Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen

Größe: px
Ab Seite anzeigen:

Download "Höhere Mathematik II für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie inklusive Komplexe Analysis und Integraltransformationen"

Transkript

1 UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz Dr P C Kustma Dipl-Math M Uhl Sommersemester 009 Höhere Mathematik II für die Fachrichtuge Elektroigeieurwese Physik ud Geodäsie iklusive Komplexe Aalysis ud Itegraltrasformatioe Aufgabe 4 Sei A (a ij ) R Lösugsvorschläge zum Übugsblatt a) Die Leibizformel für Determiate besagt (A) σ S sg σ a σ() a σ() a σ() Die Elemete der S sid Also gilt (A) + ( ) ( ) ( ) ( ) ( ) ( ) 4 Bemerkug: Diese Methode zur Berechug der Determiete ist recht ieffiziet ud wird daher kaum geutzt b) Etwicklug ach der erste Zeile liefert (A) ( ( ) ( ) ) ( ( ) ) + 4 ( ( ) ) 4 c) Wir ersetze die Spalte durch die Summe der ud Spalte (vgl 5 (b)) ud etwickel die resultierede Matrix ach der Spalte: ( ( ) ) 4 0 Aufgabe Wir wisse dass sich die Determiate eier Matrix icht verädert we wir das Vielfache eier Spalte zu eier adere Spalte bzw das Vielfache eier Zeile zu eier adere Zeile addiere Auf diese Weise forme wir die Matrize u um ud verwede zudem de Etwicklugssatz [Die verwee Umformug steht jeweils i Klammer hiter dem Gleichheitszeiche] 0 0 (A) [S S +S ] 0 [Z 4 Z 4 Z ] 0 0 0

2 [Etw ach S ] [Z Z Z ] [Etw ach S ] ( ) ( ( ) ) 6 Bei der Matrix B gehe wir geauso vor: (B) [Z Z +Z 4 ] [S j S j S j4] [Etw ach Z ] 5 4 [Z Z +Z ] 5 4 [Etw ach Z ] 4 5 ( ) 5(8 + ) 45 Ud auch die Matrix C lässt sich so behadel: (C) [Z Z Z 4 ] 0 0 [S 4 S 4 S ] 0 0 α α [Etw ach Z ] 0 [S S S ] 0 α α 4 [Etw ach Z ] α 4 α 5 α 4 Ma sieht: C 0 α 5 Daher ist C geau für α C \ {5} regulär Aufgabe Wir verwede vollstädige Iduktio ach N mit IA: Für alle x x R gilt x x x x (x k x j ) IS: Sei N mit beliebig Es gelte y y y y y y y y y y y y j<k j<k (y k y j ) für alle y y y R (IV) Seie u x x x + R Zur Berechug vo x x x x x x x x x x x x x x x x x + x + x+ x +

3 multipliziere wir zuerst die vorletzte Spalte mit x ud ziehe diese vo der letzte ab Da multipliziere wir die vorvorletzte Spalte mit x ud ziehe diese vo der vorletzte ab usw Die letzte Umformug besteht dari das x -fache der erste Spalte vo der zweite Spalte abzuziehe Für k + ziehe wir also acheiader das x -fache der (k )-te Spalte vo der k-te Spalte ab Im Aschluss etwickel ach der erste Zeile: x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x + x + x + x x x x x x + x + x x + x x + x + x x + x x x (x x ) x (x x ) x x x (x x ) x (x x ) x x x (x x ) x (x x ) x + x x + (x + x ) x + (x + x ) Nu köe wir aus der erste Zeile dieser Matrix de Faktor (x x ) herausziehe aus der zweite Zeile (x x ) etc ud aus der letzte Zeile de Faktor (x + x ): x x x x (x x )(x x ) (x x )(x + x ) }{{} Q (x l x ) x x <l + x + x+ Diese Matrix ist wiederum eie Vadermode-Matrix Gemäß Iduktiosvoraussetzug mit y m x m+ (für m ) gilt Zusamme ergibt sich x x x x x x x + x + j<k x x x x x x x x x x x x x x x x x + x + x + x + Aufgabe 4 <l + (x k+ x j+ ) (x l x ) i<l + i<l + (x l x i ) (x l x i ) i<l + (x l x i ) a) Die Determiate ist eie lieare Abbildug vo C ach C Nei (außer für ) Es gilt (λa) λ (A) für jedes λ C [Verwede -mal (D)] b) Ist A regulär so gilt (A A A A A ) ( A) Ja de für eie reguläre Matrix A gilt ach dem Determiatemultiplikatiossatz ud der

