Epistemische Logik Einführung

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Epistemische Logik Einführung"

Transkript

1 Epistemische Logik Einführung Dr. Uwe Scheffler [Technische Universität Dresden] Oktober 2010

2 Was ist epistemische Logik? Epistemische Logik ist die Logik von Wissen und Glauben, so wie klassische Logik die Logik von für alle, und, nicht,... ist. Wissen und Glauben werden als Operatoren betrachtet, die aus Sätzen (und möglicherweise anderen linguistischen Einheiten) Sätze bilden: K i φ und B i φ drücken aus, daß ein Agent i die Aussage φ weiß beziehungsweise glaubt. Manchmal werden Wissen und Glauben auch als Prädikate behandelt. Entstanden ist die epistemische Logik in der Philosophie (Erkenntnistheorie: epistemology), wird aber heute auch beispielsweise in der Informatik und den Wirtschaftswissenschaften diskutiert. Dr. Uwe Scheffler 2

3 Wenn schon, denn schon: Platon Theaitetos: Recht habe vielleicht der Mann, der zur Bestimmung des Wissens den Satz aufstellt, es sei eine richtige Meinung, verbunden mit einer logischen Erklärung. richtig = wahr; meinen = glauben; logische Erklärung = Begründung Wissen ist wahrer, gerechtfertigter Glaube. Dr. Uwe Scheffler 3

4 Wahrer gerechtfertigter Glaube 1. Gewußtes ist wahr (Wissen ist faktiv): K i φ φ 2. Gewußtes hat eine Rechtfertigung, bspw. durch ein logisches Argument: K i φ K i (φ ψ) K i ψ 3. Wissen heißt auch Glauben: K i φ B i φ i akzeptiert φ i hat adäquate Belege für φ φ ist wahr (Chisholm) K i φ genau dann, wenn φ ist wahr i ist sicher, daß φ wahr ist i hat das Recht sicher zu sein, daß φ wahr ist (Ayer) Dr. Uwe Scheffler 4

5 Gettier Edmund L. Gettier: Is Justified True Belief Knowledge? Analysis 23 ( 1963): Beobachtung 1 Man kann gerechtfertigt eine Falschheit glauben. Beobachtung 2 Wenn i gerechtfertigt an φ glaubt und logisch korrekt ψ aus φ deduziert, ist i im Glauben an ψ gerechtfertigt. Dr. Uwe Scheffler 5

6 Gettier-Beispiel 1 1. Smith und Jones bewerben sich auf ein und denselben Job und Smith glaubt fest: Jones bekommt den Job, und Jones hat 10 Münzen in der Tasche. 2. Daher glaubt Smith: Der Mann, der den Job bekommt, hat 10 Münzen in der Tasche. 3. Allerdings bekommt Smith den Job... und obwohl er es nicht ahnt, hat er 10 Münzen in der Tasche. Aber Smith, würde man sagen, weiß nicht, daß der Mann, der den Job bekommt, 10 Münzen in der Tasche hat obwohl sein Glaube wahr und gerechtfertigt ist! Dr. Uwe Scheffler 6

7 Gettier-Beispiel 2 1. Smith hat gute Gründe zu glauben: Jones besitzt einen Ford. Allerdings stimmt das nicht. 2. Für einen Bekannten Brown, dessen Aufenthalt komplett unbekannt ist, folgt nun logisch aus dem geglaubten Satz: 2.1 Jones besitzt einen Ford oder Brown ist in Boston. 2.2 Jones besitzt einen Ford oder Brown ist in Barcelona. 2.3 Jones besitzt einen Ford oder Brown ist in Brest-Litovsk. 3. Smith akzeptiert die Schlüsse und glaubt die Sätze mit guten Gründen. Mehr noch, zufällig ist Brown in Barcelona und so ist dieser Glaube noch dazu wahr. Aber Smith hat keine Ahnung, wo Brown ist, und Jones hat keinen Ford! Dr. Uwe Scheffler 7

8 Was ist nun Wissen? Wissen ist Wahrheit in allen relevanten epistemischen Alternativen. Wissen ist wahrer Glaube, und wenn er nicht wahr wäre, würde man die Negation glauben. Wissen ist wahre Überzeugung. Dr. Uwe Scheffler 8

