Money out of nothing? Prinzipien und Grundlagen der Finanzmathematik

Größe: px
Ab Seite anzeigen:

Download "Money out of nothing? Prinzipien und Grundlagen der Finanzmathematik"

Transkript

1 Money out of nothing? Prinziien Grlagen der Finanzmathematik Francesca Biagini Daniel Rost Die Finanzmathematik hat als jüngste mathematische Diszilin in den letzten 15 Jahren einen gewaltigen Aufschwung erlebt. Eine ihrer wichtigsten Aufgaben ist die Bewertung von Derivaten. Dabei lassen sich, am Beisiel einer Call-Otion, schon in einem ganz einfachen Marktmodell die ernunkte Prinziien dieser Theorie gut veranschaulichen. Der folgende Beitrag ist die Ausarbeitung eines Vortrags, den die Autorin auf der Münchener GDM-Tagung 1 gehalten hat. Er zeigt auch auf, wie finanzmathematische onzete ohne Probleme in den Schulunterricht integriert werden können. Ein verlockendes Angebot... Wir betrachten die Aktie der Linde AG gehen von einem heutigen (März 13) ursstand von 15 Euro aus (der aktuelle urs bei Druck dürfte wohl etwas höher sein). Ihre Bank bietet Ihnen dazu, zu einem gewissen, sofort zu entrichtenden Preis, folgendes Geschäft an: Wenn der urs S T der Aktie der Linde AG zum Zeitunkt T = März 14 größer als =96(Euro) ist, bekommen Sie von ihm die Differenz zu ausgezahlt; wenn er kleiner ist, bekommen Sie nichts. In der Finanzmathematik nennt man ein solches Geschäft eine Call-Otion auf die Aktie der Linde AG (in diesem Zusammenhang auch Underlying genannt) mit Strike =96 Fälligkeitszeitunkt T = März 14. Die Call-Otion liefert dann die Auszahlung C := max{s T, } =(S T ) +. Was man an Auszahlung bekommt, hängt also vom zukünftigen, heute noch ungewissen ursstand der Aktie in einem Jahr ab. Die Abbildung unten zeigt zwei mögliche ursverläufe, ausgehend von einem heutigen ursstand von S = 15 Euro. Im linken Bild landet der urs in T oberhalb von, Sie erhalten also die Auszahlung C = S T >. Imrechten Fall ist S T <, alsoistc =. Eine Call-Otion ist ein gängiges Finanzinstrument zur Absicherung gegen steigende ursverläufe. In der Tat, wenn man die Linde-Aktie zum Zeitunkt T erwerben, aber dafür nicht mehr als =96Euro bezahlen möchte, lässt sich dies mit dem auf obiger Call-Otion bewerkstelligen. Denn unabhängig vom ursstand zum Zeitunkt T kostet die Aktie dann maximal 96 Euro, indem man sie entweder direkt am Markt erwirbt (im Fall S T )oder den anfallenden Differenzbetrag (im Fall S T > ) durch die Auszahlung der Otion abdeckt. Die entscheidende Frage ist nun: Wie viel ist eine solche Otion heute wert? Welchen Preis darf der Bankberater als Verkäufer dafür verlangen, bzw. welchen Preis sind Sie als äufer bereit, dafür zu bezahlen?... ein fairer Preis? Wird die Otion am Markt gehandelt (wie die Aktie auch), so wird der Preis der Otion auch durch den Markt, d. h. durch die Nachfrage bestimmt. Reißt man dem Verkäufer die Otionsscheine aus den Händen, wird der Preis steigen; bleibt er auf ihnen sitzen, wird der Preis sinken. Das Erstaunliche ist nun, dass sich für diesen sich 15 1 S T S T 5..4 t.6.8 T t.6.8 T 1 Abbildung 1. S T > Abbildung. S T 18 FOUS DOI /dmvm-13-11

2 dann einstellenden fairen Preis der Otion ein einfaches Prinzi finden sogar eine Formel angeben lässt. Zunächst scheint es einsichtig, dass der Preis der Otion von den Vorstellungen abhängt, die man vom zukünftigen ursverlauf hat. Unserer erste Aufgabe wird es also sein hier kommt die Stochastik ins Siel ein Modell aufzustellen, das den zufälligen ursverlauf des Underlyings gut erfasst. Charakteristisch für die mathematische Herangehensweise ist nun, dass man zunächst ein ganz einfaches Aktienkursmodell betrachtet, auch wenn dieses die für einen Aktienchart tyische Zitterbewegung nur sehr rudimentär erfasst. Das Binomialmodell Unsere sehr vereinfachenden Modellannahmen für den urs des Underlyings das Marktgeschehen sind: 1. Ein Börsenhandel ist nur zu drei Zeitunkten möglich: t =(heute, März 13) t =1(Juli 13) t =(November 13) T (= März 14) wird gleich 3 gesetzt.. In diesen drei Zeitunkten können wir die Aktie des Underlyings (auch Anteile davon) zum aktuellen urs kaufen oder verkaufen (auch sog. Leerverkäufe möglich) Geld auf ein zinsloses Bankkonto einzahlen bzw. von dort abheben (auch zinslose Überziehung erlaubt). 3. Die Aktie steht in t =bei 15 (Euro) kann sich ro Zeitschritt nur mit einer Wahrscheinlichkeit von = 3 4 um % nach oben oder mit einer Wahrscheinlichkeit von 1 = 1 4 um % nach unten entwickeln. Die Wahl von = 3 4 für eine Bewegung nach oben siegelt dabei unsere ositive Markterwartung wider. Dieses Binomialmodell lässt sich als Binomialbaum wie folgt aufzeichnen: S t+1 =(1±, ) S t =3/4 1- =1/ S 3 =96 } Zeit Man sieht, dass der Aktienkurs von 15 (in t =)biszu 16 steigen oder auch auf fallen kann. Insgesamt sind in T =3genau 4 ursstände möglich; ganz rechts ist zu diesen Endkursständen die jeweilige Auszahlung der Otion notiert. Für S 3 = 16 ist C = 1 S 3 = ist C =48 S 3 =96 ist C = S 3 = ist C =. Der zu diesem Baum gehörige Grraum Ω besteht aus den 8 Pfaden, die (von oben nach unten) mit ω 1,...,ω 8 bezeichnet seien. Für die zugehörige Wahrscheinlichkeit P auf Ω sind die Elementarwahrscheinlichkeiten dann die Pfadwahrscheinlichkeiten, also z. B. P({ω 1 })= 3 u. s. w. Es liegt nun nahe, in diesem Modell als Preis der Otion die mittlere Auszahlung, also den Erwartungswert von C zu verwenden. Dazu berechnen wir die Wahrscheinlichkeitsverteilung von S 3, die sich aus obigem Binomialbaum wie folgt ergibt: P[S 3 = 16] = 3 = 7 3 P[S 3 = ] = (1 ) = 7 P[S 3 = 96] = (1 ) = 9 1 P[S 3 = ] = (1 ) 3 = 1 Der Erwartungswert von C unter P ist dann E P [ (S3 ) +] = =7, 875. Es wäre jedoch nicht ratsam, in diesem Modell für die Otion 7,87 (Euro) zu bezahlen, denn man kann, wie wir im Folgenden sehen werden, durch geschicktes Handeln mit einem weitaus geringeren Einsatz dieselbe Auszahlung erreichen, wie sie die Otion liefert. Der faire Preis der Otion ist damit nicht der Erwartungswert der Auszahlung der Otion, 7,87 Euro ist als Preis zu hoch. Strategie Vermögensrozess Bis jetzt haben wir zwar ein Modell für den Aktienkurs aufgestellt, jedoch noch nicht die Möglichkeit realisiert, mit der Aktie Handel zu betreiben. Dazu definieren wir für t =, 1, x t = Anzahl der Aktien, die zum Zeitunkt t gekauft werden; diese werden bis t +1gehalten; y t = Betrag auf dem Bankkonto Es bedeutet also z. B. (x, y )=( 6 5, 15), dasswirzum Zeitunkt t = die Menge von 6 5 Aktien kaufen uns (dafür) 15 Euro von der Bank leihen, die wir natürlich in t =1wieder zurückzahlen müssen. (x t, y t) dürfen MDMV 1 / FOUS 19

