LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "LMU LUDWIG- p E kin 2 R. Girwidz Drehimpuls. 7.5 Drehimpuls. für Zentralkräfte: F dt. Geschwindigkeit. Masse. Translationsenergie. 1 mv."

Transkript

1 7.5 Drehimpuls Translation Rotation Geschwindigkeit Masse v m Translationsenergie Kraft Impuls Ekin F 1 mv F ma p d p F dt p m v p E kin m R. Girwidz Drehimpuls Drehscheml für Zentralkräfte: M 0 da F r L konst. R. Girwidz 1

2 7.5 Drehimpuls Der Drehimpuls ist ein Vektor! R. Girwidz Drehimpuls Definition des Drehimpulses ist nicht an Kreisbahn gebunden! z. B. Ellipsenbahn L r p z. B. Hyperbelbahn L r p Zuwurf mit Stoßparameter R. Girwidz 4

3 7.5 Drehimpuls Magnus-Effekt beim Golfspiel R. Girwidz Drehimpuls "Nachläufer" beim Billard R. Girwidz 6 3

4 Beispiel a) Zweiatomiges Molekül R. Girwidz 7 Beispiel b) Homogene dünne Stange (Achse am Ende) R. Girwidz 8 4

5 Beispiel c) Hohlzylinder (Drehachse = Mittelachse) R. Girwidz 9 Beispiel c) Hohlzylinder (Drehachse = Mittelachse) m I R R 1 dünnwandig: R 1 R => I = m R ; Vollzylinder: R 1 = 0 => I = 1/ m R ; Versuch R. Girwidz 10 5

6 Steiner'scher Satz (J. Steiner, 1796 bis 1863) - Wenn die Rotationsachse nicht durch den Schwerpunkt geht R. Girwidz 11 Steiner'scher Satz R. Girwidz 1 6

7 Steiner'scher Satz 0 R. Girwidz 13 Steiner'scher Satz Das Trägheitsmoment eines Körpers bei Rotation um eine beliebige Achse B ist gleich dem Trägheitsmoment des Körpers um eine zu B parallele Achse durch den Schwerpunkt plus das Trägheitsmoment der im Schwerpunkt vereinten Gesamtmasse. R. Girwidz 14 7

8 Rollender Zylinder auf schiefer Ebene R. Girwidz 15 v h gh Is 1 mr R. Girwidz 16 8

9 R. Girwidz 17 R. Girwidz 18 9

10 R. Girwidz 19 Kreisel Ein starrer Körper, der sich ohne Einschränkung um einen festen Punkt drehen kann heißt Kreisel Wirkt auf einen rotierenden Kreisel ein Drehmoment so gilt: dl M dt Rad aufgehängt an einer Schnur R. Girwidz 0 10

11 Attraktiver Spezialfall: der Körper rotiert um die Figurenachse, d. h. L Fig. achse und M L => Der Betrag von L bleibt konstant, aber die Richtung ändert sich (und damit die Richtung der Figurenachse). => Der Körper beschreibt eine Präzessionsbewegung R. Girwidz 1 Berechnung der Präzessionsfrequenz ω p R. Girwidz 11

12 Versucht man, einen Kreisel durch ein Drehmoment zu kippen, so weicht die Kreiselachse senkrecht zur angreifenden Kraft aus. Beispiel Fahrradfahren: Drehimpuls und Drehmoment beim Lenken (Kippen beim freihändigen fahren, um in die Kurve zu fahren) R. Girwidz 3 Präzession der Erde T Präz Präz 6000a; M / L / T Präz ; R. Girwidz 4 1

13 Zur Kernspinresonanz Auch im mikroskopischen Bereich kann man Präzessionsbewegungen beobachten. Atome, Atomkerne und Moleküle mit Eigendrehimpuls besitzen oft ein magnetisches Moment. Bringt man sie in ein äußeres Magnetfeld, so entsteht ein Drehmoment und die Drehimpulsachse präzediert mit eine charakteristischen Resonanzfrequenz um das Magnetfeld. Drehmoment M µ B µ : magn. Moment B : magn. Kraftflußdichte Mit der Kernspinresonanz (nuclear magnetic resonance NMR) weist man Atome und ihren speziellen chemischen Bindungszustand nach. In der Medizin sind Diagnosen mit Hilfe von NMR-Computer-Tomographen möglich. R. Girwidz 5 NMR Film u. Dias von Prof. Dr. Haase R. Girwidz 6 13

