1 Kurvenuntersuchung /40

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "1 Kurvenuntersuchung /40"

Transkript

1 00 Herbst, (Mathematik) Aufgabenvorschlag B Kurvenuntersuchung /40 Die Tragflächen des berühmten Flugzeuges Junkers Ju-5 können an der Nahtstelle zum Flugzeugrumpf mithilfe der Funktionen f und g mit 8 f( x) = x + x + x; x [0;7] und g mit 7 gx ( ) = x x; x [0;7] 0 0 annähernd beschrieben werden. (Hierbei gilt: Einheit entspricht m) Foto: J. Lehnen. Bestimmen Sie die Stellen, an denen die beiden Tragflächenhälften im betrachteten Intervall aufeinander treffen. /4. Bestimmen Sie den absoluten Hochpunkt bzw. Tiefpunkt der zugehörigen Graphen von f und g. /. Skizzieren Sie die Graphen der Funktionen f und g (Tragflächenprofil) in das beiliegende Koordinatensystem. /4.4 Bestimmen Sie die maximale Dicke des Tragflächenprofils. /8.5 In die Tragflächen sollen flächenfüllende Kraftstofftanks eingebaut werden. Bestimmen Sie den Flächeninhalt des Tragflächenprofils, das von f und g im Intervall [0;7] eingeschlossen wird und das Volumen des Treibstofftanks, wenn dieser eine Länge von m hat. /6.6 Zur Messung der Fluggeschwindigkeit wird an der Unterseite der Tragfläche im Punkt P(5 g (5)) ein Messrohr angebracht. Aus strömungstechnischen Gründen wird das Messrohr tangential an der Unterseite montiert. Bestimmen Sie die Gleichung der Geraden t, auf der das Messrohr liegt. 00 Herbst, (Mathematik) /6 Aufgaben Seite von 4

2 00 Herbst, (Mathematik) Aufgabenvorschlag B Rekonstruktion /5 Der Graph einer Funktion f dritten Grades schneidet die y-achse unter einem Winkel von 45, die Tangente an den Graphen der Funktion hat dort einen positiven Anstieg. Der Graph von f berührt im Extrempunkt PE ( f ( )) die x- Achse, außerdem liegt der Punkt P(,75) auf dem Graphen von f.. Stellen Sie mit den oben genannten Bedingungen das Bedingungsgefüge zusammen und stellen Sie daraus ein Gleichungssystem auf. /7. Bestimmen Sie die Koeffizienten von f, indem Sie das Gleichungssystem mit einem Verfahren Ihrer Wahl lösen. Sollten Sie unter. die Bedingungen nicht oder nur unvollständig aufgestellt haben, lösen Sie das folgende Ersatzgleichungssystem: /7 I:,5 = a + b + c + d II: 0 = 8a + 4b + c + d III:,5 = 8a - b + c IV: - = a - 4b. Stellen Sie die Funktionsgleichung von f auf, indem Sie die berechneten Koeffizienten in Ihren Ansatz einsetzen. / 00 Herbst, (Mathematik) Aufgaben Seite von 4

3 00 Herbst, (Mathematik) Aufgabenvorschlag B Extremwertaufgabe /5 Eine Visitenkarte soll eine rechteckige Fläche haben. Dabei soll das Textfeld jeder Karte rechts und links einen Abstand von je 0,6 cm, oben und unten einen Abstand von je 0,5 cm zum Kartenrand aufweisen. Darüber hinaus soll der Umfang jeder Karte genau 8,4 cm groß sein. 0,5 Textfläche b 0,5 0,6 a 0,6 Rechnen Sie ohne Einheiten. Zeigen Sie, dass A eine (Ziel)Funktion ist, mit der die Flächeninhalte der Textfläche der Visitenkarten in Abhängigkeit der Länge a des jeweilig gewählten Textfeldes berechnet werden können. Es gilt: Aa ( ) = a( a) mit D = { a IR 0 a } A Längeneinheit =ˆ cm bzw. Flächeneinheit =ˆ cm /7. Ermitteln Sie, welche Abmessungen zu wählen sind, damit das Textfeld möglichst viel Text aufnehmen kann. /6 Beschreiben Sie, wie das Textfeld in diesem Fall aussieht.. Erläutern Sie, warum D = { a IR 0 a } der Definitionsbereich der (Ziel)Funktion A ist. A / 00 Herbst, (Mathematik) Aufgaben Seite von 4

4 00 Herbst, (Mathematik) Aufgabenvorschlag B 4 Integralrechnung /0 Gegeben sind die Gerade g: gx ( ) = x+ und 7 die Parabel p: px ( ) = x + x+ mit x IR. 4. Berechnen Sie den Scheitelpunkt der Parabel mit Hilfe der Differenzialrechnung und die Schnittpunkte der Parabel mit der x- Achse. Ermitteln Sie die Schnittpunkte der Geraden und der Parabel. /0 4. Skizzieren Sie mit Hilfe der Ergebnisse von 4. beide Funktionsgraphen in einem Koordinatensystem im Intervall [ ;7]. /5 4. Berechnen Sie das bestimmte Integral 5 ( p( x) g( x)) dx. Begründen Sie, dass der Wert des bestimmten Integrals identisch ist mit dem Flächeninhalt, der von beiden Funktionen eingeschlossen wird. /6 4.4 Eine zur y- Achse parallele Gerade mit der Gleichung x = u halbiert den Flächeninhalt A. Ermitteln Sie u. /9 00 Herbst, (Mathematik) Aufgaben Seite 4 von 4

5 00 Herbst (Mathematik) Teil- Erwartete Teilleistung aufgaben. Schnittstellen von f und g : f( x) = g( x) 8 7 x + x + x= x x x x + x= x x + x = xs = 0 6 x + x = x + x 6= 0 xs / = ± + 6= ± 8 xs = 7 x = 9 nicht im Definitionsbereich S Die Tragflächen treffen bei x S = 0 x S = 7 aufeinander. Alternativ: Berechnung über Nullstellen. Hochpunkt des Graphen von f : f () x = x x x x = = x / 8 =± + x =± / x = 4, 5 ; f ( x ) < 0 E x =, 5 ; nicht im Definitionsbereich f( x) = 0,964 H(4, 4 0,964) 0 00 Herbst, (Mathematik) Seite von 8