3 vom Pfad abhängen, d. h. wir können in S 1 = 15 anders handeln als in S 1 = 1; allerdings dürfen wir in t für die Festlegung von (x t, y t) immer nur auf die Information zurückgreifen, die wir zu diesem Zeitunkt besitzen. Dies ist automatisch gegeben, wenn z. B. x 1 die Form hat x 1 = a 1 1 {S1=15} + a 1 {S1=1} mit a 1, a beliebige reelle Zahlen; für y 1 analog. Zur durch x =(x, x 1, x ) y =(y, y 1, y ) definierten Strategie ist ein Vermögensrozess V t, t =, 1,, 3 erklärt: t = Startvermögen (Startkosten) V = x S + y t =1,..., T 1 Zwischenvermögen V t = x t 1 S t + y t 1 = x ts t + y t t = T Endvermögen V T = x T 1 S T + y T 1 Die Gleichung x t 1 S t + y t 1 = x ts t + y t für t = 1,..., T 1 beschreibt eine Bedingung an die Strategie, nämlich selbstfinanzierend zu sein. Dies bedeutet, dass sich das Vermögen ohne Zu- Abflüsse entwickelt: Alles, was wir in t besitzen, wird wieder investiert wir schießen von außen kein aital zu. Pricing durch Hedging: No Arbitrage Die Idee zur Auffindung eines fairen Otionsreises π C ist nun: Suche eine selbstfinanzierende Strategie (x, y), die als Endvermögen V 3 genau die Auszahlung der Otion hat (sog. Hedge-Strategie für C), also V 3 = C =(S 3 ) +. Aus dem Vermögensrozess dieser Strategie leiten wir dann den Otionsreis ab. Die Bestimmung der Hedge-Strategie geschieht durch Rückwärtsinduktion mittels Lösen von linearen Gleichungssystemen. Dazu betrachten den Binomialbaum stellen uns die Frage: Welchen Wert (a, b) muss unsere Strategie (x, y) im noten S = 18 haben, damit wir in t =3genau das Vermögen V 3 = 1 (im Fall, dass der urs steigt) V 3 =48(im Fall, dass der urs sinkt) erzielen? Für ω = ω 1,ω (das sind die beiden Pfade, die über den noten S = 18 laufen) ist also a = x (ω) b = y (ω), es muss gelten d. h. as 3 (ω 1 )+b = C(ω 1 ) as 3 (ω )+b = C(ω ) a 16 + b = 1 a + b = 48 Damit ist a =1 b = 96, d.h. wir müssen im noten S = 18 genau eine Aktie kaufen uns 96 Euro von der Bank leihen. Da die Aktie in diesem noten 18 Euro kostet, benötigen wir dort ein Vermögen von V (ω) = =84(Euro) Analog verfährt man mit den 5 restlichen noten: Zunächst liefern die linearen Gleichungssysteme a + b = 48 a 96 + b = a 96 + b = a + b = jeweils den Wert (a, b) der Strategie in den noten S = 1 S =8, nämlich (a, b) =(1, 96) bzw. (a, b) =(, ), damit V (ω) = =4 V (ω) = 8 + 1= dasindiesennoten(ω = ω 3,...,ω 6 bzw. ω = ω 7,ω 8 ) benötigte Vermögen. Von dort rechnet man durch den Ansatz a 18 + b = 84 a 1 + b = 4 a 1 + b = 4 a 8 + b = auf x 1 V 1 schließlich auf x V zurück. Trägt man diese Ergebnisse in den Binomialbaum ein, so ergibt sich: (1, 96) 33 4 (1, 96) (1, 96) 1 96 ( 3 5, 48) 8 (, ) ( 1 5, 7) 1 3 Die oben konstruierte Strategie ist durch Zahlenaare unter den noten gegeben; die Zahlen darüber kennzeichnen den zugehörigen Vermögensrozess. Sie ist nach onstruktion selbstfinanzierend eine Hedge- Strategie für C, denn es gilt V 3 = C (die Zahlen über den ursständen S 3 entsrechen genau der jeweiligen Auszahlung der Otion). FOUS MDMV 1 / 13 18

