Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Raumgeometrie. 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar."

Transkript

1 Raumgeometrie 1. Die folgende Skizze stellt das Schrägbild eines Würfels mit einer Kantenlänge von 6cm dar. H G E F K D C A B (a) Berechne den Flächeninhalt des Dreiecks ABK. Runde das Ergebnis auf zwei Stellen nach dem Komma. (b) Vergleiche den Flächeninhalt des Dreiecks ABK mit dem des Dreiecks BGK. Begründe deine Antwort. Lösung: (a) A = 12,73cm 2 (b) Das rechtwinklige Dreieck ABC mit γ = 90, AC = 8cm, CB = 6cm ist Grundfläche eines geraden Prismas mit der Höhe 5cm. Verkürzt man die Seite [BC] um xcm und verlängert man die Höhe des Prismas um 2xcm, so ergeben sich neue Prismen mit der Grundfläche AB n C. (Siehe Schrägbild) Fn E n 2x cm F E Dn D 5cm 8cm C Bn x cm B A (a) Berechne das Volumen der Prismen AB n CD n E n F n in Abhängigkeit von x. [Ergebnis: V(x) = ( 8x 2 +28x+120)cm 3 ] (b) Berechne das maximal mögliche Volumen und gib den zugehörigen x Wert an. (c) Berechne die x Werte, bei denen Prismen das Volumen V = 130cm 3 besitzen. Lösung: (a) V(x) = ( 8x 2 +28x+120)cm 3 1

2 (b) V max = 144,5cm 3 für x = 1,75 (c) x 1 = 3,10 x 2 = 0,40 3. Gegeben ist eine würfelförmige Wanne mit der Seitenlänge 10 cm die bis zum Rand mit Wasser gefüllt ist. Kippt man sie längs einer Kante, sodass die gegenüberliegende Grundkante auf 6cm angehoben wird, so läuft Wasser aus. Wie viel ml laufen aus? Die Dicke der Wanne ist zu vernachlässigen. 10 cm 6 cm Lösung: V = 375ml 4. In der Figur 1 und in der Figur 2 sind die Punkte 1 und 2 die ittelpunkte der zugehörigen Kreisbögen. Jede der beiden grau getönten Flächen rotiert um die betreffende Achse s 1 bzw. s 2. 2

3 s 1 s 2 5 cm 5 cm 2 cm 1 2,5 cm 2 2 cm 2,5 cm Figur 1 Figur 2 (a) Berechne den Unterschied der Rauminhalte der beiden Rotationskörper. (b) aria behauptet: Die Oberflächen der beiden Rotationskörper sind gleich groß. Hat aria Recht? Begründe deine Antwort. Lösung: (a) Am besten zeichnest du dir erst einmal die Axialschnitte der beiden Rotationskörper hin: Zur Figur 1 Zur Figur 2 (b) Der zur Figur 1 gehörende Rotationskörper R 1 besteht aus einem Kegel, an dessen Grundfläche eine Halbkugel hängt. Aus dem Kegel des Rotationskörpers R 2 ist eine Halbkugel mit dem gleichen Radius herausgebohrt worden. Beide Kegel von R 1 und R 2 sind kongruent. Also unterscheiden sich die entsprechenden Rauminhalte V 1 und V 2 der beiden Rotationskörper lediglich um das Volumen einer Kugel mit Radius 2 cm: V 1 V 2 = V = πcm 3 = 32 3 πcm3 33,51cm 3. (c) Die Oberflächen O 1 und O 2 der Rotationskörper R 1 und R 2 bestehen aus paarweise kongruenten Teilflächen: 3

4 Zwei Kreisringe mit dem Durchmesser 9cm, die jeweils 2,5cm breit sind Zwei Kegelmäntel Zwei Halbkugeln mit dem Durchmesser 4cm Folglich hat aria Recht: O 1 = O 2. Anmerkung: Natürlich kannst du die Oberflächen auch jeweils berechnen, aber dadurch verzögerst du nur die Entscheidung, ob aria Recht hat. 5. Die antelfläche einer geraden quadratischen Pyramide ABCDS mit der Spitze S besteht aus vier gleichseitigen Dreiecken mit der Seitenlänge a cm. Der ittelpunkt der Grundfläche ist. (a) Skizziere eine solche Pyramide. Zeige: Für die Pyramidenhöhe h gilt in Abhängigkeit von a: h = a 2 2cm. (b) Zeichne für q = 0,5 und ω = 30 ein Schrägbild der Pyramide mit a = 6. Dabei soll [AB] auf der Schrägbildachse liegen. (c) Untersuche das Dreieck DBS auf seine Besonderheiten. (d) Verbinde die ittelpunkte der vier Seitenkanten sowohl untereinander zu dem Viereck EFGH als auch mit dem ittelpunkt. Dadurch entsteht eine einbeschriebene Pyramide EF GHS. Berechne das Verhältnis der Oberflächen der beiden Pyramiden EF GHS und ABCDS. Berechne das Verhältnis der Rauminhalte der beiden Pyramiden EF GHS und ABCDS. Lösung: (a) h = a 2 2 wird in (b) gezeigt. (b) S ψ h D ϕ C A Im rechtwinkligen Dreieck S gilt: ( S 2 = S 2 2 a ) 2 ( a 2, also h 2 3 = 3 = 2 2) 4 a2 1 4 a2 h = a 2. 2 B 4