6 Teilaufgaben 00 Herbst (Mathematik) Erwartete Teilleistung Tiefpunkt des Graphen von g: g ( x) = 0 7 x = x = =,5 g (,5) > 0 g(,5) = 0, 65 T (,5 0, 65). Graphen der Funktionen f und g: 4.4 Die Dicke des Profils in y-richtung lässt sich als d( x) = f( x) g( x) darstellen. Die Dicke d ist an der Stelle x maximal, falls gilt: d ( x) = 0 und d ( x) < 0. d( x) = 0,0 ( x + x 6 x) d ( x) = 0,0 (x + 4x 6) 0= 0,0 (x + 4x 6) 4 0= x + x x = 5,97 ; nicht im Definitionsbereich x =,964 d (,964) = 0, 776 < 0 Die maximale Dicke beträgt: d(,964),56m.5 Die Querschnittsfläche der Tragfläche lässt sich als Flächeninhalt der von den Funktionsgraphen eingeschlossenen Fläche beschreiben: 00 Herbst, (Mathematik) Seite von 8

7 Teilaufgaben 00 Herbst (Mathematik) Erwartete Teilleistung 7 A= ( f( x) g( x)) dx 0 7 0,0 ( 6 ) 0 = x + x x dx 4 6 = 0,0 x + x x 4 4 = 7,46 m 48 4 V = A m= 4, 9 m Die Steigung der Tangente kann über die erste Ableitung der Parabel g ermittelt werden: g ( x) = 0,x 0,5 g (5) = 0,5 Mit der Steigung m = 0,5 der Tangente und dem Berührpunkt P(5 0,5) ergibt sich: 0,5 = 0, 75 + b. Die gesuchte Funktionsgleichung von t lautet: tx ( ) = 0,5 x,5 Summe mögliche BE Herbst, (Mathematik) Seite von 8

8 00 Herbst (Mathematik) Teil- Erwartete Teilleistung aufgaben. Ansatz: f ( x) = ax + bx + cx+ d f ( x) = ax + bx+ c Bedingungsgefüge:. f (0) = (Anstieg bei x = 0 ist ). f ( ) = 0 ( x N = ist Nullstelle). f ( ) = 0 ( x E = ist Extremstelle) 4. f ( ) =,75 ( P(,75) liegt auf dem Graphen von f ) Gleichungssystem: I: -,75 = -a + b - c + d II: 0 = -8a + 4b - c + d III: 0 = a - 4b + c IV: = c. Lösen des Gleichungssystems (ebenso Ersatz-LGS) Daraus ergibt sich (auch Ersatz-LGS): a=, b=, 5, c=, d = 5. Für den Funktionsterm gilt: f ( x) = x +,5x + x Summe 4 0 mögliche BE 5 00 Herbst, (Mathematik) Seite 4 von 8

9 00 Herbst (Mathematik) Teil- Erwartete Teilleistung aufgaben. Erstellung der Zielfunktion Aab (, ) = ab als Hauptbedingung 8,4 = ( a+ 0,6) + ( b+ 0,5) als Nebenbedingung = a+,4+ b+ 4 = ( a+ b) Es folgt: a+ b= b= a Eingesetzt in die Hauptbedingung: A( a) = a ( a) = a a. Berechnung der Abmessungen: A(a) = a a A (a) = a A (a) =,, A ( a) = 0 und A ( a) 0 ist hinreichend für Extremstellen a= 0 + a a = a = 6 DA ist Extremstellenkandidat. Mit A ( 6) = < 0 folgt, dass ah = 6 Hochstelle von A ist. Einsetzen von a H in die nach b umgestellte Nebenbedingung: b H = 6 = 6 Damit die Textfläche maximal viel Text aufnehmen kann, muss sie quadratisch sein. Wegen Einheit entspricht cm, ist als Kantenlänge dieses Quadrats 6 cm zu wählen. Ein Lösungsweg anhand des Scheitelpunkts des Graphen der quadratischen Zielfunktion ist entsprechend zu bewerten. 00 Herbst, (Mathematik) Seite 5 von 8

10 Teilaufgaben. 00 Herbst (Mathematik) Erwartete Teilleistung A { 0 } D = a IR a ist der Definitionsbereich. Bei a = 0 kann die waagerecht verlaufende Länge des Textfeldes nicht gewählt werden, das Textfeld besteht dann aus einem Strich der Flächeninhalt ist dann Null. Die Höhe des Textfeldes ist mindesten h = 0 groß. Es ergibt sich in diesem Fall aus der Formel für die Nebenbedingung a = und das Textfeld besteht aus einem Strich. Summe 4 8 mögliche BE 5 00 Herbst, (Mathematik) Seite 6 von 8

11 00 Herbst (Mathematik) Teilaufgaben 4. Erwartete Teilleistung Scheitelpunkt: p / (x) = - x + und p // (x) = - 6 p / (x) = 0 S( / ) p // () < 0 Maximum Nullstellen: p(x) = 0 liefert die quadratische Gleichung x ² - 6x 7 = 0 mit den Lösungen x 0 / = 7 und x 0 / = -. Also sind die Schnittpunkte N ( 7 / 0 ) und N ( - / 0 ). Schnittpunkte: p(x) und g(x) gleichsetzen führt auf die Gleichung x ² - 4x 5 = 0 mit den Lösungen x = 5 und x = -. Damit ergeben sich die Schnittpunkte S ( 5 / 4 ) und S ( - / 0 ) y 6 g 5 4 A p x A = 5 7 (( x ² + x + ) ( x + )) dx 5 A = [- x ³ + x ² + x 9 ] 5 Begründung der Identität = ( + ) FE= FE u 5 6 = [ - x ³ + x ² + x 9 ] 6 = - 9 u ³ + u ² + 5 u liefert die Gleichung 00 Herbst, (Mathematik) Seite 7 von 8

12 Teilaufgaben 00 Herbst (Mathematik) Erwartete Teilleistung 0 = u ³ - 6u² - 5u + 46 Die Polynomendivision durch ( u ) bringt die Gleichung u ² - 4u = 0 mit den Lösungen u 7, und u -,. Diese Lösungen entfallen, da nicht Element [ ;5]. 6 Also halbiert die Gerade x = die Fläche. Summe 8 9 mögliche BE 0 00 Herbst, (Mathematik) Seite 8 von 8

Abschlussprüfung Fachoberschule 2014 Herbst Mathematik

Abschlussprüfung Fachoberschule 2014 Herbst Mathematik Abschlussprüfung Fachoberschule 01 Herbst 1 Funktionsuntersuchung /0 Die Absprung- und Tauchphase eines Schwimmers kann vom Absprung vom Startblock bis zum Wiederauftauchen durch den Graphen der Funktion

Mehr

1 /41. Abschlussprüfung Fachoberschule 2010, (Mathematik) Aufgabenvorschlag B

1 /41. Abschlussprüfung Fachoberschule 2010, (Mathematik) Aufgabenvorschlag B , (Mathematik) / Gegeben ist eine Funktion f mit der Funktionsgleichung f ( x) = x x + x 6x+ ; x. Untersuchen Sie das Symmetrieverhalten des Graphen von f und begründen Sie Ihre Aussage. /. Untersuchen

Mehr

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung

= / 40. Abschlussprüfung Fachoberschule 2012 (Mathematik) Aufgabenvorschlag B. Gegeben ist die Funktion f mit der Funktionsgleichung Abschlussprüfung Fachoberschule () Aufgabenvorschlag B / 4 Gegeben ist die Funktion f mit der Funktionsgleichung 4 f ( x) x x x = + +. Dazu ist ein Rechteck gegeben, dessen Seiten parallel zu den Koordinatenachsen

Mehr

Abitur 2014 Mathematik Infinitesimalrechnung I

Abitur 2014 Mathematik Infinitesimalrechnung I Seite http://www.abiturloesung.de/ Seite 2 Abitur 204 Mathematik Infinitesimalrechnung I Die Abbildung zeigt den Graphen einer Funktion f. Teilaufgabe Teil A (5 BE) Gegeben ist die Funktion f : x x ln

Mehr

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn)

1 /40. Abschlussprüfung Fachoberschule 2011 Mathematik ( ) = 0, 001 0, , Abb.1 (erstesteilstück der Achterbahn) Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag A /40 Das erste Teilstück einer Achterbahn ruht auf sechs senkrechten Stützen, die in Abständen von 5 m aufgestellt sind (siehe Abb.). Es lässt sich

Mehr

Flächenberechnung mit Integralen

Flächenberechnung mit Integralen Flächenberechnung mit Integralen W. Kippels 30. April 204 Inhaltsverzeichnis Übungsaufgaben 2. Aufgabe................................... 2.2 Aufgabe 2................................... 2.3 Aufgabe 3...................................

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach Abschlussprüfung an der Fachoberschule im Herbst 0 (A) Nur für die Lehrkraft Prüfungstag 7. November 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach (A) Name, Vorname Klasse Prüfungstag 9. April 009 Prüfungszeit Zugelassene Hilfsmittel

Mehr

1 /40. dargestellt werden.

1 /40. dargestellt werden. Abschlussprüfung Fachoberschule 0 () Aufgabenvorschlag B /40 Auf der Berliner Stadtautobahn A00 / Autobahndreieck Charlottenburg wurde über einen bestimmten Zeitraum die Staulänge l in Abhängigkeit von

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014

Abschlussprüfung an der Fachoberschule im Schuljahr 2013/2014 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/0 Fach (B) Prüfungstag. Juni 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abschlussprüfung Fachoberschule 2015 Herbst Mathematik

Abschlussprüfung Fachoberschule 2015 Herbst Mathematik bschlussprüfung Fachoberschule 5 Herbst ufgabenvorschlag B Funktionsuntersuchung / Gegeben ist die Funktion f mit der Funktionsgleichung Der Graph der Funktion ist G f. f 5 5 ; IR.. Untersuchen Sie das

Mehr

Gemischte Aufgaben zur Differentialund Integralrechnung

Gemischte Aufgaben zur Differentialund Integralrechnung Gemischte Aufgaben zur Differentialund Integralrechnung W. Kippels 0. Mai 04 Inhaltsverzeichnis Aufgaben. Aufgabe.................................... Aufgabe.................................... Aufgabe...................................

Mehr

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs

Ministerium für Schule und Weiterbildung NRW M GK HT 3 Seite 1 von 5. Unterlagen für die Lehrkraft. Abiturprüfung Mathematik, Grundkurs Seite 1 von 5 Unterlagen für die Lehrkraft Abiturprüfung 27 Mathematik, Grundkurs 1. Aufgabenart 1 Analysis 2. Aufgabenstellung siehe Prüfungsaufgabe. Materialgrundlage 4. Bezüge zu den Vorgaben 27 1.

Mehr

Abschlussprüfung Fachoberschule 2017 Mathematik

Abschlussprüfung Fachoberschule 2017 Mathematik Abschlussprüfung Fachoberschule 7 Aufgabenvorschlag B Funktionsuntersuchung /4 Gegeben ist die Funktion f mit der Funktionsgleichung f( x) = x x x +, x IR.. Berechnen Sie die fehlenden Funktionswerte f(x)

Mehr

Abschlussprüfung Fachoberschule 2014 Mathematik

Abschlussprüfung Fachoberschule 2014 Mathematik Abschlussprüfung Fachoberschule 04 Aufgabenvorschlag A Funktionsuntersuchung /8 Gegeben sei die Funktion f mit der Funktionsgleichung f( x) = x x+ ; x. 8. Untersuchen Sie das Symmetrieverhalten des Graphen

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013

Abschlussprüfung an der Fachoberschule im Schuljahr 2012/2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr 0/0 Fach Mathematik (A) Prüfungstag 9. April 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine

Mehr

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13

1.3 Berechnen Sie die Koordinaten der Wendepunkte des Schaubildes der Funktion f mit f( x) x 6x 13 Musteraufgaben ab 08 Pflichtteil Aufgabe Seite / BEISPIEL A. Geben Sie Lage und Art der Nullstellen der Funktion f mit f( x) ( x ) ( x ) ; x IR an.. Bestimmen Sie die Gleichung der Tangente in P( f ())