4 Man kann also bei einem Startkaital von 33 Euro mit obiger Strategie (in t =müsste man dann sich noch 7 Euro von der Bank leihen um damit den 1 5 -Teil der Aktie kaufen zu können, u. s. w.) dieselbe Auszahlung erreichen wie die Otion. Damit muss V =33(Euro) der gesuchte faire Preis π C der Otion sein, also π C = V = 33 Euro, ansonsten gäbe es im Markt die Möglichkeit eines risikofreien Gewinns: (a) Zahlen Sie für die Otion mehr als 33 Euro, so sichert Ihre Bank die Otion mit obiger Strategie (x, y) ab; dazu benötigt sie ein Startkaital von nur 33 Euro, die Differenz, <π C 33 Euro, streicht sie als risikofreien Gewinn ein. (b) Zahlen Sie für die Otion weniger als 33 Euro, so handeln Sie mit der Strategie ( x, y) verschaffen sich so selbst einen risikofreien Gewinn von < 33 π C Euro. Eine Möglichkeit (Strategie), einen risikofreien Gewinn zu erzielen, nennt man Arbitrage. In einem effektiven Finanzmarkt darf es keine Arbitrage geben, der Markt ist arbitragefrei ( you can t make money out of nothing, there is no free lunch ). Das Prinzi No Arbitrage bestimmt dann den Preis der Otion, der faire Preis ist also ein arbitragefreier Preis beträgt in unserem Modell genau 33 Euro. Pricing mit dem Martingalmaß Im letzten Abschnitt wurde der arbitragefreie Preis der Otion als Startkaital V einer Hedge-Strategie rekursiv ermittelt. Es ist aber auch eine direkte Berechnung von V ( auch V t) möglich: Dazu betrachten wir zunächst im Binomialbaum aus vorigem Abschnitt den noten S = 18 die von ihm ausgehenden Bewegungen der Aktie sowie des Vermögensrozesses Man erkennt folgenden Zusammenhang: Die beiden Gleichungen q 16 + (1 q) = 18 q 1 +(1 q) 48 = 84 haben dieselbe Lösung, nämlich q = 1. Dasselbe stellen wir auch für alle anderen noten fest; z. B. haben bei q 18 + (1 q) 1 = 15 q 84 +(1 q) 4 = 54 wiederum dieselbe Lösung q = 1. Damit ist eine Wahrscheinlichkeit Q auf Ω definiert: ( 1 ) 3,ω Q({ω}) = Ω, für die insbesondere gilt In der Tat ist E Q (S 3 )=S E Q (C) =V. [ E Q (S3 ) +] = 1 ( 1) 3 ( 1) = 33. Damit ist der Otionsreis π C = V in der Tat der Erwartungswert der Auszahlung C =(S 3 ) +, allerdings bzgl. Q nicht bzgl. der ursrünglichen Wahrscheinlichkeit P. Q heißt das zu P äquivalente Martingalmaß, manchmal auch risikoneutrales Maß, weil sich unter Q der Aktienkurs als ein faires Siel entwickelt: Der ursstand von heute ist der unter Q erwartete ursstand von morgen. Zusammenfassung Wir fassen nun unsere Erkenntnisse über Otionsricing in einem effizienten Finanzmarkt zusammen. Der faire Otionsreis basiert auf dem No Arbitrage Prinzi hängt nicht von der Wahrscheinlichkeit P ab, die die Bewegung des Aktienkurses steuert. Die Arbitragefreiheit des Marktes ist äquivalent zur Existenz eines risikoneutralen Maßes Q (dies ist die Aussage des berühmten 1. Famentaltheorems der Finanzmathematik). Der arbitragefreie Preis der Otion ist der Erwartungswert der Auszahlung unter Q, bzw. das benötigte Startvermögen einer Hedge-Strategie für die Auszahlung, falls man eine solche konstruieren kann. MDMV 1 / FOUS 1

5 Ausblick auf das Black Scholes-Modell Unser Binomialmodell mit nur 3 Handelszeitunkten im Zeitintervall [, 1] (Zeithorizont = 1 Jahr) beschreibt die reale Aktienkursbewegung natürlich nur sehr unzureichend. Näher an die Realität kommt man, wenn man ein Binomialmodell mit n äquidistanten Handelszeitunkten k n, k =, 1,..., n 1, im Zeitintervall [, 1] aufstellt, in welchem natürlich auch die Größen in (3) an die Tatsache immer kleinerer Handelssannen angeasst sind. Für n führt dies streng mathematisch zum berühmten, nach (den Nobelreisträgern) Fischer Black Myron Scholes benannten Black-Scholes-Modell, das den Aktienkurs S t, t [, 1], durch eine geometrische Brownsche Bewegung modelliert σ σbt S t = S e +(μ )t, t [, 1]. B t, t [, 1], bezeichnet dabei die (standard) Brownsche Bewegung ist für die tyische Zitterbewegung des urses verantwortlich. Die e-funktion garantiert, dass der urs stets ositiv ist μ R σ > sind Parameter, die individuell auf die Linde-Aktie angeasst werden können. μ heißt Drift gibt an, ob sich der urs tendenziell nach oben (μ >) oder nach unten (μ <) bewegt. Der Parameter σ heißt Volatilität beeinflußt die Stärke der Zitterbewegung des urses. In diesem (arbitragefreien) Modell läßt sich eine geschlossene Formel für den arbitragefreien Preis einer Call- Otion C =(S 1 ) + angeben, nämlich ) + σ ) σ ( ( ln S ) ( ( π C ln S ) = S Φ Φ, σ σ wobei Φ die Verteilungsfunktion der Standard- Normalverteilung bezeichnet wir wieder angenommen haben, dass wir für Geldgeschäfte bei der Bank weder Zinsen bekommen noch welche entrichten müssen. Dies ist die berühmte Black Scholes-Formel, deren Herleitung denselben Prinziien Überlegungen folgt wie wir sie im Binomialmodell vorgestellt haben. Man sieht, dass von den beiden Parametern μ σ nur letzterer in die Preisformel eingeht; der arbitragefreie Preis ist unabhängig von μ, was im Binomialmodell der Tatsache entsricht, dass dort der Preis nicht von abhängt. Literatur Föllmer, H., Schied, A. (11). Stochastic Finance: An Introduction in Discrete Time, WalterdeGruyter,Berlin. Irle, A. (1998). Finanzmathematik, Teubner Studienbücher Mathematik. Jarrow, R., Turnbull, S. (). Derivative Securities,. Auflage, South- Western College Publishing. Ross, S.M. (1999). An Introduction to Mathematical Finance (Otions and other toics), Cambridge University Press. Der Artikel ist eine Ausarbeitung eines Vortrags, den Francesca Biagini auf der Münchener GDM-Tagung 1 gehalten hat. Er findet sich in fast identischer Form auch in dem Tagungsband zu obiger GDM-Tagung (Beiträge zum Mathematikunterricht 1, WTM Verlag, Münster, 41 48). Prof. Dr. Francesca Biagini Prof. Dr. Daniel Rost Mathematisches Institut der Universität München, Theresienstraße 39, 8333 München. F. Biagini wurde 1 an der Scuola Normale Sueriore in Pisa romoviert, wo sie auch das Dilom in Mathematik erhielt. Sie war Assistenzrofessorin an der Universität Bologna, bevor 5 sie eine W-Professur an der LMU in München antrat. Seit 9 hat sie den Lehrstuhl für Finanz- Versicherungsmatehmatik an der LMU inne. Dort ist sie derzeit auch Direktorin des Mathematischen Instituts. Außerdem ist sie Professor II am Centre of Mathematics for Alications (CMA) der Universität Oslo. Ihre Forschungsinteressen liegen in der stochastischen Analysis Anwendungen zur finanz- versicherungsmathematischen Modellierung. Derzeit ist sie Mitglied im Beirat der Bachelier Finance Society sowie im Executive Board des Munich Risk and Insurance Center. Daniel Rost, geb. 196 in München, Studium der Mathematik an der Ludwig-Maximilians- Universität München. Promotion Habilitation über Themen aus der angewandten mathematischen Statistik; als Professor am Mathematischen Institut der LMU München in der Finanzmathematik, seit 9 im Bereich der Lehramtsstudiengänge tätig. Schlussbemerkung Die finanzmathematische Modellierung hat sich in den letzten Jahren rasant entwickelt; statt des Black Scholes- Modells betrachtet man etwa stochastische Volatilitätsmodelle, beidenenσ nicht nur von der Zeit, sondern auch vom Zufall abhängen darf. Eine weitere Verallgemeinerung sind sogenannte Jum-Diffusion-Modelle, dieurssrünge in die Modellbildung mit einbeziehen. FOUS MDMV 1 / 13 18

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca BIAGINI, München, Daniel ROST, München Money out of nothing? - Prinziien und Grundlagen der Finanzmathematik Die Finanzmathematik hat als jüngste mathematische Diszilin in den letzten 15 Jahren