5 (c) Der ittelpunkt halbiert die Quadratdiagonale [BD]. Also gilt: D = a 2 2 = h. dann muss das Dreieck DS gleichschenklig-rechtwinklig mit (d) ϕ = ψ = 45 sein. Weil die beiden Dreiecke DS und BS kongruent sind, ist auch das Dreieck DBS gleichschenklig-rechtwinklig. S G F H E D C A Du siehst z.b., dass die Seitenkante [EH] der kleinen Pyramide halb so lang wie die Seitenkante [BA] der großen Pyramide ist. Alle anderen Seitenkanten der kleinen Pyramide und deren Höhe sind ebenfalls halb so lang wie die entsprechenden Seitenkanten der großen Pyramide bzw. deren Höhe. Wenn aber die entsprechenden Seitenkanten im Verhältnis 1 : 2 stehen, dann müssen die Seitenflächen der kleinen und der großen Pyramide jeweils im Verhältnis (1 : 2) 2 stehen. Damit stehen die Oberflächen der beiden Pyramiden im Verhältnis 1 : 4. Wenn die entsprechenden Seitenkanten im Verhältnis 1 : 2 stehen, dann müssen dierauminhaltederbeidenpyramideim(1 : 2) 3 stehen. Damitstehen dierauminhalte der beiden Pyramiden im Verhältnis 1 : 8. Hinweis: Du hättest auch das Volumen und die Oberfläche der beiden Pyramiden in Abhängigkeit von a einzeln berechnen können. Doch für die kleine Pyramide EF GH hättest du mehrfach Ählichkeitssätze anwenden müssen, die aber für ähnliche Körper, wie es diese beiden Pyramiden nun einmal sind, allgemein gelten: O = k 2 O und V = k 3 V (hier mit k = 0,5). Das jeweilige Ergebnis wäre das gleiche. B 6. Frau Lunde will für ihre Familie 0,5kg Spaghetti in einem Topf mit 20cm Durchmesser kochen. In der Anleitung steht: Für 100g Spaghetti rechnet man einen Liter Wasser. Wie hoch muss das Wasser nach dieser Anleitung im Topf anfangs stehen, wenn 15% der eingefüllten Wassermenge während des Kochvorgangs verdampfen? Lösung: 0,5kg = 500g. Wenn für 100g Spaghetti ein Liter Wasser benötigt wird, müssen also zunächst 5 Liter = 5000cm 3 Wasser in den Topf. Zusätzlich muss noch diejenige Wassermenge berücksichtigt werden, die während des Kochvorgangs verdampft. Insgesamt müssen sich dann 5000cm 3 1,15 = 5750cm 3 Wasser im Topf sein. 5

6 Die Wassermenge im Topf hat eine zylindrische Form mit einem Radius von 10cm und der Einfüllhöhe h: 5750cm 3 = (10cm) 2 π h h 18,3cm Das Wasser im Topf muss knapp 20cm hoch stehen. 7. xcm 30cm Lösung: (a) Die Darstellung zeigt den Axialschnitt eines Zimmerbrunnens: Eine Kugel aus armor mit dem Radius r = xcm ist in eine unbewegliche Halbkugelschale mit einem äußeren Durchmesser von 30 cm aus dem gleichen aterial eingepasst. Ein dünner Wasserfilm in der Berührfläche der beiden Körper bewirkt, dass die Kugel fast reibungsfrei rotieren kann. (a) Zeichne die Figur für x = 7,5 im aßstab 1 : 5. (b) Berechne für x = 7,5 die Oberfläche der Halbkugelschale in der Einheit dm 2. (c) Zeige: Für die Oberfläche O der Kugelschale gilt in Abhängigkeit von x: O(x) = (x ) πcm 2 Bestätige damit dein Ergebnis der Aufgabe (b). (d) Berechne x so, dass die Oberfläche der Halbkugelschale fünfmal so groß wie die der Vollkugel ist. (e) Berechne für x = 7,5 das Volumen der Halbkugelschale in der Einheit dm 3. (f) Zeige: Für das Volumen V der Kugelschale gilt in Abhängigkeit von x: V(x) = ( x3 ) πcm 3 Bestätige damit dein Ergebnis der Aufgabe (e). (g) Berechne x so, dass die Halbkugelschale genau so schwer wie die Vollkugel ist. 6

7 A B xcm xcm C D 15cm Für die Zeichnung gilt: Kugelradius r = (7,5 : 5)cm = 1,5cm und äußerer Radius der Halbkugelschale R = (15 : 5)cm = 3cm. Beginne am besten mit dem Vollkreis. (b) Äußere Halbkugel: O a = πcm 2 = 250πcm 2 Innere Halbkugel: O i = ,52 πcm 2 = 112,5πcm 2 Kreisring aus [AB] bzw. [CD]: A KR = (15 2 π 7,5 2 π)cm 2 = 168,25cm 2 Somit ergibt sich für die Oberfläche der Halbkugelschale in diesem Fall: O HKS = 531,25πcm ,97cm cm 2 16,7dm 2. (c) Äußere Halbkugel: O a = πcm 2 = 250πcm 2 Innere Halbkugel: O i = x2 πcm 2 = 2x 2 πcm 2 Kreisring aus [AB] bzw. [CD]: A KR = (15 2 π x 2 π)cm 2 = = (225π x 2 π)cm 2 Somit ergibt sich: O(x) = (250+2x x 2 )πcm 2 = (x )πcm 2. O(7,5) = (7, )πcm 2 = 531,25πcm 2, siehe Lösung (b). (d) Die aßzahlengleichung für x R + heißt: 5 4x 2 π = (x )π 19x 2 = 475 x = 5 ( 1 (e) V = ) cm 3 = 1968,75πcm cm 3 6,2dm 3 (f) V(x) = 2 3 π( 15 3 x 3) cm 3 = ( ) x3 πcm 3 V(7,5) = ( ) 7,53 π = 1968,75πcm 3, siehe Lösung (e). (g) In der Angabe steht, dass die Halbkugelschale und die Vollkugel aus dem gleichen aterial sind. Wenn das Volumen der beiden Körer identisch ist, dann müssen auch die zugehörigen assen gleich sein. Daraus ergibt sich die zugehörige aßzahlengleichung mit x R + : 7