14 NMR Film u. Dias von Prof. Dr. Haase R. Girwidz 7 NMR Film u. Dias von Prof. Dr. Haase R. Girwidz 8 14

15 NMR Film u. Dias von Prof. Dr. Haase R. Girwidz 9 Nutation Versuch R. Girwidz 30 15

16 7.8 Hauptträgheitsachsen Fotos, Versuche (Lassowerfer) - Um Hauptträgheitsachsen / freie Achsen drehen Körper ohne Unwucht, d. h. die Lager werden nicht durch Kräfte belastet. - Hauptträgheitsachsen gehen durch den Schwerpunkt. - Jeder Körper hat 3 Hauptträgheitsachsen, die senkrecht aufeinander stehen. - Stabil drehen Körper nur um die Hauptträgheitsachsen mit dem größten und dem kleinsten Trägheitsmoment. R. Girwidz 31 16

1 Trägheitstensor (Fortsetzung)

1 Trägheitstensor (Fortsetzung) 1 Trägheitstensor (Fortsetzung) Wir verallgemeinern den in der letzten Stunde gefundenen Trägheitstensor auf den Fall einer kontinuierlichen Massenverteilung durch die Einführung der Integration über das

Mehr

Physik I Mechanik und Thermodynamik

Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik Physik I Mechanik und Thermodynamik 1 Einführung: 1.1 Was ist Physik? 1.2 Experiment - Modell - Theorie 1.3 Geschichte der Physik 1.4 Physik und andere Wissenschaften

Mehr

+m 2. r 2. v 2. = p 1

+m 2. r 2. v 2. = p 1 Allgemein am besten im System mit assenmittelpunkt (centre of mass frame) oder Schwerpunktsystem (=m 1 +m ) r = r 1 - r =m 1 +m Position vom Schwerpunkt: r r 1 +m r v =m 1 v 1 +m v = p 1 + p ist die Geschwindigkeit

Mehr

Physikalisches Praktikum M 7 Kreisel

Physikalisches Praktikum M 7 Kreisel 1 Physikalisches Praktikum M 7 Kreisel Versuchsziel Quantitative Untersuchung des Zusammenhangs von Präzessionsfrequenz, Rotationsfrequenz und dem auf die Kreiselachse ausgeübten Kippmoment Literatur /1/

Mehr

Einführung in die Physik für Maschinenbauer

Einführung in die Physik für Maschinenbauer Einführung in die Physik für Maschinenbauer WS 011/01 Teil 5 7.10/3.11.011 Universität Rostock Heinrich Stolz heinrich.stolz@uni-rostock.de 6. Dynamik von Massenpunktsystemen Bis jetzt: Dynamik eines einzelnen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

2.3.5 Dynamik der Drehbewegung

2.3.5 Dynamik der Drehbewegung 2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,

Mehr

Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm

Faszination Kreisel. Vom Spielzeug zur technischen Anwendung. Thomas Wilhelm Vom Spielzeug zur technischen Anwendung Thomas Wilhelm 1. Spielzeug Kreisel Symmetrische Kreisel (zwei Hauptträgheitsmomente gleich groß), meist Rotationskörper Einfacher Kreisel Einfacher Kreisel Unterschiedliche

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Experiment: Inelastischer Stoß

Experiment: Inelastischer Stoß Experiment: Inelastischer Stoß Langer Gleiter auf der Luftkissenbahn stößt inelastisch auf einen ruhenden von gleicher Masse. Gleiter kleben nach dem Stoß zusammen (Klebwachs). Messung der Geschwindigkeiten

Mehr

Spezialfall m 1 = m 2 und v 2 = 0

Spezialfall m 1 = m 2 und v 2 = 0 Spezialfall m 1 = m 2 und v 2 = 0 Impulserhaltung: Quadrieren ergibt Energieerhaltung: Deshalb muss gelten m v 1 = m ( u 1 + u 2 ) m 2 v 1 2 = m 2 ( u 2 1 + 2 u 1 u 2 + u 2 ) 2 m 2 v2 1 = m 2 ( u 2 1 +