9 Deskriptive versus rationale Logik Franz von Kutschera: Grundfragen der Erkenntnistheorie 1. Wenn φ, dann B i φ 2. B i (φ ψ) B i φ B i ψ 3. B i φ B i φ 4. xb i φ(x) B i xφ(x) 5. B i φ B i B i φ 6. B i φ B i B i φ 7. K i φ φ 8. K i φ B i φ. Dr. Uwe Scheffler 9

10 Ersetzungen und Einsetzungen Die Einsetzung Identischer funktioniert nicht: klassisch Wenn a = b, dann φ φ{a/b} Da = 10 2, gilt: Peter absolviert Übungen dann und nur dann, wenn er 10 2 Übungen absolviert. epistemisch Da = 10 2, gilt: Peter weiß, daß = 100 dann und nur dann, wenn er weiß, daß 10 2 = 100. Die Ersetzung beweisbar äquivalenter scheint manchmal zweifelhaft: klassisch Wenn φ ψ, dann ω ω[φ/ψ] epistemisch Man kann beweisen, daß Peter nur glaubt, daß alle Griechen Menschen sind, wenn er auch glaubt, daß alles auf der Welt kein Grieche oder Mensch ist. Dr. Uwe Scheffler 10

11 Die Agenten Gemeinsames Wissen Wer ist i in K i φ? Spielt es eine Rolle, ob bspw. K i K j K i φ? Fagin, Jalpern, Moses, Vardi: Reasoning About Knowledge Die schmutzigen Kinder n Kinder, k davon haben Schmutz im Gesicht. Vater kommt und sagt: Wenigstens einer von euch ist aber schmutzig (Das wußten auch davon schon alle, falls k > 1). Angenommen, alle Kinder sind aufmerksam, intelligent und wahrhaftig. Der Vater fragt nun wieder und wieder: Weiß einer von euch, daß er ein schmutziges Gesicht hat? Die ersten k 1 Fragen werden von allen schmutzigen Kindern mit Nein, die k-te Fragen von allen schmutzigen Kindern mit Ja beantwortet! Dr. Uwe Scheffler 11

Problem der Rechtfertigung

Problem der Rechtfertigung Geisteswissenschaft Matthias Seidel Problem der Rechtfertigung Essay Essay Problem der Rechtfertigung von Matthias Seidel Universität Siegen für die Veranstaltung Einführung in die Erkenntnistheorie Abgabedatum:

Mehr

Zweifeln und Wissen. Grundprobleme der Erkenntnistheorie

Zweifeln und Wissen. Grundprobleme der Erkenntnistheorie Universität Dortmund, WS 2005/06 Institut für Philosophie C. Beisbart Zweifeln und Wissen. Grundprobleme der Erkenntnistheorie Das Gettier-Problem (anhand von E Gettier, Is Justified True Belief Knowledge?

Mehr

Analytische Erkenntnistheorie & Experimentelle Philosophie

Analytische Erkenntnistheorie & Experimentelle Philosophie Analytische Erkenntnistheorie & Experimentelle Philosophie Klassische Analyse von Wissen Die Analyse heisst klassisch, weil sie auf Platon zurück geht (Theaitetos) Sokrates will wissen, was das Wissen

Mehr

Einführung in die theoretische Philosophie

Einführung in die theoretische Philosophie Einführung in die theoretische Philosophie Prof. Dr. Martin Kusch 1 Unterrichtsmaterialien Auf Moodle: Literatur zur Vorlesung Auf http://homepage.univie.ac.at/martin.kusch/index.html

Mehr

PD Dr. Christoph Jäger. Institut für Christliche Philosophie

PD Dr. Christoph Jäger. Institut für Christliche Philosophie Vorlesung Erkenntnistheorie PD Dr. Christoph Jäger Universität i Innsbruck Institut für Christliche Philosophie Vorlesung I Einführung: Wissen, Glauben und Rechtfertigung 2 There are known knowns; there

Mehr

Epistemische Logik Epistemische Prädikate

Epistemische Logik Epistemische Prädikate Epistemische Logik Epistemische Prädikate Dr. Uwe Scheffler [Technische Universität Dresden] Januar 2011 Zukommen und Zuordnen Aussagen und Sätze: 1. Anna mag Ben. 2. Ben wird von Anna gemocht. 3. Anna