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

Mathemathik-Prüfungen

Mathemathik-Prüfungen M. Arend Stand Juni 2005 Seite 1 1980: Mathemathik-Prüfungen 1980-2005 1. Eine zur y-achse symmetrische Parabel 4.Ordnung geht durch P 1 (0 4) und hat in P 2 (-1 1) einen Wendepunkt. 2. Diskutieren Sie

Mehr

/46. Abschlussprüfung Fachoberschule 2013 Mathematik

/46. Abschlussprüfung Fachoberschule 2013 Mathematik Abschlussprüfung Fachoberschule 0 Aufgabenvorschlag B /46 Am. Februar 0 wird um 4:00 Uhr ein Erdbeben mit der Anfangsstärke auf der sogenannten Richter-Skala gemessen. Das Beben dauert etwas länger als

Mehr

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung

Abschlussprüfung Berufliche Oberschule 2017 Mathematik 12 Nichttechnik - A I - Lösung Abschlussprüfung Berufliche Oberschule Mathematik Nichttechnik - A I - Lösung Teilaufgabe. Gegeben ist die ganzrationale Funktion g dritten Grades mit D g IR, deren Graph G g in untenstehender Abbildung

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 00/0 Fach (A) Prüfungstag. Mai 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A

Abiturprüfung Mathematik 2005 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Abiturprüfung Mathematik (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis Gruppe I, Aufgabe A Für jedes a > ist eine Funktion f a definiert durch fa (x) = x (x a) mit x R a Das Schaubild von f

Mehr

Analysis II. Abitur Mathematik Bayern 2012 Musterlösung. Bayern Teil 1. Aufgabe 1. Aufgabe 2. Abitur Mathematik: Musterlösung.

Analysis II. Abitur Mathematik Bayern 2012 Musterlösung. Bayern Teil 1. Aufgabe 1. Aufgabe 2. Abitur Mathematik: Musterlösung. Abitur Mathematik: Musterlösung Bayern 2012 Teil 1 Aufgabe 1 2x + 3 f(x) = x² + 4x + 3 DEFINITIONSMGE Nullstellen des Nenners:! x² + 4x + 3=0 Lösungen x 1,2 = 4 ± 16 12 2 = 2 ± 1, d.h. x 1 = 3 und x 2

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Fach Abschlussprüfung an der Fachoberschule im Schuljahr 009/00 Mathematik (B) Name, Vorname Klasse Prüfungstag 4. Juni 00 Prüfungszeit Zugelassene

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009

Abschlussprüfung an der Fachoberschule im Schuljahr 2008 / 2009 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 008 / 009 Fach Mathematik (B) Name, Vorname Klasse Prüfungstag 7. Mai 009 Prüfungszeit Zugelassene

Mehr

Musteraufgaben Fachoberschule 2017 Mathematik

Musteraufgaben Fachoberschule 2017 Mathematik Musteraufgaben Fachoberschule 07 Funktionsuntersuchung /8 Gegeben ist die Funktion f mit der Funktionsgleichung f(x) = 0,05x 0,75x +,x +,8 und dem Definitionsbereich x [0;0]. Der Graph G f der Funktion

Mehr

Abiturprüfung Baden-Württemberg 1999

Abiturprüfung Baden-Württemberg 1999 c 00 by Rainer Müller - http://www.emath.de Abiturprüfung Baden-Württemberg 999 Grundkurs Mathematik - Analysis Zu jedem t > 0 ist eine Funktion f t gegeben durch f t (x) = 3t x(x 3t) ; x IR Ihr Schaubild

Mehr

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2015 (ohne CAS) Baden-Württemberg Baden-Württemberg: Abitur 01 Pflichtteil www.mathe-aufgaben.com Hauptprüfung Abiturprüfung 01 (ohne CAS) Baden-Württemberg Pflichtteil Hilfsmittel: keine allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011

Abschlussprüfung an der Fachoberschule im Schuljahr 2010/2011 Senatsverwaltung für Bildung, Wissenschaft und Forschung Abschlussprüfung an der Fachoberschule im Schuljahr 00/0 Fach (B) Prüfungstag 6. Juni 0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

5.5. Abituraufgaben zu ganzrationalen Funktionen

5.5. Abituraufgaben zu ganzrationalen Funktionen .. Abituraufgaben zu ganzrationalen Funktionen Aufgabe : Kurvendiskussion, Fläche zwischen zwei Schaubildern () Untersuchen Sie f(x) x x und g(x) x auf Symmetrie, Achsenschnittpunkte, Extrempunkts sowie

Mehr

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1

Abiturprüfung Mathematik 2007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe 1 Abiturprüfung Mathematik 007 (Baden-Württemberg) Berufliche Gymnasien ohne TG Analysis, Aufgabe. (8 Punkte) Das Schaubild einer Polynomfunktion. Grades geht durch den Punkt S(0/) und hat den 3 Wendepunkt

Mehr

7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften

7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften 195 7.4 Bestimmung von Funktionsgleichungen aus vorgegebenen Eigenschaften In der Kurvenuntersuchung werden von einer gegebenen Funktionsgleichung ausgehend die Graphen von Funktionen auf ganz bestimmte

Mehr

Abitur 2012 Mathematik Infinitesimalrechnung I

Abitur 2012 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 212 Mathematik Infinitesimalrechnung I Geben Sie zu den Funktionstermen jeweils den maximalen Definitionsbereich sowie einen Term der Ableitungsfunktion

Mehr

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Arbeitsblätter zur Vergleichsklausur EF. Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Arbeitsblätter zur Vergleichsklausur EF Arbeitsblatt I.1 Nullstellen Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Familie Fach Abschlussprüfung an der Fachoberschule im Schuljahr 06/7 (B) Nur für die Lehrkraft Prüfungstag. Mai 07 Prüfungszeit Zugelassene Hilfsmittel 09:00 :00

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach bschlussprüfung an der Fachoberschule im Herbst 5 B Nur für die Lehrkraft Prüfungstag 7. Dezember 5 Prüfungszeit Zugelassene Hilfsmittel llgemeine

Mehr

Abitur 2017 Mathematik Infinitesimalrechnung I

Abitur 2017 Mathematik Infinitesimalrechnung I Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 217 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion g : x 2 4 + x 1 mit maximaler Definitionsmenge D g. Der Graph von g wird mit G g bezeichnet.

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufgabe 1 Ein Polynom 3. Grades hat eine Nullstelle bei x 0 = 0 und einen Wendepunkt bei x w = 1. Die Gleichung der Wendetangente lautet

Mehr

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg

Hauptprüfung Abiturprüfung 2016 (ohne CAS) Baden-Württemberg Hauptprüfung Abiturprüfung 016 (ohne CAS) Baden-Württemberg Wahlteil Analysis 1 Hilfsmittel: GTR und Formelsammlung allgemeinbildende Gymnasien Alexander Schwarz www.mathe-aufgaben.com April 016 1 Aufgabe

Mehr

Abitur 2013 Mathematik Infinitesimalrechnung II

Abitur 2013 Mathematik Infinitesimalrechnung II Seite 1 http://www.abiturloesung.de/ Seite 2 Abitur 213 Mathematik Infinitesimalrechnung II Teilaufgabe Teil 1 1 (5 BE) Geben Sie für die Funktion f mit f(x) = ln(213 x) den maximalen Definitionsbereich

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010

Abschlussprüfung an der Fachoberschule im Schuljahr 2009/2010 Senatsverwaltung für Bildung, Wissenschaft und Forschung Fach Abschlussprüfung an der Fachoberschule im Schuljahr 009/00 Mathematik (A) Name, Vorname Klasse Prüfungstag 5. Mai 00 Prüfungszeit Zugelassene

Mehr

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012

Abschlussprüfung an der Fachoberschule im Schuljahr 2011/2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Schuljahr / Fach (A) Prüfungstag 5. Mai Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise Spezielle

Mehr

Arbeitsblätter Förderplan EF

Arbeitsblätter Förderplan EF Arbeitsblätter Förderplan EF I.1 Nullstellen bestimmen Lösungen I.2 Parabeln: Nullstellen, Scheitelpunkte,Transformationen Lösungen I.3 Graphen und Funktionsterme zuordnen Lösungen II.1 Transformationen

Mehr

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2

Mathematik Kurs auf erhöhtem Anforderungsniveau Aufgabenvorschlag Teil 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 06 Aufgabenvorschlag Teil Hilfsmittel: Nachschlagewerk zur Rechtschreibung

Mehr

Abschlussprüfung an der Fachoberschule im Herbst 2012

Abschlussprüfung an der Fachoberschule im Herbst 2012 Senatsverwaltung für Bildung, Jugend und Wissenschaft Fach Name, Vorname Klasse Abschlussprüfung an der Fachoberschule im Herbst 0 (B) Prüfungstag 0..0 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

Abiturprüfung Mathematik Baden-Württemberg (ohne CAS) Wahlteil - Aufgaben Analysis I Aufgabe I : Gegeben sind die Funktionen f und g durch f(x) cos( π x) und g(x) ( x) f(x) ; x Ihre Schaubilder sind K

Mehr

Ergänzungsheft Erfolg im Mathe-Abi

Ergänzungsheft Erfolg im Mathe-Abi Ergänzungsheft Erfolg im Mathe-Abi Hessen Prüfungsaufgaben Grundkurs 2012 Grafikfähiger Taschenrechner (GTR), Computeralgebrasystem (CAS) Dieses Heft enthält Übungsaufgaben für GTR und CAS sowie die GTR-

Mehr

Differenzialrechnung

Differenzialrechnung Mathe Differenzialrechnung Differenzialrechnung 1. Grenzwerte von Funktionen Idee: Gegeben eine Funktion: Gesucht: y = f(x) lim f(x) = g s = Wert gegen den die Funktion streben soll (meist 0 oder ) g =

Mehr

Beispielklausur für zentrale Klausuren

Beispielklausur für zentrale Klausuren Seite von 5 Beispielklausur für zentrale Klausuren Mathematik Aufgabenstellung Gegeben ist die Funktion f mit f ( = 0,5 x 4,5 x + x 9. Die Abbildung zeigt den zu f gehörigen Graphen. Abbildung a) Ermitteln

Mehr

Quadratische Funktion

Quadratische Funktion Quadratische Funktion sind Funktionen die nur eine Variable enthalten, deren Exponent 2 ist und keine Variable die einen Exponenten enthält, der größer ist als 2. Zum Beispiel die quadratische Funktion

Mehr

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung.

Förderaufgaben EF Arbeitsblatt 1 Abgabe Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. Förderaufgaben EF Arbeitsblatt 1 Abgabe 20.1.15 1. Zeichne die Tangenten bei x=6 und bei x = 4 ein und bestimme die zugehörige Geradengleichung. 2. Bestimme f (x): a) f(x) = x 3 + 4x 2 x + 1 b) f(x) =

Mehr

Funktionen (linear, quadratisch)

Funktionen (linear, quadratisch) Funktionen (linear, quadratisch) 1. Definitionsbereich Bestimme den Definitionsbereich der Funktion f(x) = 16 x 2 2x + 4 2. Umkehrfunktionen Wie lauten die Umkehrfunktionen der folgenden Funktionen? (a)

Mehr

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg

Pflichtteilaufgaben zu Elemente der Kurvendiskussion. Baden-Württemberg Pflichtteilaufgaben zu Elemente der Kurvendiskussion Baden-Württemberg Hilfsmittel: keine allgemeinbildende Gymnasien Aleander Schwarz www.mathe-aufgaben.com September 6 Übungsaufgaben: Ü: Gegeben ist

Mehr

Analysis 5.

Analysis 5. Analysis 5 www.schulmathe.npage.de Aufgaben Gegeben ist die Funktion f durch f(x) = 2 e 2 x 2 (x D f ) a) Geben Sie den größtmöglichen Definitionsbereich der Funktion f an und führen Sie für die Funktion

Mehr

Hinweis: Die Lösung der Aufgaben mit Einsatz des Taschenrechners ist erlaubt, aber dokumentieren Sie den Lösungsweg!

Hinweis: Die Lösung der Aufgaben mit Einsatz des Taschenrechners ist erlaubt, aber dokumentieren Sie den Lösungsweg! Aufgabenteil mit Lösungshinweisen Anlage(n): keine Prüfungsfach: Mathematik 1 Hinweis: Die Lösung der Aufgaben mit Einsatz des Taschenrechners ist erlaubt, aber dokumentieren Sie den Lösungsweg! Aufgabe

Mehr

Analysis: Klausur Analysis

Analysis: Klausur Analysis Analysis Klausur zu Extrempunkten, Interpretation von Graphen von Ableitungsfunktionen, Tangenten und Normalen, Extremwertaufgaben (Bearbeitungszeit: 90 Minuten) Gymnasium J Alexander Schwarz www.mathe-aufgaben.com

Mehr

Übungsaufgaben zur Kurvendiskussion

Übungsaufgaben zur Kurvendiskussion SZ Neustadt Mathematik Torsten Warncke FOS 12c 30.01.2008 Übungsaufgaben zur Kurvendiskussion 1. Gegeben ist die Funktion f(x) = x(x 3) 2. (a) Untersuchen Sie die Funktion auf Symmetrie. (b) Bestimmen

Mehr

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate

Mathematik-Lexikon. Abszisse Die x-koordinate eines Punktes -> Ordinate Mathematik-Lexikon HM00 Abszisse Die x-koordinate eines Punktes -> Ordinate Aufstellen von Funktionstermen Gesucht: Ganzrationale Funktion n-ten Grades: ƒ(x) = a n x n + a n-1 x n-1 + a n- x n- +... +

Mehr

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur

FH- Kurs Mathematik Übungsaufgaben für 2. Klausur Aufgabe 1: Gegeben ist die Funktion f mit 1 f x = x x x + x R 8 3 2 ( ) = ( 3 9 + 27);. a) Untersuchen sie das Schaubild K von f auf Schnittpunkte mit den Koordinatenachsen, Hoch- und Tiefpunkte. Zeichnen

Mehr

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen

Analysis. A1 Funktionen/Funktionsklassen. 1 Grundbegriffe. 2 Grundfunktionen A1 Funktionen/Funktionsklassen 1 Grundbegriffe Analysis A 1.1 Gegeben sei die Funktion f mit f(x) = 2 x 2 + x. a) Bestimme, wenn möglich, die Funktionswerte an den Stellen 0, 4 und 2. b) Gib die maximale

Mehr

ANALYSIS. 3. Extremwertaufgaben (folgt)

ANALYSIS. 3. Extremwertaufgaben (folgt) ANALYSIS 1. Untersuchung ganzrationaler Funktionen 1.1 Symmetrie 2 1.2 Ableitung 2 1.3 Berechnung der Nullstellen 3 1.4 Funktionsuntersuchung I 4 1.5 Funktionsuntersuchung II 6 2. Bestimmung ganzrationaler

Mehr

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen

Aufgaben zum Aufstellen von Funktionen aus gegebenen Bedingungen Augaben zum Austellen von Funktionen aus gegebenen Bedingungen 1. Die Parabel Gp ist der Graph der quadratischen Funktion p(. Diese Parabel schneidet die x-achse im Punkt N(6/0). Ihr Scheitelpunkt S(/yS)

Mehr

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt.

1.2 Berechne den Inhalt der Fläche, die das Schaubild von mit 5P der -Achse einschließt. Diese Aufgaben sind zu bearbeiten. Sie können nicht abgewählt werden. Aufgabe A1 1. Gegeben ist die Funktion mit 2 3; 1.1 Eine der folgenden Abbildung zeigt das Schaubild. 6P Untersuche für jede der Abbildungen,

Mehr

A Abituraufgaben. 1 Analysis. Aufgabe 1

A Abituraufgaben. 1 Analysis. Aufgabe 1 A Abituraufgaben 1 Analsis Aufgabe 1 Dem menschlichen Körper können Medikamente durch einen Tropf kontinuierlich zugeführt werden. Zu Beginn weist der Körper keine Medikamentenmenge auf, nach In- Gang-Setzen

Mehr

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2

Mathematik. Zentrale schriftliche Abiturprüfung Kurs auf erhöhtem Anforderungsniveau mit CAS. Aufgabenvorschlag Teil 2. Aufgabenstellung 2 Ministerium für Bildung, Jugend und Sport Senatsverwaltung für Bildung, Jugend und Wissenschaft Zentrale schriftliche Abiturprüfung 2016 Kurs auf erhöhtem Anforderungsniveau mit CAS Aufgabenvorschlag Teil

Mehr

Abiturprüfung Mathematik 006 Baden-Württemberg (ohne CAS) Haupttermin Pflichtteil - Aufgaben Aufgabe : ( VP) Bilden Sie die Ableitung der Funktion f mit f(x) sin(4x ). Aufgabe : ( VP) Geben Sie eine Stammfunktion

Mehr

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung:

Bestimmen Sie jeweils die Lösungsmenge der Gleichung: 1. Bestimmen Sie jeweils die Lösungsmenge der Gleichung: Baden-Württemberg Übungsaufgaben für den Pflichtteil Gleichungslehre Stichworte: lineare Gleichungen; quadratische Gleichungen; Gleichungen höherer Ordnung; Substitution; Exponentialgleichungen; trigonometrische

Mehr

Unterlagen für die Lehrkraft

Unterlagen für die Lehrkraft Ministerium für Bildung, Jugend und Sport Zentrale Prüfung zum Erwerb der Fachhochschulreife im Schuljahr 0/0 Mathematik B 8. Mai 0 09:00 Uhr Unterlagen für die Lehrkraft . Aufgabe: Differentialrechnung

Mehr

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1...

Pflichtteil Wahlteil Analysis Wahlteil Analysis Wahlteil Analysis Wahlteil Analytische Geometrie 1... Pflichtteil... Wahlteil Analysis... 7 Wahlteil Analysis... Wahlteil Analysis... Wahlteil Analytische Geometrie... 9 Wahlteil Analytische Geometrie... 008 Pflichtteil Lösungen zur Prüfung 008: Pflichtteil

Mehr

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f.

1 x x2 3 mit D f = IR. Teilaufgabe 1.1 (5 BE) Berechnen Sie die Nullstellen der Funktion f und geben Sie das Symmetrieverhalten von G f. Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A II - Lösung Teilaufgabe.0 Gegeben ist die reelle Funktion f( x) x x mit D f = IR. Teilaufgabe. (5 BE) Berechnen Sie die Nullstellen

Mehr

Nur für die Lehrkraft

Nur für die Lehrkraft Senatsverwaltung für Bildung, Jugend und Familie Fach Abschlussprüfung an der Fachoberschule im Schuljahr 06/7 (A) Nur für die Lehrkraft Prüfungstag 9. Mai 07 Prüfungszeit Zugelassene Hilfsmittel 09:00

Mehr

Übungen zu Kurvenscharen

Übungen zu Kurvenscharen Übungen zu Kurvenscharen. Gegeben ist die Geradenschar g t : = (t ) ( t) + 9 (t 9) mit D(g t ) = R, t R. a) Zeichnen Sie die Graphen der Funktionen g und g in ein Koordinatensstem. b) Geben Sie die Schnittpunkte

Mehr

Gruber I Neumann. Erfolg im Mathe-Abi. Prüfungsaufgaben Hessen GTR / CAS. Übungsbuch für den Grundkurs mit Tipps und Lösungen

Gruber I Neumann. Erfolg im Mathe-Abi. Prüfungsaufgaben Hessen GTR / CAS. Übungsbuch für den Grundkurs mit Tipps und Lösungen Gruber I Neumann Erfolg im Mathe-Abi Prüfungsaufgaben Hessen GTR / CAS Übungsbuch für den Grundkurs mit Tipps und Lösungen Vorwort Vorwort Dieses Übungsbuch ist speziell auf die Anforderungen des zentralen

Mehr

Abschlussprüfung an der Fachoberschule im Herbst 2013

Abschlussprüfung an der Fachoberschule im Herbst 2013 Senatsverwaltung für Bildung, Jugend und Wissenschaft Abschlussprüfung an der Fachoberschule im Herbst 013 Fach (B) Prüfungstag. November 013 Prüfungszeit Zugelassene Hilfsmittel Allgemeine Arbeitshinweise

Mehr

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5

f. y = 0,2x g. y = 1,5x + 5 h. y = 4 6x i. y = 4 + 5,5x j. y = 0,5x + 3,5 11. Lineare Funktionen Übungsaufgaben: 11.1 Zeichne jeweils den Graphen der zugehörigen Geraden a. y = 0,5x 0,25 b. y = 0,1x + 2 c. y = 2x 2 d. 2x + 4y 5 = 0 e. y = x f. y = 0,2x g. y = 1,5x + 5 h. y =

Mehr

Abschlussprûfung Berufskolleg. (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg. Analysis 2 Ganzrationale Funktionen.

Abschlussprûfung Berufskolleg. (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg. Analysis 2 Ganzrationale Funktionen. Abschlussprûfung Berufskolleg (Fachhochschulreife) Prüfungsaufgaben aus Baden-Württemberg Analysis 2 Ganzrationale Funktionen zusammen mit Exponentialfunktionen Jahrgänge 2009 bis 2016 Text Nr. 74302 Stand

Mehr

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - A I - Lösung. y-achse 1

Abschlussprüfung Berufliche Oberschule 2015 Mathematik 12 Nichttechnik - A I - Lösung. y-achse 1 Abschlussprüfung Berufliche Oberschule 0 Mathematik Nichttechnik - A I - Lösung Teilaufgabe Nebenstehende Abbildung zeigt den Graphen G f' der ersten Ableitungsfunktion einer in ganz IR definierten ganzrationalen

Mehr

Abschlussaufgabe Nichttechnik - Analysis II

Abschlussaufgabe Nichttechnik - Analysis II Analysis NT GS - 0.06.06 - m06_ntalsg_gs.mcd Abschlussaufgabe 006 - Nichttechnik - Analysis II.0 Gegeben sind die reellen Funktionen fx ( ) mit ID f = ID g = IR. ( ) = x und gx ( ) = fx ( ) +. Zeigen Sie,

Mehr

Beispielseite (Band 1) 2. Ganzrationale Funktionen 2.4 Nullstellen bei Funktionen 3. Grades

Beispielseite (Band 1) 2. Ganzrationale Funktionen 2.4 Nullstellen bei Funktionen 3. Grades Beispielseite (Band ). Ganzrationale Funktionen.4 Nullstellen bei Funktionen. Grades Funktionen. Grades ohne Absolutglied Bei ganzrationalen Funktionen. Grades ohne Absolutglied beginnt die Nullstellenberechnung

Mehr

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung)

Ergänzungsprüfung. zum Erwerb der Fachhochschulreife (technische Ausbildungsrichtung) Ergänzungsprüfung zum Erwerb der Fachhochschulreife 005 Prüfungsfach: Mathematik (technische Ausbildungsrichtung) Prüfungstag: Donnerstag, 16. Juni 005 Prüfungsdauer: 09:00-1:00 Uhr Hilfsmittel: elektronischer,

Mehr

Abitur 2015 Mathematik Infinitesimalrechnung I

Abitur 2015 Mathematik Infinitesimalrechnung I Seite 1 Abiturloesung.de - Abituraufgaben Abitur 215 Mathematik Infinitesimalrechnung I Gegeben ist die Funktion f : x ( x 3 8 ) (2 + ln x) mit maximalem Definitionsbereich D. Teilaufgabe Teil A 1a (1

Mehr

Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben

Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben Bestimmung ganzrationaler Funktionen, Steckbriefaufgaben 30 0 0-50 -40-30 -0-0 0 0 30 40 50 x. Eine Brücke ist 30 m hoch und hat eine Spannweite von 00 m. Welche Parabel beschreibt die Krümmung des Stützbogens?

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Inhalt der Lösungen zur Prüfung 2011:

Inhalt der Lösungen zur Prüfung 2011: Inhalt der Lösungen zur Prüfung : Pflichtteil Wahlteil Analysis 7 Wahlteil Analysis Wahlteil Analysis 6 Wahlteil Analytische Geometrie Wahlteil Analytische Geometrie 6 Pflichtteil Lösungen zur Prüfung

Mehr

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften

Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften Aufstellen einer Funktionsgleichung nach vorgegebenen Eigenschaften W. Kippels 10. April 2016 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Prinzipielle Vorgehensweise.......................... 2 1.2 Lösungsrezepte................................

Mehr

ABITURPRÜFUNG 2005 LEISTUNGSFACH MATHEMATIK

ABITURPRÜFUNG 2005 LEISTUNGSFACH MATHEMATIK ABITURPRÜFUNG 2005 LEISTUNGSFACH MATHEMATIK (HAUPTTERMIN) Arbeitszeit: Hilfsmittel: 270 Minuten Computeralgebrasystem Tafelwerk Wörterbuch zur deutschen Rechtschreibung Wählen Sie von den Aufgaben A1 und

Mehr

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind

gebrochene Zahl gekürzt mit 9 sind erweitert mit 8 sind Vorbereitungsaufgaben Mathematik. Bruchrechnung.. Grundlagen: gebrochene Zahl gemeiner Bruch Zähler Nenner Dezimalbruch Ganze, Zehntel Hundertstel Tausendstel Kürzen: Zähler und Nenner durch dieselbe Zahl

Mehr

MATHEMATIK K1. Gesamtpunktzahl /30 Notenpunkte

MATHEMATIK K1. Gesamtpunktzahl /30 Notenpunkte MATHEMATIK K1 21.11.2013 Aufgabe 1 2 3 4 5 6 7 Punkte (max) 6 3 4 4 2 10 1 Punkte Gesamtpunktzahl /30 Notenpunkte Der GTR ist nur für die Lösung der Textaufgabe (und zur Kontrolle der andern) zugelassen.

Mehr

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79

Differentialrechnung. Mathematik W14. Christina Sickinger. Berufsreifeprüfung. v 1 Christina Sickinger Mathematik W14 1 / 79 Mathematik W14 Christina Sickinger Berufsreifeprüfung v 1 Christina Sickinger Mathematik W14 1 / 79 Die Steigung einer Funktion Wir haben bereits die Steigung einer linearen Funktion kennen gelernt! Eine

Mehr

Matur-/Abituraufgaben Analysis

Matur-/Abituraufgaben Analysis Matur-/Abituraufgaben Analysis 1. Tropfen Die folgende Skizze zeigt die Kurve k mit der Gleichung y = (1 ) im Intervall 1. Die Kurve k bildet zusammen mit ihrem Spiegelbild k eine zur -Achse symmetrische

Mehr

Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf.

Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. I. Nullstellen Arbeitsblatt I.1 Aufgabe 1 Bestimme die Lösungen der folgenden Gleichungen möglichst im Kopf. Beachte den Satz: Ein Produkt wird null, wenn einer der Faktoren null wird, sonst nicht. Beispiele:

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 5 6. Semester ARBEITSBLATT 5. Kurvendiskussion ARBEITSBLATT 5 Kurvendiskussion Die mathematische Untersuchung des Graphen einer Funktion heißt Kurvendiskussion. Die Differentialrechnung liefert dabei wichtige Dienste. Intuitive Erfassung der Begriffe

Mehr

Parabeln - quadratische Funktionen

Parabeln - quadratische Funktionen Parabeln - quadratische Funktionen Roland Heynkes 9.11.005, Aachen Das Gleichsetzungsverfahren und die davon abgeleiteten Einsetzungs- und Additionsverfahren kennen wir als Methoden zur Lösung linearer

Mehr

Abiturprüfung Baden-Württemberg 2003

Abiturprüfung Baden-Württemberg 2003 c 2003 by Rainer Müller - http://www.emath.de 1 Lösung Abiturprüfung Baden-Württemberg 2003 Leistungskurs Mathematik - Analysis 1 Die Skizze oben zeigt den vertikalen Schnitt längs der Rotationsachse eines

Mehr

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen

Aufstellen der Funktionsgleichung aus gegebenen Bedingungen R. Brinkmann http://brinkmann-du.de Seite.0.0 Aufstellen der Funktionsgleichung aus gegebenen Bedingungen Drei unterschiedliche Punkte, die alle auf einer Parabel liegen sollen sind gegeben. Daraus soll

Mehr

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x.

Skripten für die Oberstufe. Kurvendiskussion. f (x) f (x)dx = e x. Skripten für die Oberstufe Kurvendiskussion x 3 f (x) x f (x)dx = e x H. Drothler 0 www.drothler.net Kurvendiskussion Zusammenfassung Seite Um Funktionsgraphen möglichst genau zeichnen zu können, werden

Mehr

Übungsaufgabe z. Th. lineare Funktionen und Parabeln

Übungsaufgabe z. Th. lineare Funktionen und Parabeln Übungsaufgabe z. Th. lineare Funktionen und Parabeln Gegeben sind die Parabeln: h(x) = 8 x + 3 x - 1 9 und k(x) = - 8 x - 1 1 8 x + 11 a) Bestimmen Sie die Koordinaten der Schnittpunkte A und C der Graphen

Mehr

1. Mathematikklausur NAME:

1. Mathematikklausur NAME: Themen: Ganzrationale Funktionen: Skizzieren, untersuchen bestimmen. 1. Mathematikklausur NAME: Schreiben Sie die Lösung mit dem Lösungsweg auf ein kariertes Doppelblatt. Lassen Sie auf jeder Seite einen

Mehr

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x

M I N I S T E R I U M F Ü R K U L T U S, J U G E N D U N D S P O R T. Berufsoberschule (BOS) SO/TO/WO. 2 2x Mathematik (43) Musteraufgabe Gruppe I: Analysis ohne Hilfsmittel ab 07 Seite /3 Gegeben ist die Funktion f mit 4 3 f(x) x x 3x 4x ; xir. 6 Bestimmen Sie den Bereich, in dem das Schaubild von f rechtsgekrümmt

Mehr