Es soll gezeigt werden daß lin(v... v m ) = lin(w... w m ) gilt. Sei p lin(v... v m ). Daraus folgt daß es p... p m R gibt sodaß p = p i v i = p v + λp v λp v + p v + p i v i i= = p w + (p λp )w + i= p i w i lin(w... w m ). Folglich gilt lin(v... v m ) lin(w... w m ). Sei nun p lin(w... w m ). Daraus folgt daß es p... p m R gibt sodaß p = i= p i w i = p (v + λv ) + p v + i= = p v + (λp + p )v + p i v i i= p i v i lin(v... v m ). Folglich gilt lin(w... w m ) lin(v... v m ) und damit lin(w... w m ) = lin(v... v m ). Es bezeichne v... v m wieder die Zeilen von V und w... w m die von W. Sei λ R \ {} und es gelte w = λv sowie v i = w i für i {... m} (E). Es soll gezeigt werden daß lin(v... v m ) = lin(w... w m ) gilt. Sei p lin(v... v m ). Daraus folgt daß es p... p m R gibt sodaß i= p = i= p i v i = p λ w + p i w i lin(w... w m ). i= Folglich gilt lin(v... v m ) lin(w... w m ). Sei nun p lin(w... w m ). Daraus folgt daß es p... p m R gibt sodaß p = p i w i = λp v + p i v i lin(v... v m ). i= i= Folglich gilt lin(w... w m ) lin(v... v m ) und damit lin(w... w m ) = lin(v... v m ). Sei V die Matrix aus der Aufgabenstellung und W die daraus erzeugte Matrix in Zeilenstufenform. Dann folgt aus dem bisher Gezeigtem daß die ersten r Zeilen von W ein Erzeugendensystem von lin(v... v m ) sind. Es bleibt zu zeigen daß diese linear unabhängig sind. Es gelte für gewisse λ... λ m R λ i w i =. i= Da W Zeilenstufenform besitzt gibt es eine Spalte in der nur der erste Eintrag ungleich Null ist. Folglich muß λ = gelten. Analog folgt daß auch die übrigen λ i (i {... m}) gleich Null sind.

4 (b) Die Vektoren v... v m bilden genau dann eine Basis von lin(v... v m ) wenn sie linear unabhängig sind. Dies ist genau dann der Fall wenn in der Matrix W keine Nullzeilen auftreten also r = m gilt. Aufgabe G (Basis und Dimension) Gegeben seien die Vektoren a = 5 b = 4 und c = Bestimme die Dimension und eine Basis der linearen Hülle lin(a b c). Vervollständige die Basis zu einer Basis des R 4. Lösung: Schreibt man die Vektoren a b und c als Zeilen in eine Matrix und bringt diese in Zeilenstufenform dann ergibt sich: 5 4 II I 5 5 III I 7 9 III II Daraus folgt daß lin(a b c) die Dimension zwei hat und eine Basis ist. Die Vektoren a = 5 b a = 7 9 e = und e 4 = ergänzen diese offensichtlich zu einer Basis des R 4. Aufgabe G4 (Lineare Gleichungssysteme) Überprüfe ob die folgenden linearen Gleichungssysteme 8 5 x + x + x = x + 4x + 6x = x + 6x + 9x = lösbar sind. Bestimme jeweils alle Lösungen. Lösung: und x + x = x + x + x = 4x + x + x = Die Koeffizientenmatrix A und die erweiterte Matrix (A b) des ersten Gleichungssystems sind A = 4 6 (A b) =

5 Da die Zeilen Vielfache voneinander sind gilt Rang(A) = und Rang(A b) =. Also ist das Gleichungssystem lösbar. Die Dimension des Lösungsraums ist Rang(A) =. Insbesondere ist der Lösungsraum gerade Kern(A). Durch elementare Zeilenumformungen ergibt sich II I Durch Rückwärtseinsetzen erhält man 6 9 x = t x = s III I x = s t für s t R. Der Lösungsraum dieses LGS ist also L = s + t s t R. Beim zweiten Gleichungssystem sind A = (A b) = 4 Elementare Zeilenumformungen ergeben II I III II III 4I 5 5 Damit ist Rang(A) =. Aus Rang(A) Rang(A b) folgt Rang(A b) =. Damit ist das LGS eindeutig lösbar. Um die Lösung zu bestimmen wenden wir dieselben elementaren Zeilenumformungen auf die erweiterte Koeffizientenmatrix an. 4 III 4I Rückwärtseinsetzen ergibt II I III II 5 x = 5 x = x 5 = x = x + = x =