4 Folgerug i 57 (A A A A A ) (A ) (A ) (A ) (A ) (A ) (A) (A) ((A)) (A) (A) ((A)) c) (A + B) A + B? Nei (außer für oder besoders ausgewählte Matrize A ud B etwa A 0) Zum Beispiel ist (I + I ) (I ) 4 I 4 I + I d) ( ( A)B ) ( A) B? Ja A ist ja ur eie Zahl (vgl Erläuterug im a)-teil) Aufgabe 5 Mit A (a a a ) bezeiche wir die Matrix des Gleichugssystems mit b die rechte Seite Die Cramersche Regel ist ur awedbar we A regulär ist; wege (A) [ Z Z +Z ] [Etw ach S ] 5 0 Z Z Z ist dies der Fall Nach der Cramersche Regel gilt da x (b a a ) (A) x (a b a ) (A) Wir erhalte also x 5 0 [Z Z +Z ] [Etw ach S ] x (a a b ) (A) Auch bei x ud x addiere wir jeweils die erste Zeile zur dritte ud etwickel da ach der zweite bzw dritte Spalte: x x Aufgabe 6 a) Wege σ π() σ(π()) σ(4) σ π() σ(π()) σ() 4 σ π() σ(π()) σ() σ π(4) σ(π(4)) σ() ist Ferer gilt σ π π σ

5 b) Um (σ π) zu bestimme vertausche wir die obere Zeile vo σ π mit der utere Zeile ud sortiere aschließed die Spalte so dass die obere Zeile wieder korrekt dasteht: (σ π) 4 4 Auf die gleiche Weise erhalte wir σ ( ) 4 4 ud woraus folgt π π σ 4 4 ( ) 4 4 c) Eie Permutatio vo { } welche zwei Elemete j k mit j < k vertauscht ud die restliche festlässt heißt Traspositio Diese bezeiche wir mit τ jk also τ jk ( j j j + k k k + j k j + k j k + Um σ als Hitereiaderausführug vo Traspositioe zu schreibe gehe wir schrittweise vor: Zuächst sorge wir durch Vertausche vo ud dafür dass die korrekt abgebil wird Dabei wird aber die falsch positioiert ( würde jetzt mit der vertauscht werde soll aber auf 4 gehe) also stellt ma im ächste Schritt die durch Vertausche vo mit 4 richtig Schließlich hat ma soebe 4 mit getauscht Da auch die korrekt abgebil wird ist ma fertig ud erhält als Edergebis σ τ 4 τ Diese Darstellug ist icht eideutig zb gilt auch σ τ 4 τ τ τ oder σ τ 4 τ 4 Da σ als Hitereiaderausführug eier gerade Azahl vo Traspositioe geschriebe werde ka ist sg(σ) ach Beispiel () i 56 Dies lässt sich atürlich auch ahad der Defiitio des Sigums eisehe: sg(σ) i<j σ(j) σ(i) j i Die Paare (i j) mit i j { 4} ud i < j laute Daher ergibt sich für obiges Produkt ( ) ( 4) ( ) ( 4) ( 4) ) sg(σ) σ(j) σ(i) j i i<j σ() σ() σ() σ() σ(4) σ() σ() σ() σ(4) σ() 4 σ(4) σ() 4 5

6 Aufgabe 7 Für x ud y 0 gilt 0 x y 4 0 (x y x) ( ) ( ) + ( ) + ( ) 0 [dieses Ergebis war zu erwarte weil stets x y sowohl orthogoal auf x als auch orthogoal auf y steht] Für de Wikel ϕ de die Vektore x ud y eischließe gilt cos ϕ (x y) ( ) 6 6 x y Hieraus folgt ϕ 5π 6 Der Flächeihalt des vo x ud y aufgespate Parallelogramms lautet x y ( ) + ( ) + ( )