Mehr

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik

Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Money out of nothing? - Prinzipien und Grundlagen der Finanzmathematik Francesca Biagini Mathematisches Institut, LMU biagini@math.lmu.de Münchner Wissenschaftstage im Jahr der Mathematik 21. Oktober 28

Mehr

Derivatebewertung im Binomialmodell

Derivatebewertung im Binomialmodell Derivatebewertung im Binomialmodell Roland Stamm 27. Juni 2013 Roland Stamm 1 / 24 Agenda 1 Einleitung 2 Binomialmodell mit einer Periode 3 Binomialmodell mit mehreren Perioden 4 Kritische Würdigung und

Mehr

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen

Finanzmathematik. Absichern und Bewerten von Optionen. Arnold Janssen / Klaus Janßen Finanzmathematik Absichern und Bewerten von Optionen Arnold Janssen / Klaus Janßen Universität Düsseldorf 27.09.2012 Rohstoffe, Devisen, Aktien, Kredite,... haben Preise, die im Laufe der Zeit zufällig

Mehr

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/

Finanzmathematik - Wintersemester 2007/08. http://code.google.com/p/mitgetexed/ Finanzmathematik - Wintersemester 2007/08 http://code.google.com/p/mitgetexed/ Stand: 4. November 2007 Inhaltsverzeichnis 1 Motivation und erste Begriffe 2 2 Endliche Finanzmärkte 4 3 Das Cox-Ross-Rubinstein-Modell

Mehr

Das Black-Scholes Marktmodell

Das Black-Scholes Marktmodell Das Black-Scholes Marktmodell Andreas Eichler Institut für Finanzmathematik Johannes Kepler Universität Linz 8. April 2011 1 / 14 Gliederung 1 Einleitung Fortgeschrittene Finanzmathematik einfach erklärt

Mehr

III Stochastische Analysis und Finanzmathematik

III Stochastische Analysis und Finanzmathematik III Stochastische Analysis und Finanzmathematik Ziel dieses Kapitels ist es, eine Einführung in die stochastischen Grundlagen von Finanzmärkten zu geben. Es werden zunächst Modelle in diskreter Zeit behandelt,

Mehr

34 5. FINANZMATHEMATIK

34 5. FINANZMATHEMATIK 34 5. FINANZMATHEMATIK 5. Finanzmathematik 5.1. Ein einführendes Beispiel Betrachten wir eine ganz einfache Situation. Wir haben einen Markt, wo es nur erlaubt ist, heute und in einem Monat zu handeln.

Mehr

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären.

Einleitung. Das Ein-Perioden-Modell ist das einfachste. von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. Einleitung Das Ein-Perioden-Modell ist das einfachste Modell, um die Idee der Preisgebung von derivaten Finanzinstrumenten (hier: Optionen) zu erklären. naive Idee der Optionspreisbestimmung: Erwartungswertprinzip

Mehr

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5

Einfache Derivate. Stefan Raminger. 4. Dezember 2007. 2 Arten von Derivaten 3 2.1 Forward... 3 2.2 Future... 4 2.3 Optionen... 5 Einfache Derivate Stefan Raminger 4. Dezember 2007 Inhaltsverzeichnis 1 Begriffsbestimmungen 1 2 Arten von Derivaten 3 2.1 Forward..................................... 3 2.2 Future......................................

Mehr

Amerikanischen Optionen

Amerikanischen Optionen Die Bewertung von Amerikanischen Optionen im Mehrperiodenmodell Universität-Gesamthochschule Paderborn Fachbereich 17 Seminar Finanzmathematik SS 2001 Referentin: Christiane Becker-Funke Dozent: Prof.

Mehr

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik

Irrfahrten. Und ihre Bedeutung in der Finanzmathematik Irrfahrten Und ihre Bedeutung in der Finanzmathematik Alexander Hahn, 04.11.2008 Überblick Ziele der Finanzmathematik Grundsätzliches zu Finanzmarkt, Aktien, Optionen Problemstellung in der Praxis Der

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel Seite 1 von 24 Zufallszahlen am Computer 3 Gleichverteilte Zufallszahlen 3 Weitere Verteilungen 3 Quadratische Verteilung 4 Normalverteilung

Mehr

Seminar Finanzmathematik

Seminar Finanzmathematik Seminar Finanzmathematik Simulationen zur Black-Scholes Formel von Christian Schmitz Übersicht Zufallszahlen am Computer Optionspreis als Erwartungswert Aktienkurse simulieren Black-Scholes Formel Theorie

Mehr

Bewertung von europäischen und amerikanischen Optionen

Bewertung von europäischen und amerikanischen Optionen Bewertung von europäischen und amerikanischen en 1. Vortrag - Einführung Technische Universität Berlin Institut für Mathematik 8. November 2007 Inhaltsverzeichnis 1 Definitionen amerikanische / europäische

Mehr

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken

Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Mertonscher Firmenwertansatz zur Modellierung von Kreditrisiken Seminararbeit von Marleen Laakmann 2. Mai 2010 Einleitung Zur Messung und Steuerung von Kreditrisiken gibt es eine Reihe von Methoden und

Mehr

Finanzmathematik... was ist das?

Finanzmathematik... was ist das? Finanzmathematik... was ist das? The core of the subject matter of mathematical finance concerns questions of pricing of financial derivatives such as options and hedging covering oneself against all eventualities.

Mehr

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen

Inhaltsverzeichnis: Aufgaben zur Vorlesung Finanz- und Risikomanagement Seite 1 von 35 Prof. Dr. Gabriele Gühring, Fakultät Grundlagen Inhaltsverzeichnis: Übungsaufgaben zu Finanz- und Risikomanagement... 3 Aufgabe... 3 Aufgabe... 3 Aufgabe 3... 3 Aufgabe 4... 3 Aufgabe 5... 4 Aufgabe 6... 4 Aufgabe 7... 4 Aufgabe 8... 4 Aufgabe 9...

Mehr

Internationale Finanzierung 7. Optionen

Internationale Finanzierung 7. Optionen Übersicht Kapitel 7: 7.1. Einführung 7.2. Der Wert einer Option 7.3. Regeln für Optionspreise auf einem arbitragefreien Markt 7.3.1. Regeln für Calls 7.3.2. Regeln für Puts 7.3.3. Die Put Call Parität

Mehr

Finanzmanagement 5. Optionen

Finanzmanagement 5. Optionen Übersicht Kapitel 5: 5.1. Einführung 5.2. Der Wert einer Option 5.3. Regeln für Optionspreise auf einem arbitragefreien Markt 5.3.1. Regeln für Calls 5.3.2. Regeln für Puts 5.3.3. Die Put Call Parität

Mehr

Ausarbeitung des Seminarvortrags zum Thema

Ausarbeitung des Seminarvortrags zum Thema Ausarbeitung des Seminarvortrags zum Thema Anlagepreisbewegung zum Seminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn von Imke Meyer im W9/10 Anlagepreisbewegung

Mehr

Betreuer: Lars Grüne. Dornbirn, 12. März 2015

Betreuer: Lars Grüne. Dornbirn, 12. März 2015 Betreuer: Lars Grüne Universität Bayreuth Dornbirn, 12. März 2015 Motivation Hedging im diskretisierten Black-Scholes-Modell: Portfolio (solid), Bank (dashed) 110 120 130 140 150 160 170 Portfolio (solid),

Mehr

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne

Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Nicht-rekombinierbare Binomialbäume und ihre Anwendung in der Finanzmathematik Betreuer: Lars Grüne Michaela Baumann Universität Bayreuth Dornbirn, 12. März 2015 Motivation Ein Kunde möchte bei einer Bank

Mehr

Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement

Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement Zufällige Wetten: Vom Glücksspiel zum modernen Risikomanagement Teilnehmer: Lukas Thum Yu Wang Luciana Plocki Johanna Ridder Felix Tschierschke Thu Hien Nguyen Janin Rekittke Johanna Lindberg Gruppenleiter:

Mehr

Mit welcher Strategie hast Du am Glücksrad Erfolg?