Mehr

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen

sich die Schuhe zubinden können den Weg zum Bahnhof kennen die Quadratwurzel aus 169 kennen Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Grundfragen der Erkenntnistheorie Kapitel 2: Die klassische Analyse des Begriffs des Wissens 1 Varianten des Wissens 2 Was ist das Ziel der Analyse

Mehr

5. Ist Wissen gerechtfertigte wahre Überzeugung?

5. Ist Wissen gerechtfertigte wahre Überzeugung? Was ist das Ziel unserer Erkenntnisbemühungen? 5. Ist Wissen gerechtfertigte wahre Überzeugung? Descartes Sicheres Wissen = Überzeugungen, die in dem Sinne unbezweifelbar sind, dass sie sich unter keinen

Mehr

Einführung in die Erkenntnistheorie

Einführung in die Erkenntnistheorie Joachim Stiller Einführung in die Erkenntnistheorie Präsentation Alle Rechte vorbehalten 4.1 Erkenntnistheorie Übersicht - Grundbegriffe der Erkenntnistheorie - Wissen (Wissenstheorie) - Wahrheit (Wahrheitstheorie)

Mehr

Kripke über Analytizität: eine zwei-dimensionalistische Perspektive

Kripke über Analytizität: eine zwei-dimensionalistische Perspektive Kripke über Analytizität: eine zwei-dimensionalistische Perspektive Dr. Helge Rückert Lehrstuhl Philosophie II Universität Mannheim rueckert@rumms.uni-mannheim.de http://www.phil.uni-mannheim.de/fakul/phil2/rueckert/index.html

Mehr

Prof. Christian Nimtz // erlangen.de

Prof. Christian Nimtz  // erlangen.de Programm Prof. Christian Nimtz www.nimtz.net // christian.nimtz@phil.uni erlangen.de Theoretische Philosophie der Gegenwart Teil I: Erkenntnistheorie 1. Erkenntnistheorie Grundfragen und Grundprobleme

Mehr

5. Ist Wissen gerechtfertigte wahre Überzeugung?

5. Ist Wissen gerechtfertigte wahre Überzeugung? Die traditionelle Analyse von Wissen 5. Ist Wissen gerechtfertigte wahre Überzeugung? Teil 2 (W t ) Eine Person weiß, dass p, genau dann, wenn (i) sie davon überzeugt ist, dass p, wenn (ii) p wahr ist

Mehr

Mögliche Welten. Dr. Uwe Scheffler. Oktober [Technische Universität Dresden]

Mögliche Welten. Dr. Uwe Scheffler. Oktober [Technische Universität Dresden] Mögliche Welten Dr. Uwe Scheffler [Technische Universität Dresden] Oktober 2011 Eine Sprache für die Aussagenlogik Bedeutungstragende Zeichen sind p, p 1, p 2,... sie sind Aussagenvariablen und bezeichnen

Mehr

Programm Grundfragen der Erkenntnistheorie Kapitel 3: Gettier und die Folgen Die klassische Analyse des Wissensbegriffs

Programm Grundfragen der Erkenntnistheorie Kapitel 3: Gettier und die Folgen Die klassische Analyse des Wissensbegriffs Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Grundfragen der Erkenntnistheorie 1 Die klassische Analyse des Wissensbegriffs 2 Die Gettier Fälle 3 Die Struktur von Gettier Fällen Kapitel 3:

Mehr

Die Anfänge der Logik

Die Anfänge der Logik Die Anfänge der Logik Die Entwicklung des logischen Denkens vor Aristoteles Holger Arnold Universität Potsdam, Institut für Informatik arnold@cs.uni-potsdam.de Grundfragen Was ist Logik? Logik untersucht

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

PD Dr. Christoph Jäger. Institut für Christliche Philosophie

PD Dr. Christoph Jäger. Institut für Christliche Philosophie Vorlesung Erkenntnistheorie PD Dr. Christoph Jäger Universität i Innsbruck Institut für Christliche Philosophie 1 IV. Skeptische Argumente 2 Formen des Skeptizismus Wissensskeptizismus: Wir können nicht