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 12. Übungsblatt UNIVERSITÄT KARLSRUHE Istitut für Aalysis HDoz. Dr. P. C. Kustma Dipl.-Math. M. Uhl WS 8/9 Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge zum. Übugsblatt

Mehr

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt

Höhere Mathematik I für die Fachrichtungen Elektroingenieurwesen, Physik und Geodäsie Lösungsvorschläge zum 7. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE KIT Istitut für Aalysis Dr. A. Müller-Rettkowski Dr. T. Gauss WS 00/ Höhere Mathematik I für die Fachrichtuge Elektroigeieurwese, Physik ud Geodäsie Lösugsvorschläge

Mehr

Determinante und Resultante Azadeh Pasandi

Determinante und Resultante Azadeh Pasandi Determiate ud Resultate 07.01.2009 Azadeh Pasadi Defiitio ud Grudeigeschafte: sei U, V, W ud Vektor-Raum über Körper F ud beachte eie Abbildug f ( u,v ) vo kartesische Produkt: f: U x V W Diese Abbildug

Mehr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr

Analysis I Lösungsvorschläge zum 3. Übungsblatt Abgabe: Bis Donnerstag, den , um 11:30 Uhr Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Lars Machiek Dipl.-Math. Sebastia Schwarz WS 206/207 03..206 Aalysis I Lösugsvorschläge zum 3. Übugsblatt Abgabe:

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1

Aufgabe G 1.1. [Vollständige Induktion, Teleskopsumme] n k 3 = n N : k(k + 1) = 1 1 Istitut für Aalysis ud Algebra Mathematik I für Studierede der E-Techik Prof Dr Volker Bach WiSe 06/7 M Sc Birgit Komader M Sc Christoph Brauer Theme: Groe Übug - Lösuge Vollstädige Iduktio - Teleskopsumme

Mehr

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig.

1.3 Funktionen. Seien M und N Mengen. f : M N x M : 1 y N : y = f(x) nennt man Funktion oder Abbildung. Beachte: Zuordnung ist eindeutig. 1.3 Fuktioe Seie M ud N Mege f : M N x M : 1 y N : y fx et ma Fuktio oder Abbildug. Beachte: Zuordug ist eideutig. Bezeichuge: M : Defiitiosbereich N : Bildbereich Zielmege vo f Der Graph eier Fuktio:

Mehr

Höhere Mathematik I für die Fachrichtung Physik

Höhere Mathematik I für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Dipl.-Math. Sebastia Schwarz SS 5 7.9.5 Höhere Mathematik I für die Fachrichtug Physik Lösugsvorschläge zur Bachelor-Modulprüfug

Mehr

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es?

Universität Stuttgart Fachbereich Mathematik. 1 Lineare Abbildungen und Matrizen. 1.1 Um was geht es? Uiversität Stuttgart Fachbereich Mathematik Prof Dr C Hesse PD Dr P H Lesky Dipl Math D Zimmerma Msc J Köller FAQ 4 Höhere Mathematik 724 el, kyb, mecha, phys Lieare Abbilduge ud Matrize Um was geht es?

Mehr

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT

9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Algebra 2 Daiel Plauma Techische Uiversität Dortmud Sommersemester 2017 9. ENDLICH ERZEUGTE MODULN UND GANZHEIT Arbeitsblatt: Der Satz vo Cayley-Hamilto ud Aweduge Lese Sie de Text sorgfältig ud löse Sie

Mehr

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen

Übung zur Vorlesung Einführung in die Algebra Prof. Dr. J. H. Bruinier Stephan Ehlen Übug zur Vorlesug Eiführug i die Algebra Prof. Dr. J. H. Bruiier Stepha Ehle Sommersemester 2009 Lösugshiweise zu Übugsblatt 3 Aufgabe G3.1 Automorphisme vo Das ist im Prizip lieare Algebra: Sei f Aut(

Mehr

4 Konvergenz von Folgen

4 Konvergenz von Folgen 4 Kovergez vo Folge Defiitio 4.. Sei M eie Mege. Ist 0 Z ud für jedes Z mit 0 ei a M gegebe, so et ma die Abbildug { Z; 0 } M, a eie Folge i M. Abkürzed schreibt ma für eie solche Abbildug auch a ) 0 oder

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes.