Mehr

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels

8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 8. Drehbewegungen 8.1 Gleichförmige Kreisbewegung 8.2 Drehung ausgedehnter Körper 8.3 Beziehung: Translation - Drehung 8.4 Vektornatur des Drehwinkels 85 8.5 Kinetische Energie der Rotation ti 8.6 Berechnung

Mehr

Physik I Übung 10 - Lösungshinweise

Physik I Übung 10 - Lösungshinweise Physik I Übung - Lösungshinweise Stefan Reutter WS / Moritz Kütt Stand: 7. Februar Franz Fujara Aufgabe War die Weihnachtspause vielleicht doch zu lang? Bei der Translation eines Massenpunktes und der

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 03: Kreiselpräzession UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 2 Versuch 03 Kreiselpräzession

Mehr

Versuch 4 Kreiselpräzession

Versuch 4 Kreiselpräzession Physikalisches A-Praktikum Versuch 4 Kreiselpräzession Protokollant: Niklas Bölter Mitpraktikant: Julius Strake Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 17. 07. 2012 Unterschrift: Inhaltsverzeichnis

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation

Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation M10 GYROSKOP PHYSIKALISCHE GRUNDLAGEN Grundbegriffe: Drehimpulserhaltungssatz, Kreisel, Figuren-, Drehimpuls- und momentane Drehachse, Präzession und Nutation 1. Begriff des Kreisels: Ein Kreisel ist ein

Mehr

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018

Ludwig Maximilians Universität München Fakultät für Physik. Lösungsblatt 8. Übungen E1 Mechanik WS 2017/2018 Ludwig Maximilians Universität München Fakultät für Physik Lösungsblatt 8 Übungen E Mechanik WS 27/28 Dozent: Prof. Dr. Hermann Gaub Übungsleitung: Dr. Martin Benoit und Dr. Res Jöhr Verständnisfragen

Mehr

AUSWERTUNG: KREISEL. In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft.

AUSWERTUNG: KREISEL. In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft. AUSWERTUNG: KREISEL TOBIAS FREY, FREYA GNAM 1. DREHIMPULSERHALTUNG In diesem Versuch haben wir die Drehimpulserhaltung experimentell überprüft. 1.1. Drehschemel. Eine Versuchsperson setzte sich auf den

Mehr

Klassische und Relativistische Mechanik

Klassische und Relativistische Mechanik Klassische und Relativistische Mechanik Othmar Marti 16. 01. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik

Mehr

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik

2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2. Beschleunigte Bezugssysteme, starrer Körper und Himmelsmechanik 2.1. Trägheits- bzw. Scheinkräfte Die Bewegung in einem beschleunigen Bezugssystem lässt sich mit Hilfe von sogenannten Scheinkräften

Mehr

Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2

Versuch P2-71,74: Kreisel. Vorbereitung. Von Jan Oertlin und Ingo Medebach. 11. Mai Drehimpulserhaltung 2. 2 Freie Achse 2 Versuch P - 71,74: Kreisel Vorbereitung Von Jan Oertlin und Ingo Medebach 11. Mai 010 Inhaltsverzeichnis 1 Drehimpulserhaltung Freie Achse 3 Kräftefreie Kreisel 3 4 Dämpfung des Kreisels 3 5 Kreisel unter

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 04.12.2017 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

4 Die Rotation starrer Körper

4 Die Rotation starrer Körper 4 Die Rotation starrer Körper Die Bewegung eines realen Körpers ist erst dann vollständig beschrieben, wenn nicht nur seine als Translation bezeichnete geradlinige Bewegung, sondern auch seine als Rotation

Mehr

Drehbewegungen (Rotation)

Drehbewegungen (Rotation) Drehbewegungen (Rotation) Drehungen (Rotation) Die allgemeine Bewegung eines Systems von Massepunkten lässt sich immer zerlegen in: und Translation Rotation Drehungen - Rotation Die kinematischen Variablen

Mehr

115 - Kreiselgesetze

115 - Kreiselgesetze 115 - Kreiselgesetze 1. Aufgaben 1.1 Bestimmen Sie die Nutationsfrequenz des kräftefreien Kreisels in Abhängigkeit von der Kreiselfrequenz. 1.2 Bestimmen Sie die Präzessionsperiode des schweren Kreisels

Mehr

Kreisel. Was ist ein symmetrischer-, was ein kräftefreier-, was ein schwerer Kreisel?