Mehr

Logik. Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Aussage

Logik. Ernest Peter Propädeutikum Mathematik Informatik/Wirtschaftsinformatik, Block Aussage Logik Die Logik ist in der Programmierung sehr wichtig. Sie hilft z.b. bei der systematischen Behandlung von Verzweigungen und Schleifen. z.b. if (X Y und Y>0) then Oder beim Beweis, dass ein Algorithmus

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 25.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 25. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 25. Januar 2017 Gödels Unvollständigkeitssatz Unvollständigkeit von Axiomensystemen:

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion

Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Vorkurs Mathematik und Informatik Mengen, natürliche Zahlen, Induktion Saskia Klaus 07.10.016 1 Motivation In den ersten beiden Vorträgen des Vorkurses haben wir gesehen, wie man aus schon bekannten Wahrheiten

Mehr

Grundlagen und Diskrete Strukturen Wiederholungsaufgaben

Grundlagen und Diskrete Strukturen Wiederholungsaufgaben TU Ilmenau Institut für Mathematik Dr. Jens Schreyer Teil 1: Aussagenlogik Aufgabe 1 Grundlagen und Diskrete Strukturen Wiederholungsaufgaben Stellen Sie die Wahrheitstafel für die aussagelogische Formel

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Probeklausuraufgaben GuDS

Probeklausuraufgaben GuDS TU Ilmenau WS 2014/15 Institut für Mathematik Probeklausuraufgaben GuDS Achtung: Die Auswahl der Aufgaben ist nicht repräsentativ für die tatsächlichen Klausuraufgaben, sondern sollte lediglich als Übungsmöglichkeit

Mehr

Die naturalistische Verteidigung des wissenschaftlichen Realismus

Die naturalistische Verteidigung des wissenschaftlichen Realismus Christian Suhm Westfälische Wilhelms-Universität Münster Philosophisches Seminar Domplatz 23 48143 Münster Email: suhm@uni-muenster.de Anhörungsvortrag am Institut für Philosophie in Oldenburg (04.02.2004)

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe17 Ronja Düffel 22. März 2017 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.

Mehr

Logische Folge. Hannes Leitgeb. Oktober K(l)eine Einführung in die Logik. LMU München

Logische Folge. Hannes Leitgeb. Oktober K(l)eine Einführung in die Logik. LMU München Logische Folge K(l)eine Einführung in die Logik Hannes Leitgeb LMU München Oktober 2012 Hannes Leitgeb (LMU München) Logische Folge K(l)eine Einführung Oktober 2012 in die 1 / 26 Lo Was ist Logik? Traditionelle

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

PD Dr. Christoph Jäger. Institut für Christliche Philosophie

PD Dr. Christoph Jäger. Institut für Christliche Philosophie Vorlesung Erkenntnistheorie PD Dr. Christoph Jäger Universität i Innsbruck Institut für Christliche Philosophie 1 Vorlesung II Fundamentismus und Kohärentismus 2 Das Regressproblem Ausgangsfrage: Können

Mehr

Künstliche Intelligenz Softwaretechnologie: Prolog

Künstliche Intelligenz Softwaretechnologie: Prolog Künstliche Intelligenz Softwaretechnologie: Prolog Stephan Schwiebert sschwieb@spinfo.uni-koeln.de Wiederholung Konzepte logische Äquivalenz Die Aussagen p und q sind genau dann äquivalent, wenn sie unter

Mehr

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge

Grundlagen der Theoretischen Informatik - Sommersemester 2012. Übungsblatt 1: Lösungsvorschläge Lehrstuhl für Softwaretechnik und Programmiersprachen Professor Dr. Michael Leuschel Grundlagen der Theoretischen Informatik - Sommersemester 2012 Übungsblatt 1: Lösungsvorschläge Disclaimer: Bei Folgendem

Mehr

Erläuterung zum Satz vom ausgeschlossenen Widerspruch

Erläuterung zum Satz vom ausgeschlossenen Widerspruch TU Dortmund, Wintersemester 2010/11 Institut für Philosophie und Politikwissenschaft C. Beisbart Aristoteles, Metaphysik Der Satz vom ausgeschlossenen Widerspruch (Buch 4/Γ; Woche 4: 8. 9.11.2010) I. Der