Mit welcher Strategie hast Du am Glücksrad Erfolg? Mit welcher Strategie hast Du am Glücksrad Erfolg? Kinderuni, Workshop an der TU Wien 24. Juli 2009, 10:30 11:30 Uhr Univ.-Prof. Dr. Uwe Schmock Forschungsgruppe Finanz- und Versicherungsmathematik Institut

Mehr

B.A. Seminar Derivate: Märkte & Produkte

B.A. Seminar Derivate: Märkte & Produkte B.A. Seminar Derivate: Märkte & Produkte B. Nyarko S. Opitz Lehrstuhl für Derivate Sommersemester 2014 B. Nyarko S. Opitz (UHH) B.A. Seminar Derivate: Märkte & Produkte Sommersemester 2014 1 / 23 Organisatorisches

Mehr

Einführung in die Optionspreisbewertung

Einführung in die Optionspreisbewertung Einführung in die Optionspreisbewertung Bonn, Juni 2011 MAF BN SS 2011 Huong Nguyen Gliederung Einführung Definition der Parameter Zwei Komponente zur Ermittlung der Optionsprämie Callwert-Kurve Wirkungen

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

SoSe 2004 Mareen Hofmann, Sonja Lange

SoSe 2004 Mareen Hofmann, Sonja Lange Einführung in die Finanzmathematik Grundlagen SoSe 2004 Mareen Hofmann, Sonja Lange Inhaltsverzeichnis 1 Einleitung 2 2 Finanzmärkte und Instrumente 2 2.1 Finanzmärkte............................. 2 2.2

Mehr

Finanz- und Risikomanagement II

Finanz- und Risikomanagement II Finanz- und Risikomanagement II Fakultät Grundlagen März 2009 Fakultät Grundlagen Finanz- und Risikomanagement II Einperiodenmodell Marktmodell Bewertung von Derivaten Binomialbaum Bewertungen im Abhängigkeiten

Mehr

Wichtige Begriffe in der Finanzmathematik

Wichtige Begriffe in der Finanzmathematik Wichtige Begriffe in der Finanzmathematik Forward: Kontrakt, ein Finanzgut zu einem fest vereinbarten Zeitpunkt bzw. innerhalb eines Zeitraums zu einem vereinbarten Erfüllungspreis zu kaufen bzw. verkaufen.

Mehr

Kurzzusammenfassung zu Derivate

Kurzzusammenfassung zu Derivate Kurzzusammenfassung zu Derivate In dieser Zusammenfassung wird der Einsatz und die Funktion von : - Devisentermingeschäften - Call- und Put-Optionen (american styled) erläutert. 1. Devisentermingeschäft

Mehr

Hochschule Rhein-Main. Sommersemester 2015

Hochschule Rhein-Main. Sommersemester 2015 n Vorlesung Hochschule Rhein-Main Sommersemester 2015 Dr. Roland Stamm 18. Mai 2015 n Erinnerung Eine Option ist das Recht (aber nicht die Verpflichtung) ein Produkt S in der Zukunft zu einem heute festgelegten

Mehr

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt

Finanzmathematik. Wirtschaftswissenschaftliches Zentrum Universität Basel. Mathematik für Ökonomen 1 Dr. Thomas Zehrt Wirtschaftswissenschaftliches Zentrum Universität Basel Mathematik für Ökonomen 1 Dr. Thomas Zehrt Finanzmathematik Literatur Gauglhofer, M. und Müller, H.: Mathematik für Ökonomen, Band 1, 17. Auflage,

Mehr

Vorlesung Stochastische Finanzmathematik Einführung

Vorlesung Stochastische Finanzmathematik Einführung Vorlesung Stochastische Finanzmathematik Einführung Pascal Heider Institut für Numerische Mathematik 30. März 2011 Einleitung Frage: Ist der Kurs einer Aktie absicherbar? Beispiel: Sie besitzen eine Daimler

Mehr

Zur Bewertung von Derivaten Eine Einführung

Zur Bewertung von Derivaten Eine Einführung Zur Bewertung von Derivaten Eine Einführung Dr. Volkert Paulsen 17. September 2009 Im wesentlichen unternimmt man auf Finanzmärkten eine Zweiteilung in Basis- und derivative Finanzgüter. Ein Anteil an

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 17 Crash Course Brownsche Bewegung (stetige Zeit, stetiger Zustandsraum); Pricing & Hedging von Optionen in stetiger Zeit Literatur Kapitel 17 * Uszczapowski:

Mehr

Value at Risk Einführung

Value at Risk Einführung Value at Risk Einführung Veranstaltung Risk Management & Computational Finance Dipl.-Ök. Hans-Jörg von Mettenheim mettenheim@iwi.uni-hannover.de Institut für Wirtschaftsinformatik Leibniz Universität Hannover

Mehr

Notationen. Burkhard Weiss Futures & Optionen Folie 2

Notationen. Burkhard Weiss Futures & Optionen Folie 2 Optionspreismodelle Notationen S t : X: T: t: S T : r: C: P: c: p: s: aktueller Aktienkurs Ausübungspreis (Rest-)laufzeit der Option Bewertungszeitpunkt Aktienkurs bei Verfall risikofreier Zinssatz Preis

Mehr

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a -

Aktien, D Derivate, A Arbitrage Kursverläufe des DAX: Tagesgang 5.1.2011-1a - : Eine Einführung in die moderne Finanzmathematik Prof. Dr. Dietmar Pfeifer Institut für Mathematik chwerpunkt Versicherungs- und Finanzmathematik Kursverläufe des DA: agesgang 5.1.2011-1a - Kursverläufe

Mehr

Derivate und Bewertung

Derivate und Bewertung . Dr. Daniel Sommer Marie-Curie-Str. 0 6049 Frankfurt am Main Klausur Derivate und Bewertung.......... Wintersemester 006/07 Klausur Derivate und Bewertung Wintersemester 006/07 Aufgabe 1: Statische Optionsstrategien

Mehr

Optionspreistheorie von Black & Scholes

Optionspreistheorie von Black & Scholes Optionspreistheorie von Black & Scholes Vortrag zum Seminar Econophysics Maximilian Eichberger 20. November 2007 Zusammenfassung Nach einer kurzen Erläuterung zu den Grundbegriffen und -prinzipien des

Mehr

3.2 Black-Scholes Analyse

3.2 Black-Scholes Analyse 3.. BLACK-SCHOLES ANALYSE 39 3. Black-Scholes Analyse Allgemeine Vorüberlegungen Eine Aktie ist eine Anlage ähnlich einem Kredit. Der Anleger bekommt eine Verzinsung, da Kapital ein Arbeitsfaktor ist.