Kreisel. Was ist ein symmetrischer-, was ein kräftefreier-, was ein schwerer Kreisel? Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier-, schwerer, Nutation, Präzession. Schriftliche VORbereitung: Beantworten Sie bitte die folgenden Fragen:

Mehr

M19. Kreisel. Ein Kreisel, bei dem die Summe aller Drehmomente M i bezüglich des Schwerpunktes verschwindet (1) heißt kräftefrei.

M19. Kreisel. Ein Kreisel, bei dem die Summe aller Drehmomente M i bezüglich des Schwerpunktes verschwindet (1) heißt kräftefrei. M19 Kreisel Bei symmetrischen Kreiseln sollen die räzession und die Nutation untersucht und damit die dynamischen Eigenschaften eines Kreisels veranschaulicht werden. 1. Theoretische Grundlagen 1.1 Begriffsbestimmungen

Mehr

M19. Kreisel. Ein Kreisel, bei dem die Summe aller Drehmomente M i bezüglich des Schwerpunktes verschwindet (1) heißt kräftefrei.

M19. Kreisel. Ein Kreisel, bei dem die Summe aller Drehmomente M i bezüglich des Schwerpunktes verschwindet (1) heißt kräftefrei. M19 Kreisel Bei symmetrischen Kreiseln sollen die räzession und die Nutation untersucht und damit die dynamischen Eigenschaften eines Kreisels veranschaulicht werden. 1. Theoretische Grundlagen 1.1 Begriffsbestimmungen

Mehr

7.1 Kraftwirkung von Rotoren

7.1 Kraftwirkung von Rotoren 49 Beim Massenpunkt haben der Impuls p mv und die Geschwindigkeit v aufgrund der skalaren Masse stets die gleiche Richtung. Äußere Kräfte führen daher auf Impuls- und gleichzeitig Geschwindigkeitsänderungen

Mehr

5.2 Drehimpuls, Drehmoment und Trägheitstensor

5.2 Drehimpuls, Drehmoment und Trägheitstensor 186 KAPITEL 5. STARRE KÖRPER 5. Drehimpuls, Drehmoment und Trägheitstensor Wie wir im vorhergehenden Abschnitt gesehen haben, besitzt ein starrer Körper 3 Freiheitsgrade zur Beschreibung seiner Position

Mehr

Kreiselversuche. Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt.

Kreiselversuche. Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt. Kreiselversuche Abb. 1: Vorführkreisel mit verstellbarem Aufpunkt. Geräteliste: Fahrradreifen mit Handgriffen, Fahrradreifen mit Verstellbarem Aufpunkt, Drehstuhl, kräftefreier Kreisel, Umkehrkreisel,

Mehr

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a)

Zentralabstand b, Spaltbreite a. Dreifachspalt Zentralabstand b, Spaltbreite a. Beugungsgitter (N Spalte, N<10 4, Abstand a) Doppelspalt (ideal) Doppelspalt (real) Zentralabstand b, Spaltbreite a Dreifachspalt Zentralabstand b, Spaltbreite a Beugungsgitter (N Spalte, N

Mehr

9 Teilchensysteme. 9.1 Schwerpunkt

9 Teilchensysteme. 9.1 Schwerpunkt der Impuls unter ganz allgemeinen Bedingungen erhalten bleibt. Obwohl der Impulserhaltungssatz, wie wir gesehen haben, aus dem zweiten Newton schen Axiom folgt, ist er tatsächlich allgemeiner als die Newton

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

M10 PhysikalischesGrundpraktikum

M10 PhysikalischesGrundpraktikum M10 PhysikalischesGrundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner

Mehr

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ )

Hier wurde die Jacobi-Determinante der ZylinderKoordinaten verwendet (det J = ρ). Wir führen zunächst die ρ-integration durch: (R 2 H sin 2 φ ) b) Für einen Zylinder bieten sich Zylinderkoordinaten an. Legt man den Ursprung in den Schwerpunkt und die z- bzw. x 3 - Achse entlang der Zylinderachse, verschwinden alle Deviationsmomente. Dies liegt

Mehr

Drehbewegungen. Lerninhalte

Drehbewegungen. Lerninhalte Physik Lerninhalte man informiere sich über: Winkelgeschwindigkeit, Winkelbeschleunigung Drehmoment, Drehimpuls, Drehimpulserhaltung Trägheitsmoment, Steiner scher Satz gleichmäßig beschleunigte Drehbewegung

Mehr

Physikalisches Grundpraktikum Abteilung Mechanik

Physikalisches Grundpraktikum Abteilung Mechanik M10 Physikalisches Grundpraktikum Abteilung Mechanik Kreisel 1 Vorbereitung Erhaltungssätze der Mechanik Analogien zwischen Rotation und Translation Trägheitsmomente und deren Berechnung Satz von Steiner

Mehr

Magnetismus. Vorlesung 5: Magnetismus I

Magnetismus. Vorlesung 5: Magnetismus I Magnetismus Erzeugung eines Magnetfelds möglich durch: Kreisende Elektronen: Permanentmagnet Bewegte Ladung: Strom: Elektromagnet (Zeitlich veränderliches elektrisches Feld) Vorlesung 5: Magnetismus I

Mehr

Experimentalphysik 1. Vorlesung 2

Experimentalphysik 1. Vorlesung 2 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 2016/17 orlesung 2 Ronja Berg (ronja.berg@ph.tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Inhaltsverzeichnis

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

Repetitorium D: Starrer Körper

Repetitorium D: Starrer Körper Fakultät für Physik T: Klassische Mechanik, SoSe 206 Dozent: Jan von Delft Übungen: Benedikt Bruognolo, Sebastian Huber, Katharina Stadler, Lukas Weidinger http://www.physik.uni-muenchen.de/lehre/vorlesungen/sose_6/t_theor_mechanik/

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Versuch 4: Kreiselpräzession

Versuch 4: Kreiselpräzession Versuch 4: Kreiselpräzession Inhaltsverzeichnis 1 Einführung 3 2 Theorie 3 2.1 Allgemeines zur Rotation von Körpern.................... 3 2.2 Die Eulersche Kreiselgleichung......................... 3 2.3

Mehr

Kreisel mit drei Achsen

Kreisel mit drei Achsen M42 Name: Kreisel mit drei Achsen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig (keine Gruppenlösung!)

Mehr

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

Der Trägheitstensor J

Der Trägheitstensor J Der Trägheitstensor J Stellen wir uns einen Kreisel vor, der um eine beliebige Achse dreht. Gilt die Beziehung L = J ω in jedem Bezugssystem? Dazu betrachten wir nochmals die Bewegung eines starren Körpers.

Mehr

Übungen zu Physik I für Physiker Serie 6 Musterlösungen

Übungen zu Physik I für Physiker Serie 6 Musterlösungen Übungen zu Physik I für Physiker Serie 6 Musterlösungen Allgemeine Fragen. Wie kann eine Person, die auf einem reibungslosen Tisch sitzt, jemals aus eigener Kraft von diesem herunterkommen? Unter praktischer

Mehr

Versuch 4 - Trägheitsmoment und Drehimpuls

Versuch 4 - Trägheitsmoment und Drehimpuls UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 5: Drehmoment, Gleichgewicht und Rotation Dr. Daniel Bick 16. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 16. November 2016 1 / 39 Impuls

Mehr

Messen von Kräften: Nur indirekt möglich, zum Beispiel über Deformation. Zusammensetzung und Komponentenzerlegung von Kräften

Messen von Kräften: Nur indirekt möglich, zum Beispiel über Deformation. Zusammensetzung und Komponentenzerlegung von Kräften Hier geht es um die Ursachen für die Änderung des Bewegungszustandes eines Massenpunktes: Die Kräfte F Messen von Kräften: Nur indirekt möglich, zum Beispiel über Deformation Zusammensetzung und Komponentenzerlegung

Mehr

Was gibt es in Vorlesung 4 zu lernen?

Was gibt es in Vorlesung 4 zu lernen? Was gibt es in Vorlesung 4 zu lernen? inelastischer Stoß - keine Energieerhaltung (fast alle Energie kann in Wärme umgewandelt werden) - Geschwindigkeit Gewehrkugel - Rakete Rotationsbewegung - Umlaufgeschwindigkeit

Mehr

2.6 Drehbewegung eines starren Körpers

2.6 Drehbewegung eines starren Körpers 2.6 Drehbewegung eines starren Körpers 2.6 Drehbewegung eines starren Körpers 2.6. Winkelbeschleunigung, Trägheitsmoment. m einfachen Fall einer starren, um eine feste chse drehbaren Scheibe wollen wir

Mehr

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung: Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse

Mehr

Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel, Nutation, Präzession.

Rotation starrer Körper, Drehimpuls, Drehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel, Nutation, Präzession. Kreisel 1. LITERATUR emtröder; Tipler, Hering/Martin/Stohrer; Gerthsen 2. STICHPUNKTE Rotation starrer Körper, rehimpuls, rehmoment, Trägheitsmoment, Hauptträgheitsachsen, kräftefreier -, schwerer Kreisel,

Mehr

Kreisbewegung Ein Bild sagt mehr als tausend Worte.

Kreisbewegung Ein Bild sagt mehr als tausend Worte. Kreisbewegung Ex. 20.4 (3. Gebot) Du sollst Dir keine Bilder machen von Dingen, die im Himmel, auf der Erde, im Wasser oder unter der Erde sind. Ein Bild sagt mehr als tausend Worte. 1 Einführung Die Erde

Mehr

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08)

Lösungsblatt Rolle und Gewichte (2P) Mechanik (Physik, Wirtschaftsphysik, Physik Lehramt) (WS07/08) sblatt Mechanik Physik, Wirtschaftsphysik, Physik Lehramt WS07/08 Wolfgang v. Soden wolfgang.soden@uni-ulm.de. 0. 008 74 Rolle und Gewichte P Zwei Gewichte mit Massen m = kg bzw. m = 3kg sind durch einen

Mehr

Pohlsches Pendel / Kreisel

Pohlsches Pendel / Kreisel Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere

Mehr

Pohlsches Pendel / Kreisel

Pohlsches Pendel / Kreisel Pohlsches Pendel / Kreisel Mit Hilfe des Pohlschen Pendels, eines schwingenden Systems mit einem Freiheitsgrad, sollen freie und erzwungene Schwingungen mit und ohne Dämpfung untersucht werden. Insbesondere

Mehr

Aufgabe 11.1 (Fragen zu Kreisbewegungen und Drehungen)

Aufgabe 11.1 (Fragen zu Kreisbewegungen und Drehungen) Physik VNT Aufgabenblätter und 2 7. Übung 4. KW) Aufgabe. Fragen zu Kreisbewegungen und Drehungen) a) Beurteilen Sie, welche der folgenden Aussagen jeweils wahr oder falsch ist: Wenn sich ein Körper gleichförmig

Mehr

Versuch M11 für Nebenfächler Kreisel

Versuch M11 für Nebenfächler Kreisel Versuch M11 für Nebenfächler Kreisel I. Physikalisches Institut, Raum 105 Stand: 17. Juli 2012 generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte Versuchspartner angeben bitte

Mehr

Eigenschaften des Kreisels

Eigenschaften des Kreisels Version 1. Dezember 011 1. Trägheitstensor und Eulersche Kreisel-Gleichungen Auf Grund der formalen Ähnlichkeit von Impuls- und Drehimpulssatz, also von d p = F und d L = τ, könnte man vermuten, dass der

Mehr

5.3 Drehimpuls und Drehmoment im Experiment

5.3 Drehimpuls und Drehmoment im Experiment 5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,

Mehr

Physik 1 für Chemiker und Biologen 8. Vorlesung

Physik 1 für Chemiker und Biologen 8. Vorlesung Physik 1 für Chemiker und Biologen 8. Vorlesung 12.12.2016 http://xkcd.com/1184/ Heute: - Wiederholung: Drehbewegungen - Drehimpuls & Anwendungen - Einschub: Drehmomentsmessungen an biologischen Molekülen

Mehr

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen!

Wichtig!!!! Nur klare, übersichtliche Lösungen werden gewertet!!!! Alle Lösungen immer erst allgemein bestimmen, dann einsetzen! ÜBUNGEN ZUR KLASSISCHEN / EINFÜHRUNG IN DIE PHYSIK I WS 2010/11 PROBEKLAUSUR 22.01.2011 Kennwort... Kennzahl Übungsgruppe (Tag/Uhrzeit) nur für die Korrektoren: Studienfach (bitte ankreuzen): Aufgabe Punkte

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

Starrer Körper: Drehimpuls und Drehmoment

Starrer Körper: Drehimpuls und Drehmoment Starrer Körper: Drehimpuls und Drehmoment Weitere Schreibweise für Rotationsenergie: wobei "Dyade" "Dyadisches Produkt" Def.: "Dyadisches Produkt", liefert bei Skalarmultiplikation mit einem Vektor : und

Mehr

2.7 Gravitation, Keplersche Gesetze

2.7 Gravitation, Keplersche Gesetze 2.7 Gravitation, Keplersche Gesetze Insgesamt gibt es nur vier fundamentale Wechselwirkungen: 1. Gravitation: Massenanziehung 2. elektromagnetische Wechselwirkung: Kräfte zwischen Ladungen 3. starke Wechselwirkung:

Mehr

Physikalisches Grundpraktikum. Versuch 4. Kreiselpräzession. Mitarbeiter: Tobias Wegener. Marten Düvel

Physikalisches Grundpraktikum. Versuch 4. Kreiselpräzession. Mitarbeiter: Tobias Wegener. Marten Düvel Physikalisches Grundpraktikum Versuch 4 Kreiselpräzession Praktikant: Alexander Osterkorn E-Mail: a.osterkorn@stud.uni-goettingen.de Mitarbeiter: Tobias Wegener Tutor: Gruppe: Marten Düvel 3 Durchgeführt

Mehr

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen

MECHANIK II. Arbeit, Energie, Leistung Impuls Rotationen Physik für Pharmazeuten MECHANIK II Arbeit, Energie, Leistung Impuls Rotationen Mechanik ikii Flaschenzug Mechanik ikii Flaschenzug: beobachte: F 1 kleiner als F (Gewichtskraft), aber: r größer alsr aber:

Mehr

Rotationsmechanik öffentliche Sonntagsvorlesung, 13. Januar Lesender: PD Dr. Frank Stallmach

Rotationsmechanik öffentliche Sonntagsvorlesung, 13. Januar Lesender: PD Dr. Frank Stallmach Fakultät für Phsik und Geowissenschaften Rotationsmechanik 130. öffentliche Sonntagsvorlesung, 13. Januar 2013 Lesender: PD Dr. Frank Stallmach Assistenz: Ael Märcker WOG Landesseminar zur Vorbereitung

Mehr

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis

8. Starre Körper. Die φ-integration liefert einen Faktor 2π. Somit lautet das Ergebnis Übungen zur T1: Theoretische Mechanik, SoSe213 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 425 8. Starre Körper Dr. James Gray James.Gray@physik.uni-muenchen.de Übung 8.1: Berechnung von Trägheitstensoren

Mehr

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie

I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie I.10.6 Drehbewegung mit senkrecht zu, Kreiseltheorie Versuch: Kreisel mit äußerer Kraft L T zur Dieser Vorgang heißt Präzession, Bewegung in der horizontalen Ebene (Kreisel weicht senkrecht zur Kraft aus).

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

5 Kreisbewegung und Rotation (rotación, la)

5 Kreisbewegung und Rotation (rotación, la) 5 Kreisbewegung und Rotation Hofer 1 5 Kreisbewegung und Rotation (rotación, la) A1: Nenne Beispiele für kreisförmige Bewegungen und Drehungen aus dem Alltag! A2: Nenne die grundlegenden Bewegungsformen

Mehr

Trägheitsmomente aus Drehschwingungen

Trägheitsmomente aus Drehschwingungen M0 Name: Trägheitsmomente aus Drehschwingungen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen.

Trägheitsmomente spielen damit bei Drehbewegungen eine ähnliche Rolle wie die Masse bei Translationsbewegungen. Anwendungen der Integralrechnung 1 1 Trägheitsmomente 1. 1 Einleitung, Definition Körper fallen im Vakuum gleich schnell und sie gleiten auf einer reibungsfreien schiefen Ebene gleich schnell. Sie rollen

Mehr

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50)

Physik 1, WS 2015/16 Musterlösung 8. Aufgabenblatt (KW 50) Physik 1, WS 015/16 Musterlösung 8. Aufgabenblatt (KW 50) Aufgabe (Bleistift) Ein dünner Bleistift der Masse m und der Länge L steht zunächst mit der Spitze nach oben zeigend senkrecht auf einer Tischplatte.

Mehr

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators

Energie eines bewegten Körpers (kinetische Energie) Energie eines rotierenden Körpers. Energie im elektrischen Feld eines Kondensators Formeln und Naturkonstanten 1. Allgemeines Energieströme P = v F P = ω M P = U I P = T I S Energiestromstärke bei mechanischem Energietransport (Translation) Energiestromstärke bei mechanischem Energietransport

Mehr

Rotierender Starrer Körper/Kreisel

Rotierender Starrer Körper/Kreisel Rotierender Starrer Körper/Kreisel Ralf Metzler, Uni Potsdam, 2017-07-05 Typeset by FoilTEX 1 Kinetische Energie des Starren Körpers Translationsenergie: T trans = 1 2 v2 0 m α = m 2 v2 0, wobei m = α

Mehr

M6a Kreisel mit drei Achsen

M6a Kreisel mit drei Achsen Fakultät für hysik und Geowissenschaften hysikalisches Grundraktikum M6a Kreisel mit drei Achsen Aufgaben 1. Bestimmen Sie das Trägheitsmoment der Kreiselscheibe aus der Winkelbeschleunigung bei bekanntem

Mehr

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung:

Zur Erinnerung. Trägheitsmomente, Kreisel, etc. Stichworte aus der 11. Vorlesung: Zur Erinnerung Stichworte aus der 11. Vorlesung: Zusammenfassung: Trägheitsmomente, Kreisel, etc. allgemeine Darstellung des Drehimpulses für Drehung von beliebig geformtem Körper um beliebige Drehachse

Mehr

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei!

Kreiselphysik. dl dt. Kreisel nach Magnus (mit kardanischer Aufhängung): freie Bewegung in 3D und drehmomentfrei! Kreiselphysik Kreisel sind starre Körper mit hoher Symmetrie, die bei Rotation um diese Symmetrieahsen sehr stabil laufen können. Lagert man den Kreisel so, dass keine Drehmomente M auf ihn wirken, so

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr

11. Vorlesung Wintersemester

11. Vorlesung Wintersemester 11. Vorlesung Wintersemester 1 Ableitungen vektorieller Felder Mit Resultat Skalar: die Divergenz diva = A = A + A y y + A z z (1) Mit Resultat Vektor: die Rotation (engl. curl): ( rota = A Az = y A y

Mehr

Anthony P French. Newtonsche Mechanik. Eine Einführung in die klassische Mechanik. Übersetzt aus dem Amerikanischen von Frank Epperlein W DE

Anthony P French. Newtonsche Mechanik. Eine Einführung in die klassische Mechanik. Übersetzt aus dem Amerikanischen von Frank Epperlein W DE Anthony P French Newtonsche Mechanik Eine Einführung in die klassische Mechanik Übersetzt aus dem Amerikanischen von Frank Epperlein W DE G Walter de Gruyter Berlin New York 1996 Inhalt Vorwort Prolog

Mehr

Klausur Physik 1 (GPH1) am

Klausur Physik 1 (GPH1) am Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 9.2.04 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 06. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 06 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 24. 1. 2005 31. 1. 2005 1 Aufgaben 1. Berechnen Sie für das Vektorpotential

Mehr