Mehr

Formale Logik - SoSe 2012

Formale Logik - SoSe 2012 2.44 % Formale Logik - SoSe 2012 Versuch einer Zusammenfassung Malvin Gattinger http://xkcd.com/435/ 4.88 % Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit

Mehr

1 Argument und Logik

1 Argument und Logik Seminar: 1/5 1 Argument und Logik Aussagesatz (1): Ein Aussagesatz ist ein Satz im Indikativ, der entweder wahr oder falsch ist. Problem der Indexikalität: Sätze im Indikaitv, die indexikalische Ausdrücke

Mehr

Logik I. Symbole, Terme, Formeln

Logik I. Symbole, Terme, Formeln Logik I Symbole, Terme, Formeln Wie jede geschriebene Sprache basiert die Prädikatenlogik erster Stufe auf einem Alphabet, welches aus den folgenden Symbolen besteht: (a) Variabeln wie zum Beispiel v 0,v

Mehr

2.6 Natürliches Schließen in AL

2.6 Natürliches Schließen in AL 2.6 Natürliches Schließen in AL Bisher wurde bei der Überprüfung der Gültigkeit von Schlüssen oder Schlussschemata insofern ein semantisches Herangehen verfolgt, als wir auf die Bewertung von Formeln mit

Mehr

LÖSUNGEN ZU AUFGABE (41)

LÖSUNGEN ZU AUFGABE (41) DGB 40 Universität Athen, WiSe 2012-13 Winfried Lechner Handout #3 LÖSUNGEN ZU AUFGABE (41) 1. WIEDERHOLUNG: PARAPHRASEN, SITUATIONEN UND AMBIGUITÄT Ein Satz Σ ist ambig, wenn Σ mehr als eine Bedeutung

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 30 Die Logik der Quantoren Till Mossakowski Logik 2/ 30 Die axiomatische Methode Die

Mehr

Berechenbarkeitstheorie 19. Vorlesung

Berechenbarkeitstheorie 19. Vorlesung 1 Berechenbarkeitstheorie Dr. Institut für Mathematische Logik und Grundlagenforschung WWU Münster WS 15/16 Alle Folien unter Creative Commons Attribution-NonCommercial 3.0 Unported Lizenz. Erinnerung:

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen

1. Grundlagen. Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen 1. Grundlagen Gliederung 1.1 Was ist Analysis? 1.2 Aussagen und Mengen 1.3 Natürliche Zahlen 1.4 Ganze Zahlen, rationale Zahlen Peter Buchholz 2016 MafI 2 Grundlagen 7 1.1 Was ist Analysis? Analysis ist

Mehr

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen

1. Grundlagen. 1.1 Was ist Analysis? 1.2 Aussagen und Mengen . Grundlagen Gliederung. Was ist Analysis?.2 Aussagen und Mengen.3 Natürliche Zahlen.4 Ganze Zahlen, rationale Zahlen. Was ist Analysis? Analysis ist neben der linearen Algebra ein Grundpfeiler der Mathematik!

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

Dallmann, H. & Elster, K.H. (1991). Einführung in die höhere Mathematik, Band I. Jena: Fischer. (Kapitel 1, pp )

Dallmann, H. & Elster, K.H. (1991). Einführung in die höhere Mathematik, Band I. Jena: Fischer. (Kapitel 1, pp ) Logik Literatur: Dallmann, H. & Elster, K.H. (1991). Einführung in die höhere Mathematik, Band I. Jena: Fischer. (Kapitel 1, pp. 17-30) Quine, W.V.O. (1964 / 1995). Grundzüge der Logik. Frankfurt a.m.:

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Methoden des Wissenschaftlichen Arbeitens Vorlesung im Sommersemester VL 2: Was ist Wissenschaft?

