Theoretische Informatik: Berechenbarkeit und Formale Sprachen

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Theoretische Informatik: Berechenbarkeit und Formale Sprachen"

Transkript

1 Prof. Dr. F. Otto Fachbereich Elektrotechnik/Informatik Universität Kassel Klausur zur Vorlesung Theoretische Informatik: Berechenbarkeit und Formale Sprachen WS 2010/2011 Name: Vorname: Matrikelnummer: Hinweise: Tragen Sie zunächst Namen und Matrikelnummer oben ein. Die Klausur besteht aus 4 Aufgaben und einer Zusatzaufgabe, bei denen insgesamt 55 Punkte erreichbar sind. Die Bearbeitungszeit beträgt zwei Stunden. Lesen Sie sich die jeweilige Aufgabenstellung genau durch, ehe Sie mit der Bearbeitung anfangen. Schreiben Sie deutlich und gut leserlich, da unleserliche Antworten leider nicht gewertet werden können! Achten Sie ferner auf die korrekte formale Schreibweise und vergessen Sie nicht den entsprechenden Antwortsatz! Bearbeiten Sie die Aufgaben auf dem jeweiligen Blatt. Sollte der Platz nicht ausreichen, so können Sie auf dem freien Blatt gegenüber und auf den freien Blättern am Ende fortfahren. Im letzteren Fall bitte unbedingt einen entsprechenden Hinweis auf der Aufgabenseite angeben. Lose Blätter sind nicht erlaubt! Insbesondere werden sie bei der Korrektur nicht berücksichtigt. Ferner sind keine Hilfsmittel außer einem handschriftlich beschriebenen Blatt zugelassen. Die Ergebnisse finden Sie im Online-Prüfungsverwaltungssystem der Informatik. Der Ort und die Zeit für die Einsichtnahme in die Klausur werden durch Aushang und auf der WWW-Seite für die Klausur angekündigt. VIEL ERFOLG! Punktzahl (von 55): Note:

2 AUFGABE 1. [10 Punkte] a) Geben Sie einen NEA für die Sprache an. L 1 = {a, b} {b} {a, b} 3 {b} {a, b} b) Ist die Sprache L 2 = {a, b} L 1 regulär? Begründen Sie Ihre Antwort! c) Geben Sie eine reguläre Grammatik an für die Sprache L 3 = { w {0, 1} die Anzahl der 1 in w ist ungerade }. Hinweis: In a) ist nicht verlangt zu beweisen, dass Ihr NEA tatsächlich genau die Sprache L 1 akzeptiert. Ebenso ist in c) nicht verlangt zu beweisen, dass Ihre Grammatik tatsächlich genau die Sprache L 3 erzeugt. 1

3 AUFGABE 2. [15 Punkte] Gegeben ist die Grammatik G := ({A, B, C, R, S, T, U, V, X, Y, Z}, {a, b, c}, P, S) mit den Regeln P := { S T U, T BA BX BY, X T A, Y CA RA, U AB AV AZ, Z UB, V RB, R CR c, A a, B b, C c }. a) Woran ist zu erkennen, dass G in Chomsky-Normalform vorliegt? b) Prüfen Sie mithilfe des CYK-Algorithmus, ob die Wörter w 1 = bcaaacb und w 2 = bcaaabb in der von der Grammatik G generierten Sprache L(G) enthalten sind. c) Geben Sie eine Ableitung für das Wort w 3 = bcaab an. Ist die Grammatik G eindeutig? Begründen Sie Ihre Antwort. d) Bestimmen Sie für alle Nichtterminale D {A, B, C, R, S, T, U, V, X, Y, Z} die Sprache L G (D) = { w {a, b, c} D G w }. Hinweis: Gehen Sie in einer geeigneten Reihenfolge vor, um den Aufwand zur Bestimmung dieser Sprachen zu minimieren. 2

4 AUFGABE 3. [10 Punkte] Gegeben sind die beiden Sprachen L 1 := {w {a, b, c} w a = w b } und L 2 := {w {a, b, c} w b = w c }. a) Zeigen Sie, dass L 1 kontextfrei ist, indem Sie eine Grammatik oder einen Kellerautomaten angeben, die genau L 1 generiert bzw. der genau L 1 akzeptiert. b) Geben Sie die Schnittmenge L 3 von L 1 und L 2 an (also L 3 := L 1 L 2 ). c) Zeigen Sie, dass L 3 nicht kontextfrei ist. d) Ist die Menge der kontextfreien Sprachen unter Durchschnitt abgeschlossen? Begründen Sie Ihre Antwort. Hinweis: In a) braucht nicht bewiesen zu werden, dass Ihre Grammatik (bzw. Ihr Kellerautomat) genau die Sprache L 1 erzeugt (bzw. akzeptiert). 3

5 AUFGABE 4. [10 Punkte] a) Zeigen Sie, dass die Funktion f : N N mit { 1, falls n durch 4 teilbar ist, f(n) = 0, sonst, Turing-berechenbar ist. b) Geben Sie alle Funktionen an, die sich allein mit Komposition und Nachfolgerfunktion (s(n) = n + 1, n N) darstellen lassen. Definition der Komposition: Für eine k-stellige Funktion g : N k N und k m- stellige Funktionen h 1,..., h k : N m N ist die m-stellige Funktion f(x 1,..., x m ) = g(h 1 (x 1,..., x m ),..., h k (x 1,..., x m )) die Komposition von g und h. Hinweis: Beachten Sie die Definition der Turing-Berechenbarkeit für Funktionen über den natürlichen Zahlen! 4

6 ZUSATZAUFGABE [10 Punkte] Zeigen Sie folgende Aussagen für eine beliebige unendliche Menge A N: a) Lässt sich A durch eine streng monoton wachsende, totale und berechenbare Funktion f : N N aufzählen, dann ist A entscheidbar. b) Wenn A entscheidbar ist, dann existiert eine streng monoton wachsende, totale und berechenbare Funktion f : N N, die A aufzählt. Hinweis: Eine Funktion f : N N zählt die Menge A N auf, wenn f(n) = A gilt. 5

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK)

TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010. 2. Schriftliche Leistungskontrolle (EK) TheGI 1: Grundlagen und algebraische Strukturen Prof. Dr.-Ing. Uwe Nestmann - 09. Februar 2010 2. Schriftliche Leistungskontrolle (EK) Punktzahl In dieser schriftlichen Leistungskontrolle sind 100 Punkte

Mehr

Theoretische Grundlagen der Informatik

Theoretische Grundlagen der Informatik Theoretische Grundlagen der Informatik Vorlesung am 12.01.2012 INSTITUT FÜR THEORETISCHE 0 KIT 12.01.2012 Universität des Dorothea Landes Baden-Württemberg Wagner - Theoretische und Grundlagen der Informatik

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 4 26..25 INSTITUT FÜR THEORETISCHE INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler

Formale Sprachen. Der Unterschied zwischen Grammatiken und Sprachen. Rudolf Freund, Marian Kogler Formale Sprachen Der Unterschied zwischen Grammatiken und Sprachen Rudolf Freund, Marian Kogler Es gibt reguläre Sprachen, die nicht von einer nichtregulären kontextfreien Grammatik erzeugt werden können.

Mehr

Grundbegriffe der Informatik

Grundbegriffe der Informatik Grundbegriffe der Informatik Tutorium 27 29..24 FAKULTÄT FÜR INFORMATIK KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Definition

Mehr

Modulklausur Konstruktion und Analyse ökonomischer Modelle

Modulklausur Konstruktion und Analyse ökonomischer Modelle Modulklausur Konstruktion und Analyse ökonomischer Modelle Aufgabenheft Termin: 04.03.2015, 09:00-11:00 Uhr Prüfer: Univ.-Prof. Dr. J. Grosser Aufbau der Klausur Pflichtaufgabe Maximale Punktzahl: 34 Wahlpflichtaufgabe

Mehr

Wortproblem für kontextfreie Grammatiken

Wortproblem für kontextfreie Grammatiken Wortproblem für kontextfreie Grammatiken G kontextfreie Grammatik. w Σ w L(G)? Wortproblem ist primitiv rekursiv entscheidbar. (schlechte obere Schranke!) Kellerautomat der L(G) akzeptiert Ist dieser effizient?

Mehr

2.11 Kontextfreie Grammatiken und Parsebäume

2.11 Kontextfreie Grammatiken und Parsebäume 2.11 Kontextfreie Grammatiken und Parsebäume Beispiel: Beispiel (Teil 3): Beweis für L(G) L: Alle Strings aus L der Länge 0 und 2 sind auch in L(G). Als Induktionsannahme gehen wir davon aus, dass alle

Mehr

Vorname: Nachname: Matrikelnummer: E-Mail-Addresse: Studiengang (bitte genau einen ankreuzen): Master of SSE Erasmus Sonstige:

Vorname: Nachname: Matrikelnummer: E-Mail-Addresse: Studiengang (bitte genau einen ankreuzen): Master of SSE Erasmus Sonstige: RHEINISCH- WESTFÄLISCHE TECHNISCHE HOCHSCHULE AACHEN LEHR- UND FORSCHUNGSGEBIET INFORMATIK II RWTH Aachen D-52056 Aachen GERMANY http://www-i2.informatik.rwth-aachen.de/lufgi2/tes06/ LuFG Informatik II

Mehr

FernUniversität in Hagen Februar 2016 Fakultät für Wirtschaftswissenschaft

FernUniversität in Hagen Februar 2016 Fakultät für Wirtschaftswissenschaft FernUniversität in Hagen Februar 2016 Fakultät für Wirtschaftswissenschaft Bitte beachten Sie, dass auf den Notenbescheiden des Prüfungsamtes nicht die in der Klausur erreichte Punktzahl, sondern die erreichte

Mehr

Zusammenfassung Grundzüge der Informatik 4

Zusammenfassung Grundzüge der Informatik 4 Zusammenfassung Grundzüge der Informatik 4 Sommersemester 04 Thorsten Wink 21. September 2004 Version 1.2 Dieses Dokument wurde in L A TEX 2εgeschrieben. Stand: 21. September 2004 Inhaltsverzeichnis 1

Mehr

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen

Referat rekursive Mengen vs. rekursiv-aufzählbare Mengen Kapitel 1: rekursive Mengen 1 rekursive Mengen 1.1 Definition 1.1.1 informal Eine Menge heißt rekursiv oder entscheidbar, wenn ihre charakteristische Funktion berechenbar ist. 1.1.2 formal Eine Menge A

Mehr

K L A U S U R D E C K B L A T T

K L A U S U R D E C K B L A T T K L A U S U R D E C K B L A T T Name der Prüfung: Einführung in die Robotik Datum und Uhrzeit: 25.02.2014 um 11Uhr Bearbeitungszeit: : Institut: Neuroinformatik Prüfer: Oubbati Vom Prüfungsteilnehmer auszufüllen:

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen / Kontextfreie Sprachen und Kellerautomaten Inhalt 1 Einführung 2 Automatentheorie und Formale Sprachen Grammatiken Reguläre Sprachen und endliche Automaten Kontextfreie Sprachen und Kellerautomaten Kontextsensitive und Typ 0-Sprachen 3 Berechenbarkeitstheorie

Mehr

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik

Grundlagen der Informatik II. Teil I: Formale Modelle der Informatik Grundlagen der Informatik II Teil I: Formale Modelle der Informatik 1 Einführung GdInfoII 1-2 Ziele/Fragestellungen der Theoretischen Informatik 1. Einführung abstrakter Modelle für informationsverarbeitende

Mehr

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag

Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag MATHEMATISCHES INSTITUT DER UNIVERSITÄT MÜNCHEN Dr. E. Schörner WS 203/4 Blatt 20.0.204 Übungen zur Vorlesung Differential und Integralrechnung I Lösungsvorschlag 4. a) Für a R betrachten wir die Funktion

Mehr

Programmiersprachen und Übersetzer

Programmiersprachen und Übersetzer Programmiersprachen und Übersetzer Sommersemester 2010 19. April 2010 Theoretische Grundlagen Problem Wie kann man eine unendliche Menge von (syntaktisch) korrekten Programmen definieren? Lösung Wie auch

Mehr

Information Security Management System. Klausur Wintersemester 2009/10 Hochschule Albstadt-Sigmaringen

Information Security Management System. Klausur Wintersemester 2009/10 Hochschule Albstadt-Sigmaringen Information Security Management System Klausur Wintersemester 2009/10 Hochschule Albstadt-Sigmaringen Angaben der/des Studierenden Nachname Vorname Matrikel-Nummer Fachbereich Datum FEB-05-2010 Bitte lesen

Mehr

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK

EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK EINFÜHRUNG IN DIE THEORETISCHE INFORMATIK Prof. Dr. Klaus Ambos-Spies Sommersemester 2012 17. DIE KONTEXTFREIEN SPRACHEN II: ABSCHLUSSEIGENSCHAFTEN, MASCHINENCHARAKTERISIERUNG, KOMPLEXITÄT Theoretische

Mehr

Semestralklausur zu Modellierung verteilter Systeme

Semestralklausur zu Modellierung verteilter Systeme Name: Vorname: Matr.Nr: Technische Universität München WS 2010/2011 Institut für Informatik Prof. Manfred Broy 09.02.2011 Semestralklausur zu Modellierung verteilter Systeme Allgemeine Hinweise: Schreiben

Mehr

Universität Duisburg-Essen Fachbereich Bauwesen

Universität Duisburg-Essen Fachbereich Bauwesen Universität Duisburg-Essen Fachbereich Bauwesen IBPM - Institut für Bauphysik und Materialwissenschaft Univ.-Prof. Dr. rer. nat. Dr.-Ing. habil. M. J. Setzer Univ.-Prof. Dr.-Ing. R. Dillmann Vordiplomklausur

Mehr

K L A U S U R D E C K B L A T T

K L A U S U R D E C K B L A T T K L A U S U R D E C K B L A T T Name der Prüfung: Einführung in die Robotik Datum und Uhrzeit: 16.04.2014 um 11Uhr Bearbeitungszeit: : Institut: Neuroinformatik Prüfer: Oubbati Vom Prüfungsteilnehmer auszufüllen:

Mehr

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung

Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Formale Grundlagen der Informatik 1 Kapitel 12 Zusammenfassung Frank Heitmann heitmann@informatik.uni-hamburg.de 13. Mai 2014 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/17 Überblick Wir hatten

Mehr

Mathematische Grundlagen der Informatik 2

Mathematische Grundlagen der Informatik 2 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Emanuel Duss emanuel.duss@gmail.com 12. April 2013 1 Zusammenfassung Math2I Mathematische Grundlagen der Informatik 2 Dieses Dokument basiert

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 9 10.12.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T20 Beweisen Sie die

Mehr

Sprachen/Grammatiken eine Wiederholung

Sprachen/Grammatiken eine Wiederholung Sprachen/Grammatiken eine Wiederholung Was sind reguläre Sprachen? Eigenschaften regulärer Sprachen Sprachen Begriffe Symbol: unzerlegbare Grundzeichen Alphabet: endliche Menge von Symbolen Zeichenreihe:

Mehr

Studiengang (Zutreffendes bitte ankreuzen):

Studiengang (Zutreffendes bitte ankreuzen): Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur Mikroökonomik Matrikelnummer: Studiengang (Zutreffendes bitte ankreuzen): SozÖk Sozma AÖ WiPäd Wiwi Prof. Dr. Ulrich Schwalbe Sommersemester 2006 Klausur

Mehr

Klausur Mathematik 2

Klausur Mathematik 2 Mathematik für Ökonomen WS 2014/15 Campus Duisburg PD Dr. V. Krätschmer, Fakultät für Mathematik Klausur Mathematik 2 17.02.2015, 12:30-14:30 Uhr (120 Minuten) Erlaubte Hilfsmittel: Nur reine Schreib-

Mehr

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim.

6.2 Die Regeln von de l Hospital. Ausgangsfrage: Wie berechnet man den Grenzwert. Beispiel: Sei f(x) = x 2 und g(x) = x. Dann gilt. lim. 6.2 Die Regeln von de l Hospital Ausgangsfrage: Wie berechnet man den Grenzwert falls g(x), beide Funktionen gegen Null konvergieren, d.h. = g(x) = 0 beide Funktionen gegen Unendlich konvergieren, d.h.

Mehr

Vertraulich. Nachname: Vorname: Matrikel-Nummer: Studiengang: Datum: 30. Januar 2015

Vertraulich. Nachname: Vorname: Matrikel-Nummer: Studiengang: Datum: 30. Januar 2015 Information Security Management System Klausur Wintersemester 2014/15 Hochschule Albstadt-Sigmaringen Nachname: Vorname: Matrikel-Nummer: Studiengang: Vertraulich Datum: 30. Januar 2015 Bitte lesen Sie

Mehr

Theoretische Informatik I

Theoretische Informatik I Theoretische Informatik I Einheit 2.4 Grammatiken 1. Arbeitsweise 2. Klassifizierung 3. Beziehung zu Automaten Beschreibungsformen für Sprachen Mathematische Mengennotation Prädikate beschreiben Eigenschaften

Mehr

Fachhochschule Düsseldorf Wintersemester 2008/09

Fachhochschule Düsseldorf Wintersemester 2008/09 Fachhochschule Düsseldorf Wintersemester 2008/09 Teilfachprüfung Statistik im Studiengang Wirtschaft Prüfungsdatum: 26.01.2009 Prüfer: Prof. Dr. H. Peters, Diplom-Vw. Lothar Schmeink Prüfungsform: 2-stündige

Mehr

Formale Sprachen. Script, Kapitel 4. Grammatiken

Formale Sprachen. Script, Kapitel 4. Grammatiken Formale Sprachen Grammatiken Script, Kapitel 4 erzeugen Sprachen eingeführt von Chomsky zur Beschreibung natürlicher Sprachen bedeutend für die Syntaxdefinition von Programmiersprachen (Compilerbau) Automaten

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik - das Quiz zur Vorlesung Teil I - Grundzüge der Logik In der Logik geht es um... (A) die Formen korrekten Folgerns (B) die Unterscheidung von wahr und falsch (C) das Finden von

Mehr

Klausur Rechnungswesen I, Buchführung

Klausur Rechnungswesen I, Buchführung Postgradualer Studiengang Wirtschaft Fach Rechnungswesen I, Buchführung Art der Leistung Studienleistung, Klausur Klausur-Knz. PW-REW-S12-020511 Datum 11.05.02 Die Klausur enthält 6 Aufgaben, zu deren

Mehr

Klausur Softwaretechnologie WS 2014/15

Klausur Softwaretechnologie WS 2014/15 Fakultät Informatik Institut für Software- und Multimediatechnik, Professur Softwaretechnologie Technische Universität Dresden, 01062 Dresden Klausur Softwaretechnologie WS 2014/15 Prof. Dr.rer.nat.habil.

Mehr

Aufgabentypen die in der Klausur vorkommen

Aufgabentypen die in der Klausur vorkommen Aufgabentypen die in der Klausur vorkommen können 1. Nennen Sie fünf wichtige Anwendungsgebiete der Computerlinguistik. 2. Für welches der drei Anwendungsgebiete Maschinelle Übersetzung, Rechtschreibkorrektur

Mehr

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002

Demo: Mathe-CD. Prüfungsaufgaben Mündliches Abitur. Analysis. Teilbereich 1: Ganzrationale Funktionen 1. März 2002 Prüfungsaufgaben Mündliches Abitur Analysis Teilbereich : Ganzrationale Funktionen Hier nur Aufgaben als Demo Datei Nr. 9 März 00 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Vorwort Die in dieser Reihe von

Mehr

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1

Zusammenfassung. 1 Wir betrachten die folgende Signatur F = {+,,, 0, 1} sodass. 3 Wir betrachten die Gleichungen E. 4 Dann gilt E 1 + x 1 Zusammenfassung Zusammenfassung der letzten LV Einführung in die Theoretische Informatik Woche 7 Harald Zankl Institut für Informatik @ UIBK Wintersemester 2014/2015 1 Wir betrachten die folgende Signatur

Mehr

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten

Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Klausur Datenbanken Wintersemester 2004/2005 Prof. Dr. Wolfgang May 10. Februar 2004, 11-13 Uhr Bearbeitungszeit: 90 Minuten Vorname: Nachname: Matrikelnummer: Bei der Klausur sind keine Hilfsmittel (Skripten,

Mehr

Probeklausur: Programmierung WS04/05

Probeklausur: Programmierung WS04/05 Probeklausur: Programmierung WS04/05 Name: Hinweise zur Bearbeitung Nimm Dir für diese Klausur ausreichend Zeit, und sorge dafür, dass Du nicht gestört wirst. Die Klausur ist für 90 Minuten angesetzt,

Mehr

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler

Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Wintersemester 2005/06 20.2.2006 Prof. Dr. Jörg Rambau Klausur zur Vorlesung Mathematische Grundlagen für Wirtschaftswissenschaftler Bitte lesbar ausfüllen, Zutreffendes ankreuzen Herr Frau Name, Vorname:

Mehr

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984)

NP-Vollständigkeit. Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) NP-Vollständigkeit Krautgartner Martin (9920077) Markgraf Waldomir (9921041) Rattensberger Martin (9921846) Rieder Caroline (0020984) 0 Übersicht: Einleitung Einteilung in Klassen Die Klassen P und NP

Mehr

Klausur zur Einführung in die objektorientierte Programmierung mit Java

Klausur zur Einführung in die objektorientierte Programmierung mit Java Klausur zur Einführung in die objektorientierte Programmierung mit Java im Studiengang Informationswissenschaft Prof. Dr. Christian Wolff Professur für Medieninformatik Institut für Medien-, Informations-

Mehr

Klausur "Elektrotechnik" am 11.02.2000

Klausur Elektrotechnik am 11.02.2000 Name, Vorname: Matr.Nr.: Hinweise zur Klausur: Die zur Verfügung stehende Zeit beträgt 1,5 h. Klausur "Elektrotechnik" 6141 am 11.02.2000 Aufg. P max 0 2 1 10 2 9 3 10 4 9 5 16 6 10 Σ 66 N P Zugelassene

Mehr

Banner T 1 T 2. Bild T 7 T 8. Fließtext T 9

Banner T 1 T 2. Bild T 7 T 8. Fließtext T 9 Name, Vorname: Matrikel-Nr.: Aufgabe 1 Wir schreiben das Jahr 2010. Ein Desktop-System mit drei identischen Prozessoren P = {P 1, P 2, P 3 } wird zur Darstellung einer Webseite verwendet. Insgesamt neun

Mehr

Vorlesung Theoretische Informatik

Vorlesung Theoretische Informatik Vorlesung Theoretische Informatik Automaten und Formale Sprachen Hochschule Reutlingen Fakultät für Informatik Masterstudiengang Wirtschaftsinformatik überarbeitet von F. Laux (Stand: 09.06.2010) Sommersemester

Mehr

Fachbereich 5 Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Fachbereich 5 Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Universität Siegen Fachbereich 5 Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Klausur Internationale Finanzierung Sommersemester 2005 (1. Prüfungstermin) Bearbeitungszeit: 60 Minuten Zur

Mehr

Tutorium zur theoretischen Informatik Übungsblatt 4 (2006-12-13)

Tutorium zur theoretischen Informatik Übungsblatt 4 (2006-12-13) Ein verständiges Herz erwirbt Kenntnisse, und das Ohr der Weisen lauscht dem Wissen. (Die Bibel, "Buch der Sprüche", Kapitel 18 Vers 15) Inhalt 1. Empfehlenswerte Referenzen 2. Aufgabe 1 CF Grammatik für

Mehr

Berechenbarkeits- und Komplexitätstheorie

Berechenbarkeits- und Komplexitätstheorie Berechenbarkeits- und Komplexitätstheorie Verschiedene Berechenbarkeitsbegriffe, Entscheidbarkeit von Sprachen, Wachstumsordnungen und Komplexitätsklassen Inhaltsübersicht und Literatur Verschiedene Berechenbarkeitsbegriffe:

Mehr

Formale Sprachen und deren Grammatiken. Zusammenhang mit der Automatentheorie.

Formale Sprachen und deren Grammatiken. Zusammenhang mit der Automatentheorie. Formale Sprachen Formale Sprachen und deren Grammatiken. Zusammenhang mit der Automatentheorie. Inhaltsübersicht und Literatur Formale Sprachen: Definition und Darstellungen Grammatiken für formale Sprachen

Mehr

Prüfungsklausur Kreditwirtschaft

Prüfungsklausur Kreditwirtschaft Prüfungsklausur Kreditwirtschaft 12. März 2009 Hinweise Bitte schreiben Sie Ihren Namen und Ihre Matrikelnummer auf jeden Bearbeitungsbogen. Bitte verwenden sie für jede Aufgabe einen neuen Bearbeitungsbogen.

Mehr

FACHHOCHSCHULE MANNHEIM. Hochschule für Technik und Gestaltung. Beispielklausur zur Vorlesung:

FACHHOCHSCHULE MANNHEIM. Hochschule für Technik und Gestaltung. Beispielklausur zur Vorlesung: FACHHOCHSCHULE MANNHEIM Hochschule für Technik und Gestaltung DBA Bachelor Fakultät Informatik BEISPIELKLAUSUR Beispielklausur zur Vorlesung: Datenbanken (DBA) im Bachelor-Studiengang Informatik, Fakultät

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

Studien- und Prüfungsablauf im Nebenfach Kunst und Gestaltung

Studien- und Prüfungsablauf im Nebenfach Kunst und Gestaltung Fakultät Informatik Nebenfach Kunst und Gestaltung Studien- und Prüfungsablauf im Nebenfach Kunst und Gestaltung Ziel des Nebenfaches ist die Stärkung der studentischen Kompetenzen, sowohl im technischen

Mehr

Rekursive Funktionen Basisfunktionen

Rekursive Funktionen Basisfunktionen Rekursive Funktionen Basisfunktionen die nullstellige Funktion Z, die den konstanten Wert 0 liefert, die Funktion S : N N, bei der jeder natürlichen Zahl ihr Nachfolger zugeordnet wird, die Funktion P

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik 3. Endliche Automaten (V) 21.05.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Determinierte endliche Automaten (DEAs) Indeterminierte

Mehr

Vorname:... Matrikel-Nr.:... Unterschrift:...

Vorname:... Matrikel-Nr.:... Unterschrift:... Fachhochschule Mannheim Hochschule für Technik und Gestaltung Fachbereich Informatik Studiengang Bachelor of Computer Science Algorithmen und Datenstrukturen Wintersemester 2003 / 2004 Name:... Vorname:...

Mehr

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen

Entscheidungsprobleme. Berechenbarkeit und Komplexität Entscheidbarkeit und Unentscheidbarkeit. Die Entscheidbarkeit von Problemen Berechenbarkeit und Komlexität Entscheidbarkeit und Unentscheidbarkeit Wolfgang Schreiner Wolfgang.Schreiner@risc.uni-linz.ac.at Research Institute for Symbolic Comutation (RISC) Johannes Keler University,

Mehr

Übersicht über die Einzelveranstaltungen im. B.Ed. Informatik 2+1. oder 2-stündige Klausur Rechnerstrukturen (V+Ü) 2+1 5 1

Übersicht über die Einzelveranstaltungen im. B.Ed. Informatik 2+1. oder 2-stündige Klausur Rechnerstrukturen (V+Ü) 2+1 5 1 1 Übersicht über die Einzelveranstaltungen im B.Ed. Informatik Modul 1: Theoretische Grundlagen Automatentheorie und Formale Sprachen Berechenbarkeit und Komplexitätstheorie 10 2 3 Modul 2: Technische

Mehr

Bachelor-, Diplom- und Masterprüfung Organisation und Führung Wintersemester 2010/2011, 29. März 2011

Bachelor-, Diplom- und Masterprüfung Organisation und Führung Wintersemester 2010/2011, 29. März 2011 Bachelor-, Diplom- und Masterprüfung Organisation und Führung Wintersemester 2010/2011, 29. März 2011 Name, Vorname:... Matr.-Nr.:... Studiengang:... Ich bestätige hiermit, dass ich der Veröffentlichung

Mehr

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba.

3 Reihen. 3.1 Konvergenz und Divergenz. Die Eindeutigkeit nach Satz 13 ergibt schließlich (5). (6) folgt aus (2) und (1) wegen. 1 a +log ba. Die Eindeutigkeit nach Satz 3 ergibt schließlich (5). (6) folgt aus (2) und () wegen Aussage (7) ergibt sich aus () und (6). 0 = log b = log b ( a a) = log b a +log ba. 3 Reihen 3. Konvergenz und Divergenz

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

Universität Duisburg-Essen (Campus Essen) Wintersemester 2004/05 Fachbereich 5: Wirtschaftswissenschaften Klausur am 08.02.2005

Universität Duisburg-Essen (Campus Essen) Wintersemester 2004/05 Fachbereich 5: Wirtschaftswissenschaften Klausur am 08.02.2005 Universität Duisburg-Essen (Campus Essen) Wintersemester 2004/05 Fachbereich 5: Wirtschaftswissenschaften Klausur am 08.02.2005 Diplomvorprüfung GRUNDZÜGE DER BETRIEBSWIRTSCHAFTSLEHRE I Investition und

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 4: Nichtdeterminismus Teil 2 schulz@eprover.org Software Systems Engineering Nichtdeterministische endliche Automaten Definition: Ein nichtdeterministischer

Mehr

Grammatiken und die Chomsky-Hierarchie

Grammatiken und die Chomsky-Hierarchie Grammatiken und die Chomsky-Hierarchie Def.: Eine Grammatik G=(Σ,V,S,R) besteht aus endlichem Alphabet Σ endlicher Variablenmenge V mit V Σ= Startsymbol SєV endlicher Menge R с (V Σ) + x(v Σ)* von Ableitungsregeln

Mehr

Technische Führung. Bachelor. mer. meiner Note zusammen ... Diplom. gründlich. Sie lesbar! 5. 6. 7. Wenn Sie. Viel Erfolg! max. Punktzahl.

Technische Führung. Bachelor. mer. meiner Note zusammen ... Diplom. gründlich. Sie lesbar! 5. 6. 7. Wenn Sie. Viel Erfolg! max. Punktzahl. Technische Universität Braunschweig Institut für Organisation und Führung Bachelorprüfung/Diplomvorprüfung Einführung in die Unternehmensführung (BWL 1) Wintersemester 2009/2010, 11. Februar 2010 Name,

Mehr

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19

Theoretische Informatik 2 (WS 2006/07) Automatentheorie und Formale Sprachen 19 Inhalt 1 inführung 2 Automatentheorie und ormale prachen Grammatiken Reguläre prachen und endliche Automaten Kontextfreie prachen und Kellerautomaten Kontextsensitive und yp 0-prachen 3 Berechenbarkeitstheorie

Mehr

Institut für Wirtschaftswissenschaftliche Forschung und Weiterbildung GmbH Institut an der FernUniversität in Hagen

Institut für Wirtschaftswissenschaftliche Forschung und Weiterbildung GmbH Institut an der FernUniversität in Hagen Institut für Wirtschaftswissenschaftliche Forschung und Weiterbildung GmbH Institut an der FernUniversität in Hagen Name Straße PLZ, Ort IWW Studienprogramm Aufbaustudium 3. Musterklausur XVIII Beteiligungscontrolling

Mehr

Grundbegriffe der Informatik Tutorium 7

Grundbegriffe der Informatik Tutorium 7 Grundbegriffe der Informatik Tutorium 7 Tutorium Nr. 16 Philipp Oppermann 16. Dezember 2014 KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

7. Formale Sprachen und Grammatiken

7. Formale Sprachen und Grammatiken 7. Formale Sprachen und Grammatiken Computer verwenden zur Verarbeitung von Daten und Informationen künstliche, formale Sprachen (Maschinenspr., Assemblerspachen, Programmierspr., Datenbankspr., Wissensrepräsentationsspr.,...)

Mehr

Klausur Softwaretechnik 3 22. Feb. 2008

Klausur Softwaretechnik 3 22. Feb. 2008 Klausur Softwaretechnik 3 22. Feb. 2008 Hinweise Bevor Sie mit der Bearbeitung der Aufgaben beginnen, müssen Sie auf allen Blättern Ihren Namen und Ihre Matrikelnummer eintragen. Prüfen Sie Ihre Klausur

Mehr

K l a u s u r. am 13.02.2004, 10.30-11.30 Uhr

K l a u s u r. am 13.02.2004, 10.30-11.30 Uhr K l a u s u r im Rahmen der wirtschaftswissenschaftlichen Diplom-Vorprüfung im Modul Informationswirtschaft Teilgebiet: Investition und Finanzierung Wintersemester 2003/2004 am 13.02.2004, 10.30-11.30

Mehr

Matr.-Nr.: Name: Vorname:

Matr.-Nr.: Name: Vorname: FernUniversität in Hagen Fakultät für Wirtschaftswissenschaft Matr.-Nr.: Name: Vorname: Klausur: Prüfer: 31521 Banken und Börsen Prof. Dr. Rainer Baule Termin: 06.03.2014 Aufgabe 1 2 3 4 Summe maximale

Mehr

Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05. Klausur Mikroökonomik. Matrikelnummer: Studiengang:

Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05. Klausur Mikroökonomik. Matrikelnummer: Studiengang: Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05 Klausur Mikroökonomik Matrikelnummer: Studiengang: Prof. Dr. Ulrich Schwalbe Wintersemester 2004/05 Klausur Mikroökonomik Bitte bearbeiten Sie alle zehn

Mehr

Geschäftsführer Bauingenieurwesen

Geschäftsführer Bauingenieurwesen Geschäftsführer Bauingenieurwesen An: Betreff: Anlagen: bi-stud@rhrk.uni-kl.de Information zum Modul "Höhere Mathematik - Differentialgleichungen" (für Studierende 3. Semester Bachelor Bauingenieurwesen)

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

Klausur Physik 1 (GPH1) am 8.7.02

Klausur Physik 1 (GPH1) am 8.7.02 Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 8.7.02 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 im

Mehr

Musterlösung zur Klausur Prozess- und Daten-Modellierung. Termin: 2006-10-19, 8:00 09:30 Uhr

Musterlösung zur Klausur Prozess- und Daten-Modellierung. Termin: 2006-10-19, 8:00 09:30 Uhr Musterlösung zur Klausur Prozess- und Daten-Modellierung Termin: 006-10-19, 8:00 09:30 Uhr Name:... Vorname:... Strasse:... PLZ, Ort:... Matrikel-Nr.:... Wirtschafts- und Sozialwissenschaftliche Fakultät

Mehr

Marketing IV - Investitionsgüter- und Technologiemarketing (WS 2014/15)

Marketing IV - Investitionsgüter- und Technologiemarketing (WS 2014/15) TECHNISCHE UNIVERSITÄT ILMENAU Fakultät für Wirtschaftswissenschaften und Medien Fachgebiet Marketing Univ.-Prof. Dr. rer. pol. habil. Anja Geigenmüller Marketing IV - Investitionsgüter- und Technologiemarketing

Mehr

Studiengang «StudG» Klausur Marketing & Management Science WS 2012/2013. Studienfach: Abschluss:

Studiengang «StudG» Klausur Marketing & Management Science WS 2012/2013. Studienfach: Abschluss: Univ.-Prof. Dr. Jost Adler Univ.-Prof. Dr. Gertrud Schmitz Studiengang «StudG» Klausur Marketing & Management Science WS 202/203 Datum: «Datum» Beginn/Ort: «Beginn» / «Ort» Bearbeitungszeit: 60 Minuten

Mehr

Informatik I WS 07/08 Tutorium 24

Informatik I WS 07/08 Tutorium 24 Info I Tutorium 24 Informatik I WS 07/08 Tutorium 24 20.12.07 Bastian Molkenthin E-Mail: infotut@sunshine2k.de Web: http://infotut.sunshine2k.de Rückblick Semi-Thue-Systeme Ein Semi-Thue-System besteht

Mehr

Wiederholungsklausur zur Vorlesung Informationsökonomik

Wiederholungsklausur zur Vorlesung Informationsökonomik Prof. Dr. Isabel Schnabel Johannes Gutenberg-Universität Mainz Wiederholungsklausur zur Vorlesung Informationsökonomik Sommersemester 2011, 15.08.2011, 13:00 14:30 Uhr Hinweise zur Klausur Die Klausur

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 26.01.2001

Klausur zu Vorlesung und. Versicherungsmärkte am 26.01.2001 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / PD Achim Wambach, D.Phil. Versicherungsmärkte WS 2000 / 2001 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

Modul-Abschlussklausur zum. C-Modul Nr. 32551. Supply Chain Management. Datum: Unterschrift des Prüfers

Modul-Abschlussklausur zum. C-Modul Nr. 32551. Supply Chain Management. Datum: Unterschrift des Prüfers FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT MATRIKELNUMMER Name: Vorname: Unterschrift: Modul-Abschlussklausur zum C-Modul Nr. 32551 Supply Chain Management Termin:, 11 30 13 30 Uhr Prüfer: Prof. Dr. Dr. h.c.

Mehr

Komplexitätsklassen. (Lauf-)Zeit-Klassen. (Lauf-)Zeit-Klassen. Charakteristische Problemgrößen beim Parsing

Komplexitätsklassen. (Lauf-)Zeit-Klassen. (Lauf-)Zeit-Klassen. Charakteristische Problemgrößen beim Parsing Komplexitätsklassen Charakteristische Problemgrößen beim Parsing O(1) konstant O(log n) logarithmisch O(n) linear O(n k ) polynomial (k [2,4]) O(n k ) polynomial (k > 4) O(k n ) exponentiell n ist die

Mehr

Konvergenz von Folgen

Konvergenz von Folgen 6 Konvergenz von Folgen Definition 6.1 Eine Folge in C (oder R) ist eine Abbildung f : N C (oder R). Schreibweise: (a n ) n N, (a n ), a 1, a 2... wobei a n = f(n). Beispiele: 1) (1 + 2 n ) n N, 3 2, 5

Mehr

Klausur zur Vorlesung Organisationstheorie und Change Management Sommersemester 06, Termin 1, 18.07.06

Klausur zur Vorlesung Organisationstheorie und Change Management Sommersemester 06, Termin 1, 18.07.06 Institut für öffentliche Wirtschaft und Personal AB Organisation und Prof. Dr. Jetta Frost Klausur zur Vorlesung Organisationstheorie und Sommersemester 06, Termin 1, 18.07.06 Name, Vorname: Matrikelnummer:

Mehr

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002

Klausur zu Vorlesung und. Versicherungsmärkte am 19.02.2002 Ludwig-Maximilians-Universität München Seminar für Versicherungswissenschaft Prof. Ray Rees / Prof. Achim Wambach, D.Phil. Versicherungsmärkte WS 2001 / 2002 Diplomprüfung für Volkswirte Klausur zu Vorlesung

Mehr

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion.

Mathematik II. D K, z P(z) Q(z), wobei D das Komplement der Nullstellen von Q ist, eine rationale Funktion. rof. Dr. H. Brenner Osnabrück SS 200 Mathematik II Vorlesung 34 Wir erinnern an den Begriff einer rationalen Funktion. Definition 34.. Zu zwei olynomen,q K[X], Q 0, heißt die Funktion D K, z (z) Q(z),

Mehr

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende

Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Universität Duisburg-Essen Essen, den 0.0.009 Fachbereich Mathematik Prof. Dr. M. Winkler C. Stinner Klausur zur Wahrscheinlichkeitstheorie für Lehramtsstudierende Lösung Die Klausur gilt als bestanden,

Mehr

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r )

t r Lineare Codierung von Binärbbäumen (Wörter über dem Alphabet {, }) Beispiel code( ) = code(, t l, t r ) = code(t l ) code(t r ) Definition B : Menge der binären Bäume, rekursiv definiert durch die Regeln: ist ein binärer Baum sind t l, t r binäre Bäume, so ist auch t =, t l, t r ein binärer Baum nur das, was durch die beiden vorigen

Mehr

1 Elemente der Wahrscheinlichkeitstheorie

1 Elemente der Wahrscheinlichkeitstheorie H.-J. Starkloff Unendlichdimensionale Stochastik Kap. 01 11. Oktober 2010 1 1 Elemente der Wahrscheinlichkeitstheorie 1.1 Messbare Räume Gegeben seien eine nichtleere Menge Ω und eine Menge A von Teilmengen

Mehr

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle.

Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik. Seminar Entscheidungsverfahren für logische Theorien. Endliche Modelle. Universität Koblenz-Landau, Abteilung Koblenz FB 4 Informatik Seminar Entscheidungsverfahren für logische Theorien Tobias Hebel Koblenz, am 18.02.2005 Inhaltsverzeichnis 1 Einleitung... 3 2 Grundlagen...

Mehr

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also

2 3 x3 17. x k dx = x k x k+1 k +1. Mit jeder weiteren partiellen Integration reduziert sich der Grad des Faktors x n, induktiv erhalten wir also Universität Konstanz Fachbereich Mathematik und Statistik Repetitorium Analysis 0 Dr DK Huynh Blatt 8 Aufgabe 6 Bestimmen Sie (a) (x + x 7x+)dx (c) (f) x n exp(x)dx (n N fest) sin (x)dx (g) (b) (d) ln(x)dx

Mehr

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012

Die Klassen P und NP. Dr. Eva Richter. 29. Juni 2012 Die Klassen P und NP Dr. Eva Richter 29. Juni 2012 1 / 35 Die Klasse P P = DTIME(Pol) Klasse der Probleme, die sich von DTM in polynomieller Zeit lösen lassen nach Dogma die praktikablen Probleme beim

Mehr

Bearbeitungszeit: 90 Minuten Hilfsmittel: Anzahl der Aufgaben: 5 Höchstpunktzahl: 100 keine

Bearbeitungszeit: 90 Minuten Hilfsmittel: Anzahl der Aufgaben: 5 Höchstpunktzahl: 100 keine Studiengang Pflegemanagement Fach Betriebswirtschaftslehre/Rechnungswesen Art der Leistung Studienleistung Klausur-Knz. PM-BWG-S12-070317 Datum 17.03. 2007 Die Klausur besteht aus 5 Aufgaben, von denen

Mehr

Hinweise zur Klausur und Stoffabgrenzung Grundprinzipien des Marketing B.Sc. (alte PO) 5cp

Hinweise zur Klausur und Stoffabgrenzung Grundprinzipien des Marketing B.Sc. (alte PO) 5cp Hinweise zur Klausur und Stoffabgrenzung Grundprinzipien des Marketing B.Sc. (alte PO) 5cp 2009-06-25 1 Lehrstuhl für Absatzwirtschaft und Marketing - Katholische Universität Eichstätt-Ingolstadt Allgemeines!!

Mehr

Der Kurs bestand aus zwei Teilen. Mit welchem Teil wollen Sie anfangen? Ich habe mich für Teil A entschieden.

Der Kurs bestand aus zwei Teilen. Mit welchem Teil wollen Sie anfangen? Ich habe mich für Teil A entschieden. Mündliche Prüfung in Grundlagen Theoretischer Informatik A + B Prüfer: Prof. Heinemann Dauer: 30 Minuten, 12.09.13 Version: Winter 12/13 und Sommer 13 Der Kurs bestand aus zwei Teilen. Mit welchem Teil

Mehr