Mathematik III. Vorlesung 81. Eigenschaften des Dachprodukts. Die folgende Aussage beschreibt die universelle Eigenschaft des Dachproduktes. Prof. Dr. H. Breer Osabrück S 2010/2011 Mathematik III Vorlesug 81 Eigeschafte des Dachprodukts Die folgede Aussage beschreibt die uiverselle Eigeschaft des Dachproduktes. Satz 81.1. Es sei K ei Körper,

Mehr

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD

Prüfungsaufgaben der Abschlussprüfung an Realschulen in Bayern! mit ausführlichen Musterlösungen. und Querverweise auf Theoriedateien der Mathe-CD Vektor-Geometrie Koordiategeometrie Prüfugsaufgabe uter Verwedug vo Abbildugsgleichuge Prüfugsaufgabe der Abschlussprüfug a Realschule i Bayer! mit ausführliche Musterlösuge ud Querverweise auf Theoriedateie

Mehr

1 Das Skalarprodukt und das Kreuzprodukt

1 Das Skalarprodukt und das Kreuzprodukt Das Skalarprodukt ud das Kreuzprodukt Wir betrachte zu x = de Ausdruck y t x : = x Grud: Die rechte Seite der Gleichug ist: y t x = (y tx +... + (y ty { t x } y +... + x y x + x y (x y +... + x y x x t

Mehr

Analysis I für M, LaG/M, Ph 4.Übungsblatt

Analysis I für M, LaG/M, Ph 4.Übungsblatt Aalysis I für M, LaG/M, Ph 4.Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr. Robert Haller-Ditelma 05.05.200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergez vo Folge) Beweise Sie:

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach!

Wir weisen die Gültigkeit der 4Axiome der sigma-algebra für die Potenzmenge einer endlichen Menge A nach! Lösug zu Übug 4 Prof. Dr. B.Grabowski E-Post: grabowski@htw-saarlad.de Zu Aufgabe ) Wir weise die Gültigkeit der 4Axiome der sigma-algebra für die Potezmege eier edliche Mege A ach! ) Die leere Mege ud

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 04..05 Höhere Mathematik für die Fachrichtug Physik Lösugsvorschläge zum 6. Übugsblatt Aufgabe

Mehr

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann

Lösungsskizzen Mathematik für Informatiker 6. Aufl. Kapitel 4 Peter Hartmann Lösugssizze Mathemati für Iformatier 6. Aufl. Kapitel 4 Peter Hartma Verstädisfrage 1. We Sie die Berechug des Biomialoeffiziete mit Hilfe vo Satz 4.5 i eiem Programm durchführe wolle stoße Sie schell

Mehr

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w

Übungsaufgaben zu Analysis 1 Lösungen von Blatt XII vom sin(nx) n sin(x). sin(ax) a sin(x) z = re iϕ = r(cos(ϕ) + i sin(ϕ)) z n = w Prof. Dr. Moritz Kaßma Fakultät für Mathematik Witersemester 04/05 Uiversität Bielefeld Übugsaufgabe zu Aalysis Lösuge vo Blatt XII vom 5.0.5 Aufgabe XII. 3 Pukte) Beweise Sie, dass für alle R ud N die

Mehr

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik

Proseminar: Mathematisches Problemlösen. Ungleichungen 2. Pierre Schmidt. Vortragstermin: 19. Juni Fakultät für Mathematik Prosemiar: Mathematisches Problemlöse Ugleichuge Pierre Schmidt Vortragstermi: 19. Jui 015 Übugsleiteri: Dr. Natalia Griberg Fakultät für Mathematik Karlsruher Istitut für Techologie Ihaltsverzeichis 1