Methoden des Wissenschaftlichen Arbeitens Vorlesung im Sommersemester VL 2: Was ist Wissenschaft? Methoden des Wissenschaftlichen Arbeitens Vorlesung im Sommersemester 2017 04.05.17 VL 2: Was ist Wissenschaft? Prof. Dr. Riklef Rambow Fachgebiet Architekturkommunikation Institut Entwerfen, Kunst und

Mehr

Joachim Stiller. Platon: Euthyphron. Eine Besprechung des Euthyphron. Alle Rechte vorbehalten

Joachim Stiller. Platon: Euthyphron. Eine Besprechung des Euthyphron. Alle Rechte vorbehalten Joachim Stiller Platon: Euthyphron Eine Besprechung des Euthyphron Alle Rechte vorbehalten Inhaltliche Gliederung A. Einleitung: Platon: Euthyphron 1. Die Anklage des Meletos wegen Verderbung der Jugend

Mehr

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung

Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Online-Aufgaben Statistik (BIOL, CHAB) Auswertung und Lösung Abgaben: 92 / 234 Maximal erreichte Punktzahl: 7 Minimal erreichte Punktzahl: 1 Durchschnitt: 4 Frage 1 (Diese Frage haben ca. 0% nicht beantwortet.)

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Übungsblatt 1. D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. 1. a) Stellen Sie die Wahrheitstafel zu folgender Aussage auf:

Übungsblatt 1. D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. 1. a) Stellen Sie die Wahrheitstafel zu folgender Aussage auf: D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler Übungsblatt 1 1. a) Stellen Sie die Wahrheitstafel zu folgender Aussage auf: ((A = B) A) = B. Handelt es sich um eine Tautologie? Wie

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe15 Ronja Düffel 23. März 2015 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

2 Klassische Induktion über natürliche Zahlen

2 Klassische Induktion über natürliche Zahlen Vollständige Induktion 1 Einführung Dieses Handout soll dem Zweck dienen, vollständige Induktion über natürliche Zahlen und Induktion über den Aufbau einer Formel möglichst ausführlich und anschaulich

Mehr

1 Einführung in die Prädikatenlogik

1 Einführung in die Prädikatenlogik 1 Einführung in die Prädikatenlogik Die Aussagenlogik behandelt elementare Aussagen als Einheiten, die nicht weiter analysiert werden. Die Prädikatenlogik dagegen analysiert die elementaren Aussagen und

Mehr

Kapitel 1. Grundlagen

Kapitel 1. Grundlagen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig.

Wenn alle Bären pelzig sind und Ned ein Bär ist, dann ist Ned pelzig. 2.2 Logische Gesetze 19 auch, was für Sätze logisch wahr sein sollen. Technisch gesehen besteht zwar zwischen einem Schluss und einem Satz selbst dann ein deutlicher Unterschied, wenn der Satz Wenn...dann

Mehr

Beweistechniken. Vorkurs Informatik - SoSe April 2014

Beweistechniken. Vorkurs Informatik - SoSe April 2014 Vorkurs Informatik SoSe14 07. April 2014 Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Motivation Wozu Beweise in der Informatik? Quelle: http://www.nileguide.com Wozu Beweise in der

Mehr

2.3 Komplexe aussagenlogisch unzerlegbare Sätze

2.3 Komplexe aussagenlogisch unzerlegbare Sätze 2.3. KOMPLEXE AUSSAGENLOGISCH UNZERLEGBARE SÄTZE 59 2.3 Komplexe aussagenlogisch unzerlegbare Sätze Die erste Kategorie der aussagenlogisch unzerlegbaren Sätze ist wie wir gesehen haben die der einfachen

Mehr

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik Kapitel 1.5 und 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2010/11) Kapitel 1.5 und 1.6: Kalküle 1 /

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches

Mehr

Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt.

Frege löst diese Probleme, indem er zusätzlich zum Bezug (Bedeutung) sprachlicher Ausdrücke den Sinn einführt. 1 Vorlesung: Denken und Sprechen. Einführung in die Sprachphilosophie handout zum Verteilen am 9.12.03 (bei der sechsten Vorlesung) Inhalt: die in der 5. Vorlesung verwendeten Transparente mit Ergänzungen

Mehr

Musterlösung 11.Übung Mathematische Logik

Musterlösung 11.Übung Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Reinhardt SS 2015 Aufgabe 2 Musterlösung 11.Übung Mathematische Logik Geben Sie für die folgenden

Mehr

Semantik einiger Konjunktionen. Arnim von Stechow Einführung in die Semantik

Semantik einiger Konjunktionen. Arnim von Stechow Einführung in die Semantik Semantik einiger Konjunktionen Arnim von Stechow Einführung in die Semantik Programm Syntax und Semantik einiger AL-Junktoren Epistemisches müssen und können Strukturellen Mehrdeutigkeiten Extensionale

Mehr

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17 Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut kirchheim@math.uni-leipzig.de 1 / 19 Dies ist der Foliensatz zur Vorlesung

Mehr

4. Alternative Temporallogiken

4. Alternative Temporallogiken 4. Alternative Temporallogiken Benutzung unterschiedlicher Temporallogiken entsprechend den verschiedenen Zeitbegriffen LTL: Linear Time Logic Ähnlich der CTL, aber jetzt einem linearen Zeitbegriff entspechend

Mehr

Zweite und dritte Sitzung

Zweite und dritte Sitzung Zweite und dritte Sitzung Mengenlehre und Prinzipien logischer Analyse Menge Eine Menge M ist eine Zusammenfassung von wohlbestimmten und wohlunterschiedenen Objekten unserer Anschauung und unseres Denkens

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Einführung in die Erkenntnistheorie. Prof. Dr. Martin Kusch

Einführung in die Erkenntnistheorie. Prof. Dr. Martin Kusch Einführung in die Erkenntnistheorie Prof. Dr. Martin Kusch 1 Thema für den ersten Aufsatz: Die klassische Analyse des Wissens und die Gettier-Fälle Material: Vorlesungen & die unter Thema 1 ( Die Definition

Mehr

Christian Nimtz // 1. Ein Einwande gegen den Fundamentalismus. 2 Die Kohärenztheorie der Rechtfertigung

Christian Nimtz  // 1. Ein Einwande gegen den Fundamentalismus. 2 Die Kohärenztheorie der Rechtfertigung Programm Christian Nimtz www.nimtz.net // lehre@nimtz.net Grundfragen der Erkenntnistheorie 1 Ein Einwand gegen den Fundamentalismus 2 Die Kohärenztheorie der Rechtfertigung 3 Die drei Grundprobleme des

Mehr

Philosophisches Argumentieren

Philosophisches Argumentieren Holm Tetens Philosophisches Argumentieren Eine Einführung Verlag C.H.Beck Inhalt Vorwort 9 Teil 1: Der Grundsatz philosophischen Argumentierens 1. Was man im Lehnstuhl wissen kann 14 2. Die ewigen großen

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.7 und 4.8 besser zu verstehen. Auswertung und Lösung Abgaben: 71 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 5.65 Frage 1

Mehr

Philosophisches Argumentieren

Philosophisches Argumentieren Holm Tetens Philosophisches Argumentieren Eine Einführung Verlag C.H.Beck Inhalt Vorwort 9 Teil 1: Der Grundsatz philosophischen Argumentierens 1. Was man im Lehnstuhl wissen kann 14 2. Die ewigen großen

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Natürliche Sprachen sind durch Ambiguitäten und Vagheiten beim Ausdruck von Denkinhalten charakterisiert.

Natürliche Sprachen sind durch Ambiguitäten und Vagheiten beim Ausdruck von Denkinhalten charakterisiert. 1 Einführung 1.1 Logik und Linguistik Natürliche Sprachen sind durch Ambiguitäten und Vagheiten beim Ausdruck von Denkinhalten charakterisiert. In der mathematischen, formalen Logik werden formale Sprachen,

Mehr

Paradoxien der materialen Implikation

Paradoxien der materialen Implikation Elementare Logik I VO WS 2017/18 Paradoxien der materialen Implikation Michael Matzer Zunächst einmal... Machen wir zunächst den Pfeil möglichst stark, d.h. untermauern wir die Position der klassischen

Mehr

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Kapitel 1.5 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2012/13) Kapitel 1.5: Kalküle 1/30 Syntaktischer

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Précis zu The Normativity of Rationality

Précis zu The Normativity of Rationality Précis zu The Normativity of Rationality Benjamin Kiesewetter Erscheint in: Zeitschrift für philosophische Forschung 71(4): 560-4 (2017). Manchmal sind wir irrational. Der eine ist willensschwach: Er glaubt,

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Beweise und Beweisstrategien andreas.kucher@uni-graz.at Institute for Mathematics and Scientific Computing Karl-Franzens-Universität Graz Graz, September 5, 2015 Hinweis zu den Folien Diese Folien sind

Mehr

Lagebeziehung von Ebenen

Lagebeziehung von Ebenen M8 ANALYSIS Lagebeziehung von Ebenen Es gibt Möglichkeiten für die Lagebeziehung zwischen zwei Ebenen. Die Ebenen sind identisch. Die Ebenen sind parallel. Die Ebenen schneiden sich in einer Geraden Um

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Übung zur Vorlesung Multiagentensysteme

Übung zur Vorlesung Multiagentensysteme Ludwig-Maximilians-Universität München SS 2007 Institut für Informatik Aufgabenblatt 1 Dr. Brandt / Fischer & Harrenstein 23. April 2007 Übung zur Vorlesung Multiagentensysteme Tutorübung: 25. April 2007

Mehr

Klassische Aussagenlogik

Klassische Aussagenlogik Eine Einführung in die Logik Schon seit Jahrhunderten beschäftigen sich Menschen mit Logik. Die alten Griechen und nach ihnen mittelalterliche Gelehrte versuchten, Listen mit Regeln zu entwickeln, welche

Mehr

a x = y log a : R >0 R,

a x = y log a : R >0 R, 1.2.3 Gruppenhomomorphismen Es sei a > 1 eine reelle Zahl. Der Logarithmus von x R >0 zur Basis a ist bekanntlich diejenige Zahl y R, für die die Gleichung a x = y gilt. Man schreibt auch y = log a (x).

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de

Diskrete Strukturen und Logik WiSe 2007/08 in Trier. Henning Fernau Universität Trier fernau@uni-trier.de Diskrete Strukturen und Logik WiSe 2007/08 in Trier Henning Fernau Universität Trier fernau@uni-trier.de 1 Diskrete Strukturen und Logik Gesamtübersicht Organisatorisches Einführung Logik & Mengenlehre

Mehr

Einführung in die Logik, Übungsklausur 2016/07/11

Einführung in die Logik, Übungsklausur 2016/07/11 Institut für Theoretische Informatik ITI Dr. Jürgen Koslowski Einführung in die Logik, Übungsklausur 2016/07/11 Diese Aufgaben werden in der Extra-Übung am Freitag, 2016-07-15, 13:15, im SN 19.4 besprochen,

Mehr

Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur

Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P. Jede Struktur hat mindestens eine Substruktur Aufgabe 1: MC (10 Punkte) wahr 1P, falsch 0P, keine Ahnung 0.5P Jede Struktur hat mindestens eine Substruktur JA Jeder Isomorphismus ist ein Homomorphismus JEIN? jeder bijektive Homomorphismus ist ein

Mehr

Wissen und Gesellschaft I Einführung in die analytische Wissenschaftstheorie. Prof. Dr. Jörg Rössel

Wissen und Gesellschaft I Einführung in die analytische Wissenschaftstheorie. Prof. Dr. Jörg Rössel Wissen und Gesellschaft I Einführung in die analytische Wissenschaftstheorie Prof. Dr. Jörg Rössel Ablaufplan 1. Einleitung: Was ist Wissenschaft(stheorie) überhaupt? 2. Was sind wissenschaftliche Theorien?

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

Mathematik-Vorkurs für Informatiker Aussagenlogik 1

Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Christian Eisentraut & Julia Krämer www.vorkurs-mathematik-informatik.de Mathematik-Vorkurs für Informatiker Aussagenlogik 1 Aufgabe 1. (Wiederholung wichtiger Begriffe) Notieren Sie die Definitionen der

Mehr

Handout zu Gödel: Die Unvollständigkeitssätze

Handout zu Gödel: Die Unvollständigkeitssätze Handout zu Gödel: Die Unvollständigkeitssätze Juanfernando Angel-Ramelli, Christine Schär, Katja Wolff December 4, 2014 Contents 1 Einleitung 1 1.1 Gödels Theoreme (1931)..............................

Mehr