Mehr

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz

Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Kreditrisikomodell von Jarrow-Lando-Turnbull im Einsatz Dr. Michael Leitschkis Generali Deutschland Holding AG Konzern-Aktuariat Personenversicherung München, den 13.10.2009 Agenda Einführung und Motivation

Mehr

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell

Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Numerische Optionsbepreisung durch Monte-Carlo-Simulation und Vergleich mit dem Black-Scholes-Modell Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science (B.Sc.) im Studiengang Wirtschaftswissenschaft

Mehr

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008

Kreditrisiko bei Swiss Life. Carl-Heinz Meyer, 13.06.2008 Kreditrisiko bei Swiss Life Carl-Heinz Meyer, 13.06.2008 Agenda 1. Was versteht man unter Kreditrisiko? 2. Ein Beisiel zur Einführung. 3. Einige kleine Modelle. 4. Das grosse kollektive Modell. 5. Risikoberechnung

Mehr

Finanzmarktökonometrie:

Finanzmarktökonometrie: Dr. Walter Sanddorf-Köhle Statistik und Ökonometrie Rechts- und Wirtschaftswissenschaftliche Fakultät UNIVERSITÄT DES SAARLANDES Statistik und Ökonometrie Sommersemester 2013 Finanzmarktökonometrie: Einführung

Mehr

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen

Generalthema: Zinsrisikomanagement und der Jahresabschluß von Kreditinstituten Thema 5: Ansätze zur Bewertung von Zinsoptionen Institut für Geld- und Kapitalverkehr der Universität Hamburg Prof. Dr. Hartmut Schmidt Seminar zur BBL und ABWL Wintersemester 2003/2004 Zuständiger Mitarbeiter: Dipl.-Kfm. Christian Wolff Generalthema:

Mehr

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull

Optionen, Futures und andere Derivate Das Übungsbuch. John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 9., aktualisierte Aulage John C. Hull Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Praktische Fragestellungen

Mehr

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung

6 Berechnung der Kapitalentwicklung auf der Basis der Zinseszinsrechnung 6 Berechnung der Kaitalentwicklung auf der Basis der Zinseszinsrechnung 61 Wertentwicklung ohne Gut- oder Lastschrift von Zinsen Beisiele: 1 Konstante Produktionszunahme Produktion im 1 Jahr: P 1 Produktion

Mehr

Finanz- und Versicherungsmathematik: Einblicke & Beispiele

Finanz- und Versicherungsmathematik: Einblicke & Beispiele Finanz- und Versicherungsmathematik: Einblicke & Beispiele Prof. Dr. Tom Fischer Professur für Stochastische Finanzmathematik Institut für Mathematik Universität Würzburg tom.fischer@uni-wuerzburg.de 22.

Mehr

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen:

Prozentrechnung. Wir können nun eine Formel für die Berechnung des Prozentwertes aufstellen: Prozentrechnung Wir beginnen mit einem Beisiel: Nehmen wir mal an, ein Handy kostet 200 und es gibt 5% Rabatt (Preisnachlass), wie groß ist dann der Rabatt in Euro und wie viel kostet dann das Handy? Wenn

Mehr

Angewandte Stochastik

Angewandte Stochastik Angewandte Stochastik Dr. C.J. Luchsinger 14 Lehren für s Management & das tägliche Leben III: Zins und exponentielles Wachstum Zur Erinnerung: mit grossen n gilt: n! > c n > n c > log n. Aus der Analysis

Mehr

Informationsökonomik: Anwendung Versicherungsmarkt

Informationsökonomik: Anwendung Versicherungsmarkt Informationsökonomik: Anwendung Versicherungsmarkt Tone Arnold Universität des Saarlandes 13. Dezember 2007 Tone Arnold (Universität des Saarlandes) Informationsökonomik: Anwendung Versicherungsmarkt 13.

Mehr

Verteilungsmodelle. Verteilungsfunktion und Dichte von T

Verteilungsmodelle. Verteilungsfunktion und Dichte von T Verteilungsmodelle Verteilungsfunktion und Dichte von T Survivalfunktion von T Hazardrate von T Beziehungen zwischen F(t), S(t), f(t) und h(t) Vorüberlegung zu Lebensdauerverteilungen Die Exponentialverteilung

Mehr

Bewertung von Forwards, Futures und Optionen

Bewertung von Forwards, Futures und Optionen Bewertung von Forwards, Futures und Optionen Olaf Leidinger 24. Juni 2009 Olaf Leidinger Futures und Optionen 2 24. Juni 2009 1 / 19 Überblick 1 Kurze Wiederholung Anleihen, Terminkontrakte 2 Ein einfaches

Mehr

Seminar: Warum wir falsch liegen und trotzdem weiter machen!

Seminar: Warum wir falsch liegen und trotzdem weiter machen! Seminar: Warum wir falsch liegen und trotzdem weiter machen! 22. April 2010 Aktuelle in Banken und Versicherungen Allgemeines Alle Vorträge beinhalten aktuell angewandte Theorien und Methoden und sind

Mehr

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern

Algorithmen und Software für moderne Finanzmathematik. Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Algorithmen und Software für moderne Finanzmathematik Ralf Korn Technische Universität Kaiserslautern Fraunhofer ITWM Kaiserslautern Gliederung: Was ist Finanzmathematik? Wie wird man reich? Portfolio-Optimierung

Mehr

Blatt 1. 1 Einführung. Programmierpraktikum Computational Finance. WS 2014/ 2015 Prof. Dr. Thomas Gerstner Marco Noll

Blatt 1. 1 Einführung. Programmierpraktikum Computational Finance. WS 2014/ 2015 Prof. Dr. Thomas Gerstner Marco Noll Programmierpraktikum Computational Finance WS 2014/ 2015 Prof. Dr. Thomas Gerstner Marco Noll Programmierpraktikum Computational Finance Blatt 1 1 Einführung Finanzderivate sind Wertpapiere, deren Wert

Mehr

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen)

Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Bericht zur Prüfung im Oktober 2004 über Finanzmathematik (Grundwissen) Peter Albrecht (Mannheim) Die Prüfung des Jahres 2004 im Bereich Finanzmathematik (Grundwissen) wurde am 09. Oktober 2004 mit diesmal

Mehr

Inflationsbereinigte Chance-Risiko-Profile von Lebensversicherungsprodukten Stefan Graf, Alexander Kling, Jochen Ruß

Inflationsbereinigte Chance-Risiko-Profile von Lebensversicherungsprodukten Stefan Graf, Alexander Kling, Jochen Ruß Stefan Graf WiMa 2011 Ulm November 2011 Inflationsbereinigte Chance-Risiko-Profile von Lebensversicherungsprodukten Stefan Graf, Alexander Kling, Jochen Ruß Seite 2 Agenda Chance-Risiko-Profile Nominale

Mehr

Aufgaben zur Vorlesung Finanzmanagement

Aufgaben zur Vorlesung Finanzmanagement Aufgaben zur Vorlesung Finanzmanagement B. rke FH Gelsenkirchen, Abteilung Bocholt February 4, 006 Aufgabenblatt: "Bewertung von Optionen" 1 Lösungshinweise 1 uropean Put Option Zeichnen Sie den einer

Mehr

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model

Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Korrelationen, Portfoliotheorie von Markowitz, Capital Asset Pricing Model Matthias Eltschka 13. November 2007 Inhaltsverzeichnis 1 Einleitung 3 2 Vorbereitung 4 2.1 Diversifikation...........................

Mehr

Geometrische Brownsche Bewegung und Brownsche Brücke

Geometrische Brownsche Bewegung und Brownsche Brücke Geometrische Brownsche Bewegung und Brownsche Brücke Korinna Griesing Dozentin: Prof. Dr. Christine Müller 17. April 2012 Korinna Griesing 1 (26) Inhalt Motivation Statistische Methoden Geometrische Brownsche

Mehr

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten

Anlagestrategien mit Hebelprodukten. Optionsscheine und Turbos bzw. Knock-out Produkte. Investitionsstrategie bei stark schwankenden Märkten Anlagestrategien mit Hebelprodukten Hebelprodukte sind Derivate, die wie der Name schon beinhaltet gehebelt, also überproportional auf Veränderungen des zugrunde liegenden Wertes reagieren. Mit Hebelprodukten

Mehr

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013

Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Finanzmarktökonometrie: Einführung in die Optionsbewertung Sommersemester 2013 Walter Sanddorf-Köhle Foliensatz Nr. 3 1 / 46 Ein Einperiodenmodell Beispiel 5 Betrachtet wird nun ein Wertpapiermarkt mit

Mehr

Quantitative Finance

Quantitative Finance Kapitel 11 Quantitative Finance Josef Leydold c 2006 Mathematische Methoden XI Quantitative Finance 1 / 30 Lernziele für den Teil Quantitative Finance Die Welt der stetigen Zinsen (Renditen) Wichtige Finanzprodukte:

Mehr

A 8: Preisbildung auf freien Märkten (1)

A 8: Preisbildung auf freien Märkten (1) A 8 Preisbildung auf freien Märkten (1) Eine Marktfrau bietet auf dem Wochenmarkt Eier an. Angebot und Nachfrage werden lediglich über den Preismechanismus des freien Marktes gesteuert. Über die Verhaltensweise

Mehr

Numerische Methoden der Finanzmathematik

Numerische Methoden der Finanzmathematik Numerische Methoden der Finanzmathematik Lars Grüne Mathematisches Institut Fakultät für Mathematik und Physik Universität Bayreuth 95440 Bayreuth lars.gruene@uni-bayreuth.de www.math.uni-bayreuth.de/

Mehr

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte

Projekt Finanzmathematik: Derivative und strukturierte Finanzprodukte : Derivative und strukturierte Finanzprodukte Institut für Finanzmathematik Johannes Kepler Universität Linz 10. Jänner 2008 Wesentliche Fragen Was sind Derivate? Was sind strukturierte Finanzprodukte

Mehr

Einfache Derivate. von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09

Einfache Derivate. von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09 Einfache Derivate von Christian Laubichler im Rahmen des Proseminars Bakkalaureat TM (Datensicherheit und Versicherungsmathematik) WS 2008/09 14 Jänner 2009 1 Inhaltsverzeichnis 1 Einleitung 2 2 Begriffsbestimmung

Mehr

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg

Optionen. Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg Optionen Vertiefungsstudium Finanzwirtschaft SS 2001 Prof. Dr. Mark Wahrenburg 1 Übersicht Der Optionsvertrag Pay Offs / Financial Engineering Wertgrenzen Put-Call-Paritätsbedingung Bewertung von Optionen

Mehr

Ruinwahrscheinlichkeiten im Glücksspiel

Ruinwahrscheinlichkeiten im Glücksspiel Ruinwahrscheinlichkeiten im Glücksspiel Wilhelm Stannat Fachbereich Mathematik TU Darmstadt February 24, 2007 Stochastik = Wahrscheinlichkeitstheorie + Statistik Wahrscheinlichkeitstheorie = Mathematische

Mehr

Hedging. Andreas Eichler, Christian Irrgeher. 13. Februar 2011. Institut für Finanzmathematik Johannes Kepler Universität Linz

Hedging. Andreas Eichler, Christian Irrgeher. 13. Februar 2011. Institut für Finanzmathematik Johannes Kepler Universität Linz Was bedeutet? Andreas Eichler, Christian Irrgeher Institut für Finanzmathematik Johannes Kepler Universität Linz 13. Februar 2011 1 / 7 Was bedeutet? Gliederung 1 Was bedeutet? 2 3 Marktmodell von Black

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Optionspreisbestimmung nach Cox-Ross-Rubinstein

Optionspreisbestimmung nach Cox-Ross-Rubinstein Optionspreisbestimmung nach Cox-Ross-Rubinstein Michael Beer 8. Mai 000 Inhaltsverzeichnis Einführung und Problembeschreibung. Was sind Optionen?.............................. Modellspezifikation..............................3

Mehr

Originalklausur Abitur Mathematik

Originalklausur Abitur Mathematik Originalklausur Abitur Mathematik Bundesland: Nordrhein-Westfalen Jahrgang: 2009 Die Musterlösung zu dieser und über 100 weiteren Originalklausuren ab dem Abiturjahrgang 2006 finden Sie im Download-Center

Mehr

Vorlesung Analysis I / Lehramt

Vorlesung Analysis I / Lehramt Vorlesung Analysis I / Lehramt TU Dortmund, Wintersemester 2012/ 13 Winfried Kaballo Die Vorlesung Analysis I für Lehramtsstudiengänge im Wintersemester 2012/13 an der TU Dortmund basiert auf meinem Buch

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 21

Aufgaben Brealey/Myers [2003], Kapitel 21 Quiz: 1, 2, 4, 6, 7, 10 Practice Questions: 1, 3, 5, 6, 7, 10, 12, 13 Folie 0 Lösung Quiz 7: a. Das Optionsdelta ergibt sich wie folgt: Spanne der möglichen Optionspreise Spanne der möglichen Aktienkurs

Mehr

Optionen, Futures und andere Derivate

Optionen, Futures und andere Derivate John C. Hull Optionen, Futures und andere Derivate Das Übungsbuch 8., aktualisierte Auflage Fachliche Betreuung der deutschen Übersetzung durch Dr. Wolfgang Mader und Dr. Marc Wagner Higher Education München

Mehr

Portfoliorisiko und Minimum Varianz Hedge

Portfoliorisiko und Minimum Varianz Hedge ortfoliorisiko und Minimum Varianz Hedge Vertiefungsstudium Finanzwirtschaft rof. Dr. Mark Wahrenburg Überblick Messung von Risiko ortfoliodiversifikation Minimum Varianz ortfolios ortfolioanalyse und

Mehr

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban

Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Institut für Stochastik Prof. Dr. N. Bäuerle Dipl.-Math. S. Urban Lösungsvorschlag 8. Übungsblatt zur Vorlesung Finanzmathematik I Aufgabe Hedging Amerikanischer Optionen Wir sind in einem arbitragefreien

Mehr

Abschlussklausur des Kurses Portfoliomanagement

Abschlussklausur des Kurses Portfoliomanagement Universität Hohenheim Wintersemester 2010/2011 Lehrstuhl für Bankwirtschaft und Finanzdienstleistungen Kurs Portfoliomanagement Seite 1 von 3 19.01.2011 Abschlussklausur des Kurses Portfoliomanagement

Mehr

Anhang zu: Riester-Verträge: Zur Bedeutung von Kosten und Garantien aus Anlegersicht

Anhang zu: Riester-Verträge: Zur Bedeutung von Kosten und Garantien aus Anlegersicht Anhang zu: Riester-Verträge: Zur Bedeutung von Kosten und Garantien aus Anlegersicht Alexander Klos Finance Center Münster September 2010 Zusammenfassung Dieser Anhang enthält die Ergebnisse von Robustheitschecks

Mehr

Was kosten Garantien?

Was kosten Garantien? Alternative Zinsgarantien in der Lebensversicherung, Köln, 1. Juni 2012 Was kosten Garantien? Prof. Dr. Ralf Korn Technische Universität Kaiserslautern, Fachbereich Mathematik EI-QFM und Fraunhofer ITWM

Mehr

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung

Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Lösung des Hedging-Problems mittels Stochastischer Dynamischer Optimierung Ausarbeitung zum Vortrag im Seminar Stochastische Dynamische Optimierung vom 18.01.2008 Datum : 18.01.2008 Verfasser: Martin Schymalla

Mehr

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN

DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN DIE DIFFERENTIALGLEICHUNG ZUR BESTIMMUNG DES PREISES VON WäHRUNGSOPTIONEN von HANS-JüRG BüTTLER In der vorliegenden Notiz werden zuerst Kennziffern des Wechselkurses, die für die lognormale Verteilung

Mehr

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung

Kapitel 3. Zufallsvariable. Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion. Erwartungswert, Varianz und Standardabweichung Kapitel 3 Zufallsvariable Josef Leydold c 2006 Mathematische Methoden III Zufallsvariable 1 / 43 Lernziele Diskrete und stetige Zufallsvariable Wahrscheinlichkeitsfunktion, Dichte und Verteilungsfunktion

Mehr

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug

Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Mathematik des Zufalls Was verbindet ein Münzspiel, Aktienkurse und einen Vogelflug Sylvie Roelly Lehrstuhl für Wahrscheinlichkeitstheorie, Institut für Mathematik der Universität Potsdam Lehrertag, Postdam,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Brückenkurs Mathematik TU Dresden 2015 Lineare Gleichungssysteme Schwerpunkte: Modellbildung geometrische Interpretation Lösungsmethoden Prof. Dr. F. Schuricht TU Dresden, Fachbereich Mathematik auf der

Mehr

Analysis of Cliquet Options for Index-Linked Life Insurance

Analysis of Cliquet Options for Index-Linked Life Insurance Analysis of Cliquet Options for Index-Linked Life Insurance Zusammenfassung der Masterarbeit an der Universität Ulm Martin Fuchs Alternative (zu) Garantien in der Lebensversicherung, so lautet das Jahresmotto

Mehr

Commercial Banking. Off Balance Sheet Kreditinstrumente: Kreditzusagen (Loan Commitment) Kreditgarantien (Letter of Credit) Kreditderivate

Commercial Banking. Off Balance Sheet Kreditinstrumente: Kreditzusagen (Loan Commitment) Kreditgarantien (Letter of Credit) Kreditderivate Commercial Banking Off Balance Sheet Kreditinstrumente: Kreditzusagen (Loan Commitment) Kreditgarantien (Letter of Credit) Kreditderivate Kreditzusage / Kreditlinie (Loan commitment) = Zusage der Bank,

Mehr

Vorbemerkungen zur Optionsscheinbewertung

Vorbemerkungen zur Optionsscheinbewertung Vorbeerkungen zur Optionsscheinbewertung Matthias Groncki 24. Septeber 2009 Einleitung Wir wollen uns it den Grundlagen der Optionsscheinbewertung beschäftigen. Dazu stellen wir als erstes einige Vorraussetzungen

Mehr

16 Risiko und Versicherungsmärkte

16 Risiko und Versicherungsmärkte 16 Risiko und Versicherungsmärkte Entscheidungen bei Unsicherheit sind Entscheidungen, die mehrere mögliche Auswirkungen haben. Kauf eines Lotterieloses Kauf einer Aktie Mitnahme eines Regenschirms Abschluss

Mehr

Aufgaben Brealey/Myers [2003], Kapitel 20

Aufgaben Brealey/Myers [2003], Kapitel 20 Folie 0 Quiz: 1, 2, 3, 4, 5, 8, 9, 11, 12, 13, 14 Practice Questions: 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15, 17, 18, 21 Challenge Questions: 2 Folie 1 Lösungshinweis zu Quiz 4: Put-Call Parität: Fälligkeit

Mehr

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds)

- Bewertung verschiedenster Typen von Derivativen. - Analyse Alternativer Investmentstrategien (Hedge Fonds) Abteilung für Finanzmathematik - Bewertung verschiedenster Typen von Derivativen - Analyse Alternativer Investmentstrategien (Hedge Fonds) - Kredit-Risiko-Management und Kredit-Derivate - Monte Carlo-

Mehr

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003

Errata. Grundlagen der Finanzierung. verstehen berechnen entscheiden. Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Errata in Grundlagen der Finanzierung verstehen berechnen entscheiden Geyer/Hanke/Littich/Nettekoven 1. Auflage, Linde Verlag, Wien, 2003 Stand 10. April 2006 Änderungen sind jeweils fett hervorgehoben.

Mehr

Die Änderungen der Anlagestrategie des RL-With-Profits-Fonds

Die Änderungen der Anlagestrategie des RL-With-Profits-Fonds Die Änderungen der Anlagestrategie des RL-With-Profits-Fonds Für Inhaber von Policen im RL-Teilfonds (Deutschland) 1 Teil A Einführung Diese Broschüre erklärt die Änderungen, die wir zum 1. Januar 2010

Mehr

Bewertung von Derivaten im Black-Scholes Modell

Bewertung von Derivaten im Black-Scholes Modell Bewertung von Derivaten im Black-Scholes Modell Bachelorarbeit Westfälische Wilhelms-Universität Münster Fachbereich Mathematik und Informatik Institut für Mathematische Statistik Betreuung: PD Dr. Volkert

Mehr