Mehr

4. Der Weierstraßsche Approximationssatz

4. Der Weierstraßsche Approximationssatz H.J. Oberle Approximatio WS 213/14 4. Der Weierstraßsche Approximatiossatz Wir gebe i diesem Abschitt eie ostrutive Beweis des Weierstraßsche Approximatiossatzes, der mit de so geate Berstei-Polyome (Felix

Mehr

2 Konvergenz von Folgen

2 Konvergenz von Folgen Kovergez vo Folge. Eifache Eigeschafte Defiitio.. Eie Abbildug A : N C heißt Folge. Ma schreibt a statt A) für N ud a ) oder a ) statt A. We a R N, so heißt a ) reelle Folge. Defiitio.. Seie a ) eie Folge

Mehr

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares

Kleines Matrix-ABC. Fachgebiet Regelungstechnik Leiter: Prof. Dr.-Ing. Johann Reger. 1 Elementares 4 6 Fachgebiet Regelugstechik Leiter: Prof. Dr.-Ig. Joha Reger Kleies Matrix-ABC 1 Eleetares Eie ( )-Matrix ist eie rechteckige Aordug vo reelle oder koplexe Zahle a ij (auch Skalare geat) ud besteht aus

Mehr

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx

Übungen zur Infinitesimalrechnung 2, H.-C. Im Hof 19. März Blatt 4. Abgabe: 26. März 2010, Nachmittag. e x2 dx + e x2 dx = 2 e x2 dx Übuge zur Ifiitesimalrechug, H.-C. Im Hof 9. März Blatt 4 Abgabe: 6. März, Nachmittag Aufgabe. Zeige e x dx π. Beweis. Wir bemerke als erstes, dass e x dx e x dx + e x dx e x dx formal sieht ma dies per

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Kapitel 6 Lieare Abbilduge ud Matrize I diese Kapitel werde wir lieare Abbilduge ittels sogeater Matrize beschreibe. Das Matrizekalkül wurde i Wesetliche vo C.F. Gauß, J.J. Sylvester ud A. Cayley i 19.

Mehr

... a ik) i=1...m, k=1...n A = = ( a mn

... a ik) i=1...m, k=1...n A = = ( a mn Zurück Stad: 4..6 Reche mit Matrize I der Mathematik bezeichet ma mit Matrix im Allgemeie ei rechteckiges Zahleschema. I der allgemeie Darstellug habe die Zahle zwei Idizes, de erste für die Zeileummer,

Mehr

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel

Reihen Arithmetische Reihen Geometrische Reihen. Datei Nr (Neu bearbeitet und erweitert) Juni Friedrich W. Buckel Zahlefolge Teil 3 Reihe Reihe Arithmetische Reihe Geometrische Reihe Datei Nr. 4003 (Neu bearbeitet ud erweitert) Jui 005 Friedrich W. Buckel Iteretbibliothek für Schulmathematik Ihalt Defiitio eier Reihe

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

= 1 für alle n 1. = f hinzu, erhält man das Gleichungssystem

= 1 für alle n 1. = f hinzu, erhält man das Gleichungssystem Formel o Biet (Beweis mit Liearer Algebra) Die Folge der Fiboacci-Zahle ( ) wird rekursi deiiert durch + + mit, ür alle Fügt ma zu dieser Formel die Gleichug hizu, erhält ma das Gleichugssstem + +, das

Mehr

Elemente der Mathematik - Winter 2016/2017

Elemente der Mathematik - Winter 2016/2017 4 Elemete der Mathemati - Witer 201/2017 Prof. Dr. Peter Koepe, Regula Krapf Übugsblatt 8 Aufgabe 33 ( Pute). Beweise Sie folgede Idetitäte durch vollstädige Idutio: (a) 0 2 (1)(21), N. (b) 2 (1 1 ) 1

Mehr

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz Vorlesug 4 6 + 9 April Bei w,, w m, v R ; (w,, w m =: A R (,m ud ieres Produkt = euklidisches Produkt schrieb sich das Approximatiosproblem so: Fide w = Wiederholug: m ζ k w k mit w v w v w spa{w,, w m