8 ( x3 ) π = 4 3 x3 π 2250 = 2 x 3 x 10,40 8. A Kreis = 6400πmm 2 Kegel = 4000πmm 2 s = 60mm S Egon hat die antelfläche eines Kegels und dessen Grundfläche aus Papier ausgeschnitten. Zeige durch Rechnung, dass er die die beiden Teile nicht lückenlos und nicht bündig zu einem Kegel zusammenfügen kann. Lösung: Aus A Kreis = 6400πmm 2 folgt r = 80mm. Wegen Kegel = r π s folgt dann Kegel = 80 π 60mm 2 = 4800πmm 2 und nicht wie angegeben 4000πmm 2. Also passen Grundkreis und antelfläche des Kegels nicht zusammen. 9. A Kreis = 6400πmm 2 Kegel = 4000πmm 2 s = 60mm S 8

9 Erich hat die antelfläche eines Kegels und einen Kreis ausgeschnitten. Zeige rechnerisch, dass die antelfläche des Kegels und der Kreis als dessen Grundfläche nicht lückenlos und bündig zusammengefügt werden können. Lösung: Für den Kreisradius r gilt: r 2 π = 6400 πmm 2 r = 80mm. Nach der Formelgleichung für den Kegelmantel muss gelten: 80mm π 60mm = 4000 πmm 2, was falsch ist. Also passen die beiden Flächenstücke nicht zusammen. 10. Ein halbkugelförmiges Glasgefäß mit einer Wandstärke von 5 mm hat ein Fassungsvermögen von 10l. Berechne den Außendurchmesser des Gefäßes in mm. Lösung: 10l = 10dm 3 = 10 4 cm 3 = 10 7 mm 3. Für den Innenradius r i des Gefäßes gilt dann: 2 3 r3 i = 107 mm 3 r i 168,4mm. d i 337mm d a 347mm. 9

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 14 cm; f = 10 cm;

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Klasse 0 / II.0 Die Raute ABCD mit den Diagonalen AC = e und BD = f ist die Grundfläche einer schiefen Pyramide ABCDS. Die Spitze S liegt senkrecht über dem Punkt D der Grundfläche. Es gilt: e = 4 cm;

Mehr

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung

Trigonometrie - Zusammenfassende Übungen Raumgeometrie Vorbereitung auf die Abschlussprüfung 1.0 Das Quadrat ABCD mit der Seitenlänge a cm ist Grundfläche eines Würfels mit der Deckfläche EFGH, wobei E über A, F über B usw. liegen. Zur Grundfläche ABCD parallele Ebenen schneiden die Würfelkanten

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 2011 an den Realschulen in Bayern Mathematik I Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Nachtermin A 1.0 Lebensmittelchemiker untersuchten das

Mehr

Raumgeometrie - gerade Pyramide

Raumgeometrie - gerade Pyramide 1.0 Das Quadrat ABCD mit der Seitenlänge 7 cm ist Grundfläche einer geraden Pyramide ABCDS mit der Höhe h = 8 cm. S ist die Pyramidenspitze. 1.1 Fertige ein Schrägbild der Pyramide ABCDS an. 1.2 Berechne

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 Die nebenstehende Skizze zeigt den Axialschnitt einer massiven Edelstahlniete mit der Symmetrieachse MS. F M E Es gilt: _ AB = _ CD = 8,00 mm; _ MS

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide 1.0 Das gleichseitige Dreieck ABC mit AB = 8 cm ist Grundfläche einer Pyramide ABCS. Die Spitze S liegt senkrecht über dem Mittelpunkt M der Seite [AC]. Die Höhe [MS] ist 6 cm lang. 1.1 Zeichne ein Schrägbild

Mehr

Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgabe A1 A 1.0 Gegeben ist das rechtwinklige Dreieck ABC mit der Hypotenuse [AC]. Punkte P n liegen auf der Kathete [AB] und legen zusammen mit den Punkten B und C Dreiecke

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Das Prisma ==================================================================

Das Prisma ================================================================== Das Prisma ================================================================== Wird ein Körper von n Rechtecken und zwei kongruenten und senkrecht übereinander liegenden n-ecken begrenzt, dann heißt der

Mehr

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE

Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Analysis-Aufgaben: Integralrechnungen - STEREOMETRIE Prismen und Zylinder: 1. Berechne den Inhalt der Oberfläche, das Volumen und die Länge der Raumdiagonalen eines Würfels mit der Kantenlänge s = 30cm.

Mehr

Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte:

Mathematik II Pflichtteil Nachtermin Aufgabe P 1. Klasse: Platzziffer: Punkte: Prüfungsdauer: Abschlussprüfung 006 50 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Pflichtteil Nachtermin Aufgabe P Name: Vorname: Klasse: Platzziffer: Punkte: 3 P.0 Der Punkt A 3 3 4 liegt

Mehr

verschiedene Körper Lösung: a = 1 3 m 0,76m

verschiedene Körper Lösung: a = 1 3 m 0,76m verschiedene Körper 1 (a) Konstruiere die Höhe eines regulären Tetraeders mit der Seitenlänge 6 cm, sowie den Neigungswinkel einer Seitenkante gegen die Grundfläche (b) Die Oberfläche eines regulären Oktaeders

Mehr

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung

Lernstraße zum Thema geometrische Körper. Vorbemerkungen. Liebe 10 a, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung Vorbemerkungen 02.06.2011 Liebe, nun sämtliche Arbeitsblätter; aufgrund einer Erkrankung meiner Kinder am Wochenende etwas später und aufgrund einer Bemerkung von Arian in der letzten Stunde etwas kürzer.

Mehr

Raumgeometrie - schiefe Pyramide

Raumgeometrie - schiefe Pyramide Bei allen Aufgaben: Ergebnisse auf 2 Stellen nach dem Komma runden! 1.0 Berechne das Volumen der beiden dargestellten Pyramiden 1 und 2. 2.1 Die Spitze S einer dreiseitigen Pyramide ABCS liegt senkrecht

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 010 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 Das radioaktive Cäsium-137 wird in der

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe Achtung! Alle Ergebnisse auf zwei Stellen nach dem Komma runden. 1 1.0 Gegeben ist die Funktion f 1 mit y = x + bx + c (b, c ). Der Graph zu f 3 1 ist die Parabel p 1, die durch die Punkte A(-/-4) und

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A (-I1) und B (6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten

Aufgaben. Aufgabe A1. Prüfungsdauer: 150 Minuten Prüfungsdauer: 150 Minuten Aufgaben Aufgabe A1 A 1.0 In einer Medikamentenstudie wird in drei zeitgleich beginnenden Laborversuchen die Vermehrung von Krankheitserregern untersucht. Bei allen Versuchen

Mehr

Übungsserie 1: Würfel und Quader

Übungsserie 1: Würfel und Quader Kantonsschule Solothurn Stereometrie RYS Übungsserie 1: Würfel und Quader 1. Berechne die fehlenden Quadergrössen: a b c V O a) 7 cm 11 cm 3 cm b) 8 mm 12.5 cm 45 cm 3 c) 3 cm 4 cm 108 cm 2 d) 54 cm 16.4

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2011 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert)

HM = 2cm HS = 3.5cm MB = 2cm (weil die Höhe im gleichsch. Dreieck die Basis halbiert) Seiten 4 / 5 1 Vorbemerkung: Die Konstruktionsaufgaben sind verkleinert gezeichnet. a) Aus dem Netz wird die Pyramidenhöhe herauskonstruiert. Dies mit dem rechtwinkligen Dreieck HS, wie im Raumbild angedeutet.

Mehr

Abschlussprüfung 2010 an den Realschulen in Bayern

Abschlussprüfung 2010 an den Realschulen in Bayern Prüfungsdauer: 50 Minuten bschlussprüfung 00 an den Realschulen in ayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: ufgabe Nachtermin.0 ie nebenstehende Skizze zeigt ein Schrägbild des Würfels

Mehr

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten

WER WIRD MATHESTAR? Raum und Form. Mathematisch argumentieren. Gruppenspiel oder Einzelarbeit. 45 Minuten WER WIRD MATHESTAR? Lehrplaneinheit Berufsrelevantes Rechnen - Leitidee Kompetenzen Sozialform, Methode Ziel, Erwartungshorizont Zeitlicher Umfang Didaktische Hinweise Raum und Form Mathematisch argumentieren

Mehr

3. Mathematikschulaufgabe

3. Mathematikschulaufgabe Arbeitszeit 40min 1.0 Gegeben sind die Punkte A(-I1) und B(6I-1), sowie die Gerade g mit der Gleichung y = 0,5x + 3. Führe die folgenden Berechnungen jeweils auf zwei Stellen gerundet aus. 1.1 Berechne

Mehr

KORREKTURVORLAGE 4. MATHEMATIKSCHULARBEIT DER 4B

KORREKTURVORLAGE 4. MATHEMATIKSCHULARBEIT DER 4B KORREKTURVORLAGE 4. MATHEMATIKSCHULARBEIT DER 4B - GRUPPE A GRUPPE A GRUPPE A Aufgabe 1. (3x Punkte) (a) (b) (c) Eine Kugel hat einen Radius r = 3cm. Berechne ihr Volumen. Ein Kreis hat einen Umfang U

Mehr

Abschlussprüfung 2011 an den Realschulen in Bayern

Abschlussprüfung 2011 an den Realschulen in Bayern Prüfungsdauer: 150 Minuten Abschlussprüfung 011 an den Realschulen in Bayern Mathematik II Name: Vorname: Klasse: Platzziffer: Punkte: Aufgabe A 1 Haupttermin A 1.0 In Deutschland wächst derzeit mehr Holz

Mehr

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016

Ma 11b (CON) Aufgabenblatt Stereometrie (1) 2015/2016 1. Übertragen Sie aus der Formelsammlung die Skizzen und Formeln nachfolgender Körper aus dem Kapitel Stereometrie in ihr Heft: Würfel, Quader, Dreiecksprisma, Zylinder, Quadratische Pyramide, Rechteckpyramide,

Mehr

2.10. Aufgaben zu Körperberechnungen

2.10. Aufgaben zu Körperberechnungen Aufgabe Vervollständige die folgende Tabelle:.0. Aufgaben zu Körperberechnungen a, cm 7,8 cm 0,5 mm, dm b 5,5 m,5 cm,5 cm, cm 0, m cm c,5 dm,6 dm 6 dm V 5, cm,5 dm 6 dm cm 9,5 mm 6,6 dm 8 dm 0 cm Aufgabe

Mehr

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes

Aufgaben aus den Vergleichenden Arbeiten im Fach Mathematik Verschiedenes Verschiedenes 2012 A 1e) Verschiedenes Schreiben Sie die Namen der drei Vierecke auf. 2011 A 1e) Verschiedenes Wie heißen diese geometrischen Objekte? Lösungen: Aufgabe Lösungsskizze BE 2012 A 1e) Rechteck Parallelogramm

Mehr

Schrägbilder zeichnen

Schrägbilder zeichnen Was sind Schrägbilder und welchen Zweck haben sie? Durch ein Schrägbild wird auf einer ebenen Fläche (z.b. Blatt Papier) ein Körper räumlich dargestellt (räumliche Perspektive des Körpers). Es gibt sehr

Mehr

Zylinder, Kegel, Kugel, weitere Körper

Zylinder, Kegel, Kugel, weitere Körper Zylinder, Kegel, Kugel, weitere Körper Aufgabe 1 Ein Messzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Messzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

1 Pyramide, Kegel und Kugel

1 Pyramide, Kegel und Kugel 1 Pyramide, Kegel und Kugel Pyramide und Kegel sind beides Körper, die - anders als Prismen und Zylinder - spitz zulaufen. Während das Volumen von Prismen mit V = G h k berechnet wird, wobei G die Grundfläche

Mehr

Sekundarschulabschluss für Erwachsene

Sekundarschulabschluss für Erwachsene SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2015 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten

Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Ausgewählte Aufgaben zur Aufgaben zur Förderung grundlegender Kenntnisse, Fähigkeiten und Fertigkeiten Lehrplanabschnitt M 9.6 Fortführung der Raumgeometrie Ausführliche Hinweise zur Verwendung der folgenden

Mehr

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie)

Klasse Schulaufgabe Mathematik (Thema: Raumgeometrie) Klasse 11 2. Schulaufgabe Mathematik (Thema: Raumgeometrie) Aufgabe 1 Gegeben sind die Punkte A ( 2 12 4 ); B ( 4 22 6 ); C ( 6 20 8 ); S ( 0 14 14 ) a) Zeigen Sie, dass das Dreieck ABC gleichschenklig

Mehr

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen. Flächeninhalte von Vielecken Parallelogramm Übungen - 9 20.0 Gegeben sind die Skizzen von Parallelogrammen. Stelle die Formel für den Flächeninhalt auf. Benutze dabei nur die angegebenen Bezeichnungen.

Mehr

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild:

Zeichnet man nun über die Seiten des Dreiecks die Quadrate der jeweiligen Seiten, dann ergibt sich folgendes Bild: 9. Lehrsatz von Pythagoras Pythagoras von Samos war ein griechischer Philosoph und Mathematiker, der von ca. 570 v.chr. bis 510 n.chr lebte. Obwohl es über seine gesallschaftliche Stellung verschiedene

Mehr

Raumgeometrie - Prisma (Würfel, Quader)

Raumgeometrie - Prisma (Würfel, Quader) Raumgeometrie - Prisma (Würfel, Quader) 1.0 Ein Quader mit einem Rechteck als Grundfläche ist 8 cm hoch. Die zwei Seitenflächen haben den Flächeninhalt 96 cm und 7 cm. 1.1 Berechne Volumen und Oberfläche

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2014

Sekundarschulabschluss für Erwachsene. Geometrie A 2014 SE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie 2014 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60 Für

Mehr

größer ist als die des Zylinders. Lösung: 311,0

größer ist als die des Zylinders. Lösung: 311,0 Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen der unteren Pyramide

Mehr

Aufgabe W3b/2007. Aufgabe W2b/2009

Aufgabe W3b/2007. Aufgabe W2b/2009 8 Aufgaben im Dokument Aufgabe W1a/2004 Ein Körper besteht aus zwei quadratischen Pyramiden mit gemeinsamer Grundfläche. Die Skizze zeigt den Diagonalschnitt des Körpers. Gegeben sind: 12,4 52,8 Das Volumen

Mehr

Raumgeometrie - Zylinder, Kegel

Raumgeometrie - Zylinder, Kegel Realschule / Gymnasium Raumgeometrie - Zylinder, Kegel 1. Ein Meßzylinder aus Glas hat einen Innendurchmesser von 4,0 cm. a) In den Meßzylinder wird Wasser eingefüllt. Welchen Abstand haben zwei Markierungen

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A 2012

Sekundarschulabschluss für Erwachsene. Geometrie A 2012 SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2012 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik

Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A Bremen. Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe 172 A 28195 Bremen Die Kursübersicht für das Fach Mathematik Erwachsenenschule Bremen Abteilung I: Sekundarstufe Doventorscontrescarpe

Mehr

Grundwissensaufgaben Klasse 10

Grundwissensaufgaben Klasse 10 Grundwissensaufgaben Klasse 10 1.Grundwissensaufgaben zu Potenz- und Wurzelgesetzen: [Verwendung willkürlicher Zahlen und Buchstaben; eigene Aufgabenstellung] Fasse soweit wie möglich zusammen. a) ( 1,456)

Mehr

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK

Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK Vektorrechnung Aufgabe aus Abiturprüfung Bayern GK 1. In einem kartesischen Koordinatensystem sind der Punkt C(4 4, die Ebene E 1 : x 1 x +x 3 + = und die Gerade g: x = ( + λ( 1 gegeben. a Zeigen Sie,

Mehr

Oberfläche von Körpern

Oberfläche von Körpern Definition Die Summe der Flächeninhalte der Flächen eines Körpers nennt man Oberflächeninhalt. Quader Der Oberflächeninhalt eines Quaders setzt sich folgendermaßen zusammen: O Q =2 h b+2 h l+2 l b=2 (h

Mehr

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte)

Sekundarschulabschluss für Erwachsene. Geometrie A b) Strecken Sie das Dreieck ABC (Streckfaktor: -1/ Streckzentrum Z) (3 Punkte) SAE Sekundarschulabschluss für Erwachsene Name: Nummer: Geometrie A 2013 Totalzeit: 60 Minuten Hilfsmittel: Nichtprogrammierbarer Taschenrechner und Geometriewerkzeug Maximal erreichbare Punktzahl: 60

Mehr

Raumgeometrie - Prisma (Würfel, Quader)

Raumgeometrie - Prisma (Würfel, Quader) Raumgeometrie - Prisma (Würfel, Quader) 1.0 Ein Quader mit einem Rechteck als Grundfläche ist 8 cm hoch. Die zwei Seitenflächen haben den Flächeninhalt 96 cm und 7 cm. 1.1 Berechne Volumen und Oberfläche

Mehr

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B 1, 1,5(

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B 1, 1,5( 1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A,, ( ; B, 0,5( und C 0,5 ( 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:

Mehr

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 1 Hinweise: Alle Zwischen- und Endergebnisse auf 2 Stellen nach dem Komma runden. Die Zeichnungen sind nicht maßstäblich. Alle Maße sind in mm, falls nicht anders angegeben. 1. Bestimme das Maß x in nebenstehender

Mehr

Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe

Säule Volumen = Volumen einer Schicht mal Anzahl der Schichten. V s = A h s. VS = A hs. Volumen Säule = Grundfläche Höhe I) So berechnet man das Volumen einer Säule. Körper Strukturbild geometrische Bedeutung Formel Säule Volumen Volumen einer Schicht mal h s Anzahl der Schichten V s A h s Volumen Säule Grundfläche Höhe

Mehr

Raum- und Flächenmessung bei Körpern

Raum- und Flächenmessung bei Körpern Raum- und Flächenmessung bei Körpern Prismen Ein Prisma ist ein Körper, dessen Grund- und Deckfläche kongruente Vielecke sind und dessen Seitenflächen Parallelogramme sind. Ist der Winkel zwischen Grund-

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN LÖSUNGSSATZ Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut

Mehr

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r.

gerader Zylinder 1. Ein gerader Kreiszylinder hat die Höhe h und den Radius r. gerader Zylinder 1 Ein gerader Kreiszylinder hat die Höhe h und den Radius r (a) Erklären Sie, wie man die Formel M = rh2π für den Inhalt der Mantelfläche des Zylinders herleiten kann (b) Für den Inhalt

Mehr

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung

Bestimme ferner die Koordinaten des Bildpunktes von B bei der Spiegelung Vektoren - Skalar- und Vektorprodukt ================================================================== 1. Gegeben sind die Punkte A 1 2 3 und B 3 4 1 bzgl. eines kartesischen Koordina- tensystems mit

Mehr

Schrägbilder von Körpern Quader

Schrägbilder von Körpern Quader Schrägbilder von Körpern Quader Vervollständige die Zeichnung jeweils zum Schrägbild eines Quaders. Bezeichne die für die Berechnung des Volumens und des Oberflächeninhalts notwendigen Seiten und bestimme

Mehr

Aufgaben aus alten Abschlussarbeiten (2002/ 2003) - R 10 Teil 1

Aufgaben aus alten Abschlussarbeiten (2002/ 2003) - R 10 Teil 1 Aufgaben aus alten Abschlussarbeiten (2002/ 2003) - R 10 Teil 1 (1) 2002-1 Aufgabe 2 (10 Pkt) a) Auf welchen Betrag wachsen 16500 Euro in 12 Jahren bei einer jährlichen Verzinsung von 3,75 % Zinseszins

Mehr

R4/R6. Seite 1 von 6 Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern.

R4/R6. Seite 1 von 6 Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Seite 1 von 6 Prüfungsdauer: bschlussprüfung 007 150 Minuten an den Realschulen in ayern R4/R6 Mathematik II Nachtermin ufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1 Nebenstehende Skizze zeigt

Mehr

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.7 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.7 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

b) Berechnen Sie die Koordinaten des Punktes D so, dass die Punkte A, B, C und D ein Quadrat bilden.

b) Berechnen Sie die Koordinaten des Punktes D so, dass die Punkte A, B, C und D ein Quadrat bilden. Aufgabe 1: 12 Punkte Gegeben sind die Punkte A(12 / -6 / 2), B(10 / 2 / 0) und C(4 / 2 / 6). a) Zeigen Sie, dass die Punkte A, B und C die Eckpunkte eines rechtwinkligen und gleichschenkligen Dreiecks

Mehr

Inhaltsverzeichnis. III, Band, Stereometrie. 1. Die Ebene und Gerade int Raume 1

Inhaltsverzeichnis. III, Band, Stereometrie. 1. Die Ebene und Gerade int Raume 1 Inhaltsverzeichnis. III, Band, Stereometrie. Punkt 1. Die Ebene und Gerade int Raume 1 2. Ebene und Ebene 3 3. Die körperliche Ecke 4 4. Der Körper 5 5. Einteilung der Körper 5 6. Die fünf regelmäßigen

Mehr

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt

Formeln für Formen 4. Flächeninhalt. 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt 1 7 Flächeninhalt 301 Berechne die Höhe h von einem Rechteck, einem Parallelogramm und einem Dreieck, die jeweils den Flächeninhalt A = cm 2 und die Grundlinie a = 4 cm haben. Rechteck: h = 2,5 cm Parallelogramm:

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5)

Realschule. 1. Schulaufgabe aus der Mathematik. Klasse 8 / I ; B( 1 1,5) 1. Schulaufgabe aus der Mathematik 1. Gegeben sind die Punkte A( ) ; B( 0,5) und C( 0,5 ) 1.1 Konstruiere den Umkreis k des Dreiecks mit Mittelpunkt M. 1. Kennzeichne die Lösungsmenge mit grüner Farbe:

Mehr

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild

Darstellung dreidimensionaler Figuren in der Ebene. Schrägbild Mathematik Bl Darstellung dreidimensionaler Figuren in der Ebene Schrägbild Das Bild bei einer schrägen Parallelprojektion heisst Schrägbild und wird durch folgende Merkmale bestimmt: - Zur Zeichenebene

Mehr

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: O 1

Mathematik I Nachtermin Aufgabe P 1. Name: Vorname: Klasse: Platzziffer: Punkte: O 1 Prüfungsdauer: Abschlussprüfung 007 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik I Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1.0 Gegeben ist die Funktion f 1 mit

Mehr

Zylinder, Kegel und Kugel - Volumen und Oberfläche

Zylinder, Kegel und Kugel - Volumen und Oberfläche Zylinder, Kegel und Kugel - Volumen und Oberfläche 1 Eine Kugel Speiseeis (Radius r) liegt in einem kegelförmigen Sektglas der Höhe H und der Weite 2a (siehe Abbildung) Das Eis schmilzt in der Sonne ohne

Mehr

Bastelvorlage Prisma. Station 1. Aufgabe. Name:

Bastelvorlage Prisma. Station 1. Aufgabe. Name: Station 1 Bastelvorlage Schneide die Bastelvorlage aus und baue daraus ein. Markiere im Anschluss die Flächen mit den gleichen Flächeninhalten farbig. 22 Station 2 Eigenschaften Prismen I Ergänze die angefangene

Mehr

Stationenlernen Raumgeometrie

Stationenlernen Raumgeometrie Lösung zu Station 1 a) Beantwortet die folgenden Fragen. Begründet jeweils eure Antwort. Frage 1: Hat jede Pyramide ebenso viele Ecken wie Flächen? Antwort: Ja Begründung: Eine Pyramide mit einer n-eckigen

Mehr

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2

Wie gross ist der Flächeninhalt A eines Quadrats mit der Seitenlänge a? A = a 2 Stereometrie-Formeln Quadrat eines Quadrats mit der Seitenlänge a? A = a Quadrat Wie lang ist die Diagonale d eines Quadrats mit der Seitenlänge a? d = a Rechteck eines Rechtecks mit den Seitenlängen a

Mehr

1 Grundwissen Pyramide

1 Grundwissen Pyramide 1 Grundwissen Pyramide 1 Definition und Volumen der Pyramide Eine Pyramide ist ein geradlinig begrenzter Körper im R 3. Dabei wird ein Punkt S außerhalb der Ebene eines Polygons (Vieleck) mit den Ecken

Mehr

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen

Körperberechnung. Würfel - Einheitswürfel. Pyramide. - Oberfläche - Volumen. - Oberfläche. - Volumen. Kegel. Quader. - Oberfläche - Volumen Körperberechnung Würfel - Einheitswürfel - Oberfläche - Volumen Quader - Oberfläche - Volumen - zusammengesetzte Körper Prisma - Oberfläche Zylinder - Oberfläche Pyramide - Oberfläche - Volumen Kegel -

Mehr

Analytische Geometrie

Analytische Geometrie Analytische Geometrie 1 Punkte und Vektoren im Raum G 1.1 Gegeben sind die Vektoren in nebenstehender Abbildung. Drücke die Vektoren AC durch a und b AB durch z und w BC durch c und d DB durch b und u

Mehr

Muster für den Schultest. Muster Nr. 1

Muster für den Schultest. Muster Nr. 1 GRUNDELEMENTE DER MATHEMATIK Boris Girnat Wintersemester 2005/06 Technische Universität Braunschweig Institut für Elementarmathematik und Didaktik der Mathematik Muster für den Schultest Dieser Blatt enthält

Mehr

: B * C < D 7,22 4 Satz des Pythagoras 36,12846,0. Das Volumen der Pyramide beträgt 128 '(. 8 ; +,-. * : +,-. 4 ;<=? 7,22 ;<= > 5 E" : E",

: B * C < D 7,22 4 Satz des Pythagoras 36,12846,0. Das Volumen der Pyramide beträgt 128 '(. 8 ; +,-. * : +,-. 4 ;<=? 7,22 ;<= > 5 E : E, 4 Aufgaben im Dokument Aufgabe P1/2010 Ein zusammengesetzter Körper besteht aus einem Zylinder und aufgesetztem Kegel. Aus diesem Körper wird eine Halbkugel herausgearbeitet (siehe Achsenschnitt). 3,0

Mehr

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 2

Aufgaben zum Pythagoras, Kathetensatz, Höhensatz 2 Hinweise: Die Zeichnungen sind teilweise verkleinert dargestellt. Alle Maße sind in mm, falls nicht anders angegeben. Die folgenden Aufgaben wurden aus Schulaufgaben Gymnasium entnommen, die auch auf meiner

Mehr

4. Mathematikschulaufgabe

4. Mathematikschulaufgabe 1. a) Zeichne mit Hilfe des y-abschnittes und eines Steigungsdreiecks die Geraden mit folgenden Gleichungen in ein Koordinatensystem! (Kennzeichne die Geraden mit I, II, III) I) y = 4-1,4 x II) 2x 3y 6

Mehr

Themenbereich: Besondere Dreiecke Seite 1 von 6

Themenbereich: Besondere Dreiecke Seite 1 von 6 Themenbereich: Besondere Dreiecke Seite 1 von 6 Lernziele: - Kenntnis der Bezeichnungen für besondere Dreiecke - Kenntnis der Seiten- und Winkelbezeichnungen bei besonderen Dreiecken - Kenntnis der Eigenschaften

Mehr

1.9 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte...

1.9 Stereometrie. 1 Repetition Der Satz von Pythagoras Die Trigonometrischen Funktionen Masseinheiten Dichte... 1.9 Stereometrie Inhaltsverzeichnis 1 Repetition 2 1.1 Der Satz von Pythagoras................................... 2 1.2 Die Trigonometrischen Funktionen.............................. 2 1.3 Masseinheiten.........................................

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 2. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt 9 2. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA Mathematik: Mag. Schmid Wolfgang Areitslatt 9. Semester ARBEITSBLATT 9 GEOMETRISCHE KÖRPER 1) DAS PRISMA Definition: Prismen haen deckungsgleiche (kongruente), parallele und eckige Grund- und Deckflächen.

Mehr

Übungsbeispiele Differential- und Integralrechnung

Übungsbeispiele Differential- und Integralrechnung Übungsbeispiele Differential- und Integralrechnung A) Gegeben ist die Funktion: y = 2x 3 9x 2 + 12x. a) Skizzieren Sie die Funktion im Intervall [ 0,5; 3] b) Diskutieren Sie die Funktion (Nullstellen,

Mehr

2 14,8 13,8 10,7. Werte einsetzen

2 14,8 13,8 10,7. Werte einsetzen Hinweis zu den Lösungen In den Graphiken stellen grüne Linien, Werte und Flächen vorgegebene Werte, rote Linien, Werte und Flächen gesuchte Werte und blaue Linien, Werte und Flächen zu ermittelnde Zwischenwerte

Mehr

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE:

BMT A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN PUNKTE: / 21 NOTE: BMT8 2009-1 - A BAYERISCHER MATHEMATIK-TEST FÜR DIE JAHRGANGSSTUFE 8 DER GYMNASIEN NAME: KLASSE: PUNKTE: 1 NOTE: Aufgabe 1 Ein Würfel der Kantenlänge 2 cm wird, wie in der Abbildung dargestellt, durch

Mehr

1. Mathematikschulaufgabe

1. Mathematikschulaufgabe 1.0 Gegeben ist die Funktion f: y = 1 ( ) 1 x + in G= x. 1.1 Tabellarisiere f für x = [ -1; 7 ] mit x = 1 sowie für x =,5 und x =,5. 1. Zeichne den Graphen von f. Für die Zeichnung: 1 LE = 1 cm - 1 x 8-1

Mehr

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel:

Download. Körperberechnungen an Stationen. Übungsmaterial zu den Bildungsstandards. Marco Bettner, Erik Dinges. Downloadauszug aus dem Originaltitel: Download Marco Bettner, Erik Dinges an Stationen Übungsmaterial zu den Bildungsstandards Downloadauszug aus dem Originaltitel: an Stationen Übungsmaterial zu den Bildungsstandards Dieser Download ist ein

Mehr

Tag der Mathematik 2017

Tag der Mathematik 2017 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Aufgaben Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner sind nicht zugelassen.

Mehr

c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lange ist eine Seitenlänge?

c) Der Umfang einer quadratförmigen Rabatte misst 60,4 m. Wie lange ist eine Seitenlänge? 13.3 Übungen zur Flächenberechnung 13.3.1 Übungen Quadrat Berechnen Sie für diese Quadrate das gesuchte Maß, geben Sie das Resultat in der verlangten Einheit an. a) l 4,8 dm, A? cm 2, U? m A l 2 4,8 2

Mehr

Übungsaufgaben Geometrie und lineare Algebra - Serie 1

Übungsaufgaben Geometrie und lineare Algebra - Serie 1 Übungsaufgaben Geometrie und lineare Algebra - Serie. Bei einer geraden Pyramide mit einer quadratischen Grundfläche von 00 cm beträgt die Seitenkante 3 cm. a) Welche Höhe hat die Pyramide? b) Wie groß

Mehr

Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur

Repetition für JZK. F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n Term q n = Anz. Quadrate der Figur Repetition für JZK Aufgabe 1 a) Zeichne die Figur F 4! F 1 F 2 F 3 F 4 b) Vervollständige die Wertetabelle und gib jeweils einen Term! n 1 2 3 4 5 6 7 Term q n = Anz. Quadrate der Figur F n u n = äusserer

Mehr

Übungsaufgaben Repetitionen

Übungsaufgaben Repetitionen TG TECHNOLOGISCHE GRUNDLAGEN Kapitel 3 Mathematik Kapitel 3.6 Geometrie Satz des Pythagoras Übungsaufgaben Repetitionen Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1, 877 Nidfurn

Mehr

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge.

Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. STEREOMETRIE I Grundlagen 1. Punkte, Geraden und Ebenen Der dreidimensionale Raum wird als unendliche Punktmenge aufgefasst. Geraden und Ebenen sind dann Teilmengen dieser Punktmenge. a) Gerade Axiom:

Mehr

Stereometrie-Formeln Zusatzübungen (2)

Stereometrie-Formeln Zusatzübungen (2) Stereometrie-Formeln Zusatzübungen () 1. Gegeben: Würfel mit Oberflächeninhalt S = 81.1m Gesucht: Kantenlänge a. Gegeben: Würfel mit Volumen V =.5m Gesucht: Kantenlänge a. Gegeben: Würfel mit Körperdiagonale

Mehr

Übungsaufgaben Klassenarbeit

Übungsaufgaben Klassenarbeit Übungsaufgaben Klassenarbeit Aufgabe 1 (mdb633193): Berechne die Länge an der Flussmündung. (Maße in m) Aufgabe 2 (mdb633583): Die Höhe eines Kirchturms wird ermittelt. Dazu werden, wie in der Skizze dargestellt,

Mehr

R4/R6. Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Mathematik II Nachtermin Aufgabe P 1.

R4/R6. Prüfungsdauer: Abschlussprüfung Minuten an den Realschulen in Bayern. Mathematik II Nachtermin Aufgabe P 1. Prüfungsdauer: Abschlussprüfung 008 150 Minuten an den Realschulen in Bayern R4/R6 Mathematik II Nachtermin Aufgabe P 1 Name: Vorname: Klasse: Platzziffer: Punkte: P 1 Gegeben ist das Trapez ABCD mit AB

Mehr

12.1 Jeder Körper hat einen Namen

12.1 Jeder Körper hat einen Namen 1207 Quader, Zylinder, 2 mal dreiseitiges Prisma 1208 Quader 1210 Grundfläche, Deckfläche, parallel und deckungsgleich, Vorder-,Rück-, Seitenfläche, 12 Prismen 12.1 Jeder Körper hat einen Namen Sara und

Mehr

Themenerläuterung. Die wichtigsten benötigten Formeln

Themenerläuterung. Die wichtigsten benötigten Formeln Themenerläuterung In diesem Kapitel bekommst du Teile von Abmessungen quadratischer Pyramiden genannt, wie z. B. Höhe, Seitenhöhe, Seitenkante, Grundkante, Mantel, Oberfläche und Volumen. Aus den Teilangaben

Mehr

Tag der Mathematik 2006

Tag der Mathematik 2006 Tag der Mathematik 2006 Gruppenwettbewerb Einzelwettbewerb Mathematische Hürden Lösungen Allgemeine Hinweise: Als Hilfsmittel dürfen nur Schreibzeug, Geodreieck und Zirkel benutzt werden. Taschenrechner

Mehr