6 Somit ist L =. Hausübung Aufgabe H (Basen und Koordinaten) (6 Punkte) (a) Betrachte das gleichseitige Dreieck dessen Ecken die Koordinaten ( ) und ( ) (bezüglich der Standardbasis) besitzen und dessen dritte Ecke positive Koordinaten hat. Finde eine Basis bezüglich derer die Ecken ganzzahlige Koordinaten besitzen. (b) Betrachte ein gleichseitiges Sechseck mit Seitenlänge dessen Mittelpunkt im Ursprung liegt. Läßt sich eine Basis finden bezüglich derer die Ecken ganzzahlige Koordinaten besitzen? Lösung: (a) Wählt man als Basisvektoren die Vektoren a = ( ) und b = ( dann besitzen die Ecken bezüglich dieser Basis die Koordinaten ( ) ( ) ( ) und. (b) Wählt man als ersten Basisvektor c den Koordinatenvektor einer Ecke des Sechseckes und als zweiten Basisvektor d den Koordinatenvektor der linken Nachbarecke dann besitzen die Ecken bezüglich dieser Basis die Koordinaten Siehe Abbildung. ( ) ( ) ( ) ( ) ( ) ) und ( ). Aufgabe H (Basen und Koordinaten) ( Punkte) (a) Zeige daß die Monome x x x eine Basis des Vektorraumes P bilden wobei P der Vektorraum der Polynome mit Grad kleinergleich drei ist. (b) Zeige daß die Langrangepolynome L... L (aus Aufgabe H9) für beliebige paarweise Stellen x... x ebenfalls eine Basis des Vektorraumes P bilden. Bemerkung: Es darf als bekannt vorausgesetzt werden daß die folgende Aussage gilt: Für n + paarweise verschiedene Stellen x... x n R und Funktionswerte y... y n R gibt es genau ein Polynom p vom Grad höchstens n das die Bedingung erfüllt. p(x i ) = y i i {... n} 6

7 ( ) ( ) d ( ) ( ) c ( ) ( ) ( ) Abbildung : Ein Sechseck mit ganzzahligen Koordinaten. (c) Bestimme jeweils die Koordinaten des Polynoms p(x) = x(x )(x + ) bezüglich der Basis (x x x ) bzw. (L... L ) für paarweise verschiedene x... x R nach deiner Wahl. Lösung: (a) Offensichtlich sind die Monome x x x ein Erzeugendensystem des Vektorraumes P da sich jedes Polynom mit Grad höchstens drei in der Form i= a ix i schreiben läßt. Es bleibt die lineare Unabhängigkeit der Monome zu zeigen. Es gelte für gewisse λ... λ R λ x + λ x + λ x + λ = x R. Folglich gilt die obige Gleichung auch für x = woraus sofort λ = folgt. Für x = ± erhält man die Gleichungen λ + λ + λ = und λ + λ λ =. Addition der beiden Gleichungen ergibt λ =. Damit folgt λ = λ. Für x = erhält man dann die Gleichung = 8λ + λ = 8λ λ = 6λ. Folglich gilt λ = und damit auch λ =. (b) Die lineare Unabhängigkeit der Lagrangepolynome wurde schon in Aufgabe H9 gezeigt. Es bleibt zu zeigen daß die Langrangepolynome ein Erzeugendensystem sind. Sei p P und x... x R paarweise verschieden. Definiere q(x) := p(x i )L i (x). Dann hat q höchstens Grad drei. Für die Lagrangepolynome gilt außerdem { falls k = i L i (x k ) = falls k i. i= Daraus folgt für alle i {... } gilt q(x i ) = p(x i ). Nach der Bemerkung ist p = q und daher sind die Lagrangepolynome ein Erzeugendensystem vom P. (c) Es gilt p(x) = x(x )(x + ) = x(x ) = x x. Folglich hat p bezüglich der Basis (x x x ) die Koordinaten ( ). Sei x = x = x = und x =. Dann ist nach der Lösung zu Aufgabenteil (b) p(x) = p(x i )L i (x) = 6L (x). i= Daher hat p bezüglich der Basis (L... L ) die Koordinaten ( 6). 7

8 Aufgabe H (Basis und Dimension) Die lineare Hülle der vier Polynome p(t) = t t + 4t + q(t) = t t + 9t r(t) = t + 6t 5 s(t) = t 5t + 7t + 5 (6 Punkte) ist ein Unterraum V des Vektorraums P wobei P der Vektorraum der Polynome mit Grad kleinergleich drei ist. Bestimme dim V und gib eine Basis von V an. Lösung: Die Monome t t t und sind eine Basis von P. In dieser Basis haben die vier Polynome die Koordinaten p = 4 q = 9 r = 6 s = Schreibt man diese Vektoren als Zeilen in eine Matrix und bringt diese in die Zeilenstufenform dann ergibt sich 4 II I III I III II IV I 6 5 IV +II Folglich ist dim V = und die Polynome t t + 4t + und t + t bilden eine Basis von V. Aufgabe H (Lineare Gleichungssysteme) Für welche Parameter λ R besitzt das Gleichungssystem x x x = x + x + λx = x + (λ )x x = (a) keine (b) genau eine (c) mehrere Lösungen? ( Punkte) Bestimme gegebenenfalls alle Lösungen. Lösung: Die erweiterte Koeffizientenmatrix des LGS lautet (A λ b) = λ λ Durch elementare Zeilenumformungen erhält man λ II I III I λ III λ+ II λ + λ + 5λ λ λ + λ + 8

9 Also sind die Fälle λ + 5λ = und λ + 5λ zu betrachten bzw. λ = : In diesem Fall ist (Ãλ b) = also ist Rang(A λ ) = = Rang(A λ b) und das LGS ist lösbar. Durch Rückwärtseinsetzen erhält man die Lösungen 4 L = + s s R. λ = 5: In diesem Fall ist (Ãλ b) = also ist Rang(A λ ) = Rang(A λ b) = und das LGS ist nicht lösbar. λ 5 : Hier gilt Rang(A λ ) = = Rang(A λ b). Somit ist das LGS eindeutig lösbar und die Lösung ist x λ = 8 λ + 5 9

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG P Grohs T Welti F Weber Herbstsemester 25 Lineare Algebra und Numerische Mathematik für D-BAUG ETH Zürich D-MATH Beispiellösung für Serie 8 Aufgabe 8 Basen für Bild und Kern Gegeben sind die beiden 2 Matrizen:

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018

Mathematik II für Studierende der Informatik (Analysis und lineare Algebra) im Sommersemester 2018 (Analysis und lineare Algebra) im Sommersemester 2018 5. April 2018 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2015 4. April 2016 Zu der Vorlesung wird ein Skript erstellt, welches auf meiner Homepage veröffentlicht wird: http://www.math.uni-hamburg.de/home/geschke/lehre.html

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

2. Übungsblatt zur Mathematik II für Inf, WInf

2. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof. Dr. Streicher Dr. Sergiy Nesenenko Pavol Safarik SS 21 27. 3. April 2. Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G5 (Vektorräume) Kreuze an welche der

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER 206 STEFAN GESCHKE Inhaltsverzeichnis Einleitung 3 Literatur 3. Lineare Gleichungssysteme

Mehr

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis

MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER Inhaltsverzeichnis MATHEMATIK II FÜR STUDIERENDE DER INFORMATIK UND WIRTSCHAFTSINFORMATIK (ANALYSIS UND LINEARE ALGEBRA) IM SOMMERSEMESTER 208 STEFAN GESCHKE Inhaltsverzeichnis Einleitung 3 Literatur 3. Lineare Gleichungssysteme

Mehr

1 Transponieren, Diagonal- und Dreiecksmatrizen

1 Transponieren, Diagonal- und Dreiecksmatrizen Technische Universität München Thomas Reifenberger Ferienkurs Lineare Algebra für Physiker Vorlesung Mittwoch WS 2008/09 1 Transponieren, Diagonal- und Dreiecksmatrizen Definition 11 Transponierte Matrix

Mehr

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw.

Mischungsverhältnisse: Nehmen wir an, es stehen zwei Substanzen (zum Beispiel Flüssigkeiten) mit spezifischen Gewicht a = 2 kg/l bzw. Kapitel 5 Lineare Algebra 5 Lineare Gleichungssysteme und Matrizen Man begegnet Systemen von linearen Gleichungen in sehr vielen verschiedenen Zusammenhängen, etwa bei Mischungsverhältnissen von Substanzen

Mehr

Der Kern einer Matrix

Der Kern einer Matrix Die elementaren Zeilenoperationen p. 1 Der Kern einer Matrix Multipliziert man eine Matrix mit den Spaltenvektoren s 1,..., s m von rechts mit einem Spaltenvektor v := (λ 1,..., λ m ) T, dann ist das Ergebnis

Mehr

10.2 Linearkombinationen

10.2 Linearkombinationen 147 Vektorräume in R 3 Die Vektorräume in R 3 sind { } Geraden durch den Ursprung Ebenen durch den Ursprung R 3 Analog zu reellen Vektorräumen kann man komplexe Vektorräume definieren. In der Definition

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine Vektorräume (Teschl/Teschl 9 Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen: Eine

Mehr

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }.

, v 3 = und v 4 =, v 2 = V 1 = { c v 1 c R }. 154 e Gegeben sind die Vektoren v 1 = ( 10 1, v = ( 10 1. Sei V 1 = v 1 der von v 1 aufgespannte Vektorraum in R 3. 1 Dann besteht V 1 aus allen Vielfachen von v 1, V 1 = { c v 1 c R }. ( 0 ( 01, v 3 =

Mehr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr

Musterlösung. 1 Relationen. 2 Abbildungen. TUM Ferienkurs Lineare Algebra 1 WiSe 08/09 Dipl.-Math. Konrad Waldherr TUM Ferienkurs Lineare Algebra WiSe 8/9 Dipl.-Math. Konrad Waldherr Musterlösung Relationen Aufgabe Auf R sei die Relation σ gegeben durch (a, b)σ(c, d) : a + b c + d. Ist σ reflexiv, symmetrisch, transitiv,

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Institut für Technologie Institut für Analysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 5/.. Höhere Mathematik für die Fachrichtung Physik Lösungsvorschläge zum 4. Übungsblatt Aufgabe

Mehr

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen

3 Elementare Umformung von linearen Gleichungssystemen und Matrizen 3 Elementare Umformung von linearen Gleichungssystemen und Matrizen Beispiel 1: Betrachte das Gleichungssystem x 1 + x 2 + x 3 = 2 2x 1 + 4x 2 + 3x 3 = 1 3x 1 x 2 + 4x 3 = 7 Wir formen das GLS so lange

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Ausgewählte Lösungen zu den Übungsblättern 4-5

Ausgewählte Lösungen zu den Übungsblättern 4-5 Fakultät für Luft- und Raumfahrttechnik Institut für Mathematik und Rechneranwendung Vorlesung: Lineare Algebra (ME), Prof. Dr. J. Gwinner Ausgewählte en zu den Übungsblättern -5 Aufgabe, Lineare Unabhängigkeit

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Lösungen der Aufgaben zu Abschnitt 5.4

Lösungen der Aufgaben zu Abschnitt 5.4 A Filler: Elementare Lineare Algebra Lösungen zu Abschnitt 54 Lösungen der Aufgaben zu Abschnitt 54 B ist linear unabhängig, wenn die Vektorgleichung ( ) ( ) ( ) ( ) 456 λ + λ + λ = bzw das LGS λ +4λ +λ

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 13. Übungsblatt UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum

Mehr

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT

Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT Prof. N. Hungerbühler ETH Zürich, Sommer 4 Lösungen zu Prüfung Lineare Algebra I/II für D-MAVT. [ Punkte] Hinweise zur Bewertung: Jede Aussage ist entweder wahr oder falsch; machen Sie ein Kreuzchen in

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Bernhard Hanke Universität Augsburg 17.10.2012 Bernhard Hanke 1 / 9 Wir beschreiben den folgenden Algorithmus zur Lösung linearer Gleichungssysteme, das sogenannte Gaußsche

Mehr

(Allgemeine) Vektorräume (Teschl/Teschl 9)

(Allgemeine) Vektorräume (Teschl/Teschl 9) (Allgemeine) Vektorräume (Teschl/Teschl 9) Sei K ein beliebiger Körper. Ein Vektorraum über K ist eine (nichtleere) Menge V, auf der zwei Operationen deniert sind, die bestimmten Rechenregeln genügen:

Mehr

LINEARE ALGEBRA II. FÜR PHYSIKER

LINEARE ALGEBRA II. FÜR PHYSIKER LINEARE ALGEBRA II FÜR PHYSIKER BÁLINT FARKAS 4 Rechnen mit Matrizen In diesem Kapitel werden wir zunächst die so genannten elementaren Umformungen studieren, die es ermöglichen eine Matrix auf besonders

Mehr

8.2 Invertierbare Matrizen

8.2 Invertierbare Matrizen 38 8.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

m 2 m 3 m 5, m m 2

m 2 m 3 m 5, m m 2 Musterlösung zum 8. Blatt 7. Aufgabe: Seien die folgenden Vektoren im R 4 gegeben: 2m 5 + 2 2m 2 2m 7 + m 2 m 3 m 5 v = m 5, v 2 = m 2, v 3 = m 7 m 2 m 3 m 5 m 2 m 3 m 5, m 5 + m 2 m 7 2m + m 2 m 4 2m

Mehr

Kapitel 15. Aufgaben. Verständnisfragen

Kapitel 15. Aufgaben. Verständnisfragen Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation einen K-Vektorraum bildet

Mehr

2.3 Basis und Dimension

2.3 Basis und Dimension Lineare Algebra I WS 205/6 c Rudolf Scharlau 65 2.3 Basis und Dimension In diesem zentralen Abschnitt werden einige für die gesamte Lineare Algebra fundamentale Grundbegriffe eingeführt: Lineare Abhängigkeit

Mehr

9 Lineare Gleichungssysteme

9 Lineare Gleichungssysteme 9 Lineare Gleichungssysteme Eine der häufigsten mathematischen Aufgaben ist die Lösung linearer Gleichungssysteme In diesem Abschnitt beschäftigen wir uns zunächst mit Lösbarkeitsbedingungen und mit der

Mehr

Klausurvorbereitungsblatt Lineare Algebra

Klausurvorbereitungsblatt Lineare Algebra Klausurvorbereitungsblatt Lineare Algebra Sommersemester 25 Aufgabe 2 2 Sei A 3 3 8 2 4 3 R4 5. 5 2 a) Bestimmen Sie die Lösungsmenge des linearen Gleichungssystems Ax b) Ist Ax b mit b lösbar? (Begründen

Mehr

05. Lineare Gleichungssysteme

05. Lineare Gleichungssysteme 05 Lineare Gleichungssysteme Wir betrachten ein System von m Gleichungen in n Unbestimmten (Unbekannten) x 1,, x n von der Form a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + a

Mehr

6 Lineare Gleichungssysteme

6 Lineare Gleichungssysteme 6 LINEARE GLEICHUNGSSYSTEME 3 6 Lineare Gleichungssysteme Unter einem linearen Gleichungssystem verstehen wir ein System von Gleichungen α ξ + + α n ξ n = β α m ξ + + α mn ξ n = β m mit Koeffizienten α

Mehr

9.2 Invertierbare Matrizen

9.2 Invertierbare Matrizen 34 9.2 Invertierbare Matrizen Die Division ist als Umkehroperation der Multiplikation definiert. Das heisst, für reelle Zahlen a 0 und b gilt b = a genau dann, wenn a b =. Übertragen wir dies von den reellen

Mehr

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition)

Vektorräume. 1. v + w = w + v (Kommutativität der Vektoraddition) Vektorräume In vielen physikalischen Betrachtungen treten Größen auf, die nicht nur durch ihren Zahlenwert charakterisiert werden, sondern auch durch ihre Richtung Man nennt sie vektorielle Größen im Gegensatz

Mehr

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt

6.2 Basen. Wintersemester 2013/2014. Definition Seien V ein K-Vektorraum, n N 0 und v 1,..., v n V. (a) Man nennt Universität Konstanz Fachbereich Mathematik und Statistik Wintersemester 213/214 Markus Schweighofer Lineare Algebra I 6.2 Basen Definition 6.2.1. Seien V ein K-Vektorraum, n N und v 1,..., v n V. (a)

Mehr

Aufgaben zu Kapitel 15

Aufgaben zu Kapitel 15 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation

Mehr

37 Gauß-Algorithmus und lineare Gleichungssysteme

37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Gauß-Algorithmus und lineare Gleichungssysteme 37 Motivation Lineare Gleichungssysteme treten in einer Vielzahl von Anwendungen auf und müssen gelöst werden In Abschnitt 355 haben wir gesehen, dass

Mehr

Matrixoperationen. Einige spezielle Matrizen: Nullmatrix: n-te Einheitsmatrix: E n := 0 d. TU Dresden, WS 2013/14 Mathematik für Informatiker Folie 1

Matrixoperationen. Einige spezielle Matrizen: Nullmatrix: n-te Einheitsmatrix: E n := 0 d. TU Dresden, WS 2013/14 Mathematik für Informatiker Folie 1 Matrixoperationen Einige spezielle Matrizen: 0 0... 0 Nullmatrix:....... 0 0... 0 1 0... 0 0 1... 0 n-te Einheitsmatrix: E n :=....... 0 0... 1 d 1 0... 0 0 d 2... 0 Diagonalmatrix: diag(d 1,..., d n)

Mehr

Mathematik für Physiker, Informatiker und Ingenieure

Mathematik für Physiker, Informatiker und Ingenieure Mathematik für Physiker, Informatiker und Ingenieure Folien zu Kapitel V SS 2010 G. Dirr INSTITUT FÜR MATHEMATIK UNIVERSITÄT WÜRZBURG dirr@mathematik.uni-wuerzburg.de http://www2.mathematik.uni-wuerzburg.de

Mehr

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A

Übungen zur Linearen Algebra 1 Probeklausur Musterlösung: Aufgabe A Musterlösung: Aufgabe A Wir betrachten die Matrix A = 1 4 1 1 3 1 4 5 2 M(3 3, Q) und die dazugehörige Abbildung f : Q 3 Q 3 ; v A v. Für j = 1, 2, 3 bezeichne v j Q 3 die j-te Spalte von A. Teilaufgabe

Mehr

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $

$Id: linabb.tex,v /01/09 13:27:34 hk Exp hk $ Mathematik für Ingenieure I, WS 8/9 Freitag 9. $Id: linabb.tex,v.3 9//9 3:7:34 hk Exp hk $ II. Lineare Algebra 9 Lineare Abbildungen 9. Lineare Abbildungen Der folgende Satz gibt uns eine einfachere Möglichkeit

Mehr

4. Vektorräume und Gleichungssysteme

4. Vektorräume und Gleichungssysteme technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof Dr H M Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 41 und 42 4 Vektorräume

Mehr

Lösbarkeit linearer Gleichungssysteme

Lösbarkeit linearer Gleichungssysteme Lösbarkeit linearer Gleichungssysteme Lineares Gleichungssystem: Ax b, A R m n, x R n, b R m L R m R n Lx Ax Bemerkung b 0 R m Das Gleichungssystem heißt homogen a A0 0 Das LGS ist stets lösbar b Wenn

Mehr

3.4 Der Gaußsche Algorithmus

3.4 Der Gaußsche Algorithmus 94 34 Der Gaußsche Algorithmus Wir kommen jetzt zur expliziten numerischen Lösung des eingangs als eine Motivierung für die Lineare Algebra angegebenen linearen Gleichungssystems 341 n 1 a ik x k = b i,

Mehr

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler

Serie 5. ETH Zürich - D-MAVT Lineare Algebra II. Prof. Norbert Hungerbühler Prof. Norbert Hungerbühler Serie 5 ETH Zürich - D-MAVT Lineare Algebra II. a) Die Abbildung V n R n, v [v] B, die jedem Vektor seinen Koordinatenvektor bezüglich einer Basis B zuordnet, ist linear. Sei

Mehr

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur

Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Name, Vorname Matrikel-Nr. Aufg.1 Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Wiederholungs-Modulprüfung: zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 1.Klausur Bearbeiten

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Mathematik IT 2 (Lineare Algebra)

Mathematik IT 2 (Lineare Algebra) Lehrstuhl Mathematik, insbesondere Numerische und Angewandte Mathematik Prof Dr L Cromme Mathematik IT (Lineare Algebra für die Studiengänge Informatik, IMT und ebusiness im Sommersemester 3 Lineare Gleichungssysteme

Mehr

Lineare Algebra II 8. Übungsblatt

Lineare Algebra II 8. Übungsblatt Lineare Algebra II 8. Übungsblatt Fachbereich Mathematik SS 11 Prof. Dr. Kollross 1./9. Juni 11 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minitest) Sei V ein euklidischer oder unitärer Vektorraum.

Mehr

Klausur zur Mathematik I (Modul: Lineare Algebra I) : Lösungshinweise

Klausur zur Mathematik I (Modul: Lineare Algebra I) : Lösungshinweise Technische Universität Hamburg-Harburg Institut für Mathematik Prof. Dr. Wolfgang Mackens Wintersemester 202/20 Klausur zur Mathematik I (Modul: Lineare Algebra I 07.02.20: Lösungshinweise Sie haben 60

Mehr

Lineare Gleichungssystem

Lineare Gleichungssystem Lineare Gleichungssystem 8. Juli 07 Inhaltsverzeichnis Einleitung Der Gauß-Algorithmus 4 3 Lösbarkeit von Gleichungssystemen 6 Einleitung Wir haben uns bisher hauptsächlich mit dem Finden von Nullstellen

Mehr

Lineare Algebra I (WS 12/13)

Lineare Algebra I (WS 12/13) Lineare Algebra I (WS 12/13) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 18.10.2012 Alexander Lytchak 1 / 12 Lineare Gleichungssysteme Wir untersuchen nun allgemeiner Gleichungssysteme der

Mehr

2.2 Lineare Gleichungssysteme (LGS)

2.2 Lineare Gleichungssysteme (LGS) 2.2 Lineare Gleichungssysteme (LGS) Definition 2.2.. Ein LGS über einem Körper K von m Gleichungen in n Unbekannten x,..., x n ist ein Gleichungssystem der Form a x + a 2 x 2 +... + a n x n = b a 2 x +

Mehr

5 Lineare Gleichungssysteme und Determinanten

5 Lineare Gleichungssysteme und Determinanten 5 Lineare Gleichungssysteme und Determinanten 51 Lineare Gleichungssysteme Definition 51 Bei einem linearen Gleichungssystem (LGS) sind n Unbekannte x 1, x 2,, x n so zu bestimmen, dass ein System von

Mehr

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I

Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing. Musterlösung zur Klausur zur Linearen Algebra I Prof. Dr. Markus Reineke Dr. Anna-Louise Grensing Musterlösung zur Klausur zur Linearen Algebra I 1 Aufgabe 1: (8 Punkte) Entscheiden Sie, ob die folgenden Aussagen wahr oder falsch sind: Aussage wahr

Mehr

4. Übungsblatt zur Mathematik II für Inf, WInf

4. Übungsblatt zur Mathematik II für Inf, WInf Fachbereich Mathematik Prof Dr Streicher Dr Sergiy Nesenenko Pavol Safarik SS 010 11 15 Mai 4 Übungsblatt zur Mathematik II für Inf, WInf Gruppenübung Aufgabe G13 (Basistransformation) ( ) 15 05 Die lineare

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr

5.5 Abstrakter Vektorraum

5.5 Abstrakter Vektorraum 118 Kapitel 5 Lineare Algebra 55 Abstrakter Vektorraum Für die Vektoraddition und die Multiplikation von Vektoren mit Skalaren im zweioder dreidimensionalen euklidischen Raum gelten bestimmte Rechengesetze,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Martin Gubisch Lineare Algebra I WS 27/28 Definition (a ij ) 1 j n 1 i n heiÿt eine m n-matrix mit Komponenten a ij K Dabei bezeichnet i den Zeilenindex und j den Spaltenindex

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

11. BASIS, UNTERRAUM, und DIMENSION

11. BASIS, UNTERRAUM, und DIMENSION 11. BASIS, UNTERRAUM, und DIMENSION 1 Basen werden zu unterschiedlichen Zwecken benutzt: Um lineare Abbildungen in ihrer Matrixdarstellung zu vereinfachen, um die Dimension von Vektorräumen und ihren Unterräumen

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo

4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo Fachbereich Mathematik Prof. J. Lehn Hasan Gündoğan, Nicole Nowak Sommersemester 8 4./5./8. April 4. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo Gruppenübung Aufgabe G9 (Multiple Choice Bei

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

1 Lineare Gleichungssysteme und Matrizen

1 Lineare Gleichungssysteme und Matrizen 1 Lineare Gleichungssysteme und Matrizen Das Studium linearer Gleichungssysteme und ihrer Lösungen ist eines der wichtigsten Themen der linearen Algebra. Wir werden zunächst einige grundlegende Begriffe

Mehr

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16

Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 2015/16 Name, Vorname Matrikel-Nr. Aufg. Aufg.2 Aufg.3 Aufg.4 Σ Note bzw. Kennzeichen Klausur (Modulprüfung) zum Lehrerweiterbildungskurs Lineare Algebra/Analytische Geometrie I WiSe 25/6 Bearbeiten Sie bitte

Mehr

1 Linearkombinationen

1 Linearkombinationen Matthias Tischler Karolina Stoiber Ferienkurs Lineare Algebra für Physiker WS 14/15 A 1 Linearkombinationen Unter einer Linearkombination versteht man in der linearen Algebra einen Vektor, der sich durch

Mehr

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1

18 λ 18 + λ 0 A 18I 3 = / Z 2 Z 2 Z Z Z 1 UNIVERSITÄT KARLSRUHE Institut für Analysis HDoz. Dr. P. C. Kunstmann Dipl.-Math. M. Uhl Sommersemester 9 Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive

Mehr

Grundlegende Definitionen aus HM I

Grundlegende Definitionen aus HM I Grundlegende Definitionen aus HM I Lucas Kunz. März 206 Inhaltsverzeichnis Vektorraum 2 2 Untervektorraum 2 Lineare Abhängigkeit 2 4 Lineare Hülle und Basis 5 Skalarprodukt 6 Norm 7 Lineare Abbildungen

Mehr

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist

Beispiele 1. Gegeben ist das lineare System. x+4y +3z = 1 2x+5y +9z = 14 x 3y 2z = 5. Die erweiterte Matrix ist 127 Die Schritte des Gauß-Algorithmus sind nun die Folgenden: 1. Wir bestimmen die am weitesten links stehende Spalte, die Einträge 0 enthält. 2. Ist die oberste Zahl der in Schritt 1 gefundenen Spalte

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Das inhomogene System. A x = b

Das inhomogene System. A x = b Ein homogenes lineares Gleichungssystem A x = 0 mit m Gleichungen und n Unbestimmten hat immer mindestens die Lösung 0. Ist r der Rang von A, so hat das System n r Freiheitsgrade. Insbesondere gilt: Ist

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

[5], [0] v 4 = + λ 3

[5], [0] v 4 = + λ 3 Aufgabe 9. Basen von Untervektorräumen. Bestimmen Sie Basen von den folgenden Untervektorräumen U K des K :. K = R und U R = span,,,,,.. K = C und U C = span + i, 6, i. i i + 0. K = Z/7Z und U Z/7Z = span

Mehr

9. Übungsblatt zur Mathematik I für Maschinenbau

9. Übungsblatt zur Mathematik I für Maschinenbau Fachbereich Mathematik Prof. Dr. M. Joswig Dr. habil. Sören Kraußhar Dipl.-Math. Katja Kulas 9. Übungsblatt zur Mathematik I für Maschinenbau Gruppenübung WS /..-4.. Aufgabe G (Koordinatentransformation)

Mehr

Matrizen, Determinanten, lineare Gleichungssysteme

Matrizen, Determinanten, lineare Gleichungssysteme Matrizen, Determinanten, lineare Gleichungssysteme 1 Matrizen Definition 1. Eine Matrix A vom Typ m n (oder eine m n Matrix, A R m n oder A C m n ) ist ein rechteckiges Zahlenschema mit m Zeilen und n

Mehr

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 2. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching October 6, 017 1 Erinnerung: Lineare Gleichungssysteme LGS Der allgemeine Fall hat m lineare Gleichungen, n

Mehr

Kapitel 13. Lineare Gleichungssysteme und Basen

Kapitel 13. Lineare Gleichungssysteme und Basen Kapitel 13. Lineare Gleichungssysteme und Basen Matrixform des Rangsatzes Satz. Sei A eine m n-matrix mit den Spalten v 1, v 2,..., v n. A habe den Rang r. Dann ist die Lösungsmenge L := x 1 x 2. x n x

Mehr

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D.

Lineare Algebra für D-ITET, D-MATL, RW. Beispiellösung für Serie 10. Aufgabe ETH Zürich D-MATH. Herbstsemester Dr. V. Gradinaru D. Dr. V. Gradinaru D. Devaud Herbstsemester 5 Lineare Algebra für D-ITET, D-MATL, RW ETH Zürich D-MATH Beispiellösung für Serie Aufgabe..a Bezüglich des euklidischen Skalarprodukts in R ist die Orthogonalprojektion

Mehr

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang

, Uhr Dr. Thorsten Weist. Name Vorname Matrikelnummer. Geburtsort Geburtsdatum Studiengang Nachklausur zur Linearen Algebra I - Nr. 1 Bergische Universität Wuppertal Sommersemester 2011 Prof. Dr. Markus Reineke 06.10.2011, 10-12 Uhr Dr. Thorsten Weist Bitte tragen Sie die folgenden Daten leserlich

Mehr

4 Der Gauß Algorithmus

4 Der Gauß Algorithmus 4 Der Gauß Algorithmus Rechenverfahren zur Lösung homogener linearer Gleichungssysteme Wir betrachten ein GLS (1) a 11 x 1 + a 1 x + + a 1n x n = a 1 x 1 + a x + + a n x n = a m1 x 1 + a m x + + a mn x

Mehr

Lineare Algebra II 6. Übungsblatt

Lineare Algebra II 6. Übungsblatt Lineare Algebra II 6 Übungsblatt Fachbereich Mathematik SS 2011 Prof Dr Kollross 18/19 Mai 2011 Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G1 (Minimalpolynom) Bestimmen Sie das Minimalpolynom der

Mehr

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI

5. Übungsblatt zur Mathematik II für BI, MaWi, WI(BI), AngGeo und UI Fachbereich Mathematik Prof Dr K Ritter Dr M Slassi M Fuchssteiner SS 9 9 Mai 9 5 Übungsblatt zur Mathematik II für BI, MaWi, WI(BI, AngGeo und UI Gruppenübung Aufgabe G (a Betrachten Sie die Vektoren

Mehr

Berechnung der Determinante

Berechnung der Determinante Berechnung der Determinante Verhalten der Determinante unter elementaren Zeilenoperationen: Das Vertauschen zweier Zeilen/Spalten der Matrix A ändert nur das Vorzeichen der Determinante, d.h: i, j {1,...,

Mehr

Lösung Semesterendprüfung (Nachprüfung)

Lösung Semesterendprüfung (Nachprüfung) MLAE Mathematik: Lineare Algebra für Ingenieure Frühlingssemester 6 Dr. Christoph Kirsch ZHAW Winterthur Lösung Semesterendprüfung (Nachprüfung Aufgabe : Aufgabe : a Gemäss Def. der Vorlesung müssen wir

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Eine Familie von Gleichungen der Form a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2............ a m1 x 1 + a m2 x 2 +... + a mn x n = b m

Mehr

2.2 Lineare Gleichungssysteme

2.2 Lineare Gleichungssysteme Lineare Algebra I WS 2015/16 c Rudolf Scharlau 55 22 Lineare Gleichungssysteme Das Lösen von Gleichungen (ganz unterschiedlichen Typs und unterschiedlichen Schwierigkeitsgrades) gehört zu den Grundproblemen

Mehr

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik =

Zu zwei Matrizen A R m n und B R p q existiert das Matrizenprodukt A B n = p und es gilt dann. A B = (a ij ) (b jk ) = (c ik ) = C R m q mit c ik = H 6. Die Matrizen A, B, C und D seien gegeben durch 5 A =, B =, C = 4 5 4, D =. 5 7 5 4 4 Berechnen Sie (sofern möglich) alle Matrizenprodukte X Y mit X, Y {A, B, C, D}. Zu zwei Matrizen A R m n und B

Mehr

( ) Lineare Gleichungssysteme

( ) Lineare Gleichungssysteme 102 III. LINEARE ALGEBRA Aufgabe 13.37 Berechne die Eigenwerte der folgenden Matrizen: ( ) 1 1 0 1 1 2 0 3 0 0, 2 1 1 1 2 1. 1 1 0 3 Aufgabe 13.38 Überprüfe, ob die folgenden symmetrischen Matrizen positiv

Mehr

Lineare Algebra und analytische Geometrie I

Lineare Algebra und analytische Geometrie I Prof Dr H Brenner Osnabrück WS 2015/2016 Lineare Algebra und analytische Geometrie I Vorlesung 12 Wege entstehen dadurch, dass man sie geht Franz Kafka Invertierbare Matrizen Definition 121 Es sei K ein

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Informatiker I Wintersemester 3/ Aufgabenblatt 6. Januar Präsenzaufgaben

Mehr

Lineare Algebra II 3. Übungsblatt

Lineare Algebra II 3. Übungsblatt Lineare Algebra II 3. Übungsblatt Fachbereich Mathematik SS 2011 Prof. Dr. Kollross 27./28. April 2011 Susanne Kürsten Tristan Alex Minitest Aufgabe M1 (Formale Polynome) Betrachten Sie die folgenden Polynome

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 05.11.2013 Alexander Lytchak 1 / 14 Linearkombinationen Definition Es sei V ein reeller Vektorraum. Es sei (v i ) i

Mehr

Übungen zu Einführung in die Lineare Algebra und Geometrie

Übungen zu Einführung in die Lineare Algebra und Geometrie Übungen zu Einführung in die Lineare Algebra und Geometrie Andreas Cap Wintersemester 2014/15 Kapitel 1: Einleitung (1) Für a, b Z diskutiere analog zur Vorlesung das Lösungsverhalten der Gleichung ax

Mehr