Mehr

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya

Grenzwerte von Folgen. 1-E Ma 1 Lubov Vassilevskaya Grezwerte vo Folge -E Ma Lubov Vassilevskaya Berechug vo Grezwerte: Aufgabe Die Berechug vo Grezwerte ka oft ziemlich umstädlich sei. Die etwickelte Regel vereifache oft solche Berechuge. Diese Regel beruhe

Mehr

3. Taylorformel und Taylorreihen

3. Taylorformel und Taylorreihen Prof Dr Siegfried Echterhoff Aalysis Vorlesug SS 9 3 Taylorformel ud Taylorreihe Sei I R ei Itervall ud sei f : I R eie Fuktio Ziel: Wolle utersuche, wa sich die Fuktio f i eier Umgebug vo eiem Pukt I

Mehr

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1

D-MATH, D-PHYS, D-CHAB Analysis I HS 2017 Prof. Manfred Einsiedler. Übungsblatt 8. b n := 1 n. a k. k=1 D-MATH, D-PHYS, D-CHAB Aalysis I HS 2017 Prof. Mafred Eisiedler Übugsblatt 8 1. Bereche Sie de Grezwert lim a für die Folge (a ) gegebe durch a) a = (2 1/ ) 10 (1 + 1/ 2 ) 10 1 1/ 2 1/, b) a = + 1, c)

Mehr

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben.

Ungleichungen werden mit Äquivalenzumformungen gelöst. Hierzu werden die sogenannten Monotoniegesetze angegeben. Floria Häusler Ugleichuge. Grudsätzliches I folgede ist ur vo reelle Zahle die Rede, ohe daß dies im eizele betot wird. Es seie A, B, C,... Terme reeller Zahle, u. U. auch mit Variable. Für Ugleichuge

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004) Aufgabe 7. Ubeschräktes

Mehr

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5

Indizieren Sie die folgenden Summen und Produkte gemäß der Vorgabe um und schreiben Sie sie einmal explizit aus: 5 FU Berli: WiSe 13-14 (Aalysis 1 - Lehr.) Übugsaufgabe Zettel 9 Aufgabe 37 Idiziere Sie die folgede Summe ud Produte gemäß der Vorgabe um ud schreibe Sie sie eimal explizit aus: 5 (a) + 1) 0( Lösug. Die

Mehr

2 Vollständige Induktion

2 Vollständige Induktion 8 I. Zahle, Kovergez ud Stetigkeit Vollstädige Iduktio Aufgabe: 1. Bereche Sie 1+3, 1+3+5 ud 1+3+5+7, leite Sie eie allgemeie Formel für 1+3+ +( 3)+( 1) her ud versuche Sie, diese zu beweise.. Eizu5% ZiseproJahragelegtes

Mehr

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik

Höhere Mathematik I (Analysis) für die Fachrichtung Informatik Karlsruher Istitut für Techologie (KIT) Istitut für Aalysis Priv.-Doz. Dr. Gerd Herzog M. Sc. Adreas Hirsch WS 204/5 24.0.204 Höhere Mathematik I (Aalysis) für die Fachrichtug Iformatik Lösugsvorschlag

Mehr

5.7. Aufgaben zu Folgen

5.7. Aufgaben zu Folgen 5.7. Aufgabe zu Folge Aufgabe : Lieares ud beschräktes Wachstum Aus eiem Quadrat mit der Seiteläge dm gehe auf die rechts agedeutete Weise eue Figure hervor. Die im -te Schritt agefügte Quadrate sid jeweils

Mehr

Höhere Mathematik für die Fachrichtung Physik

Höhere Mathematik für die Fachrichtung Physik Karlsruher Istitut für Techologie Istitut für Aalysis Dr. Christoph Schmoeger Michael Hott, M. Sc. WS 05/06 3..05 Höhere Mathemati für die Fachrichtug Physi Lösugsvorschläge zum 3. Übugsblatt Vorbemerug

Mehr

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1

mit (a 1 ) (0,0,,0). Dann ist die Menge,,a n,a 2 eine endliche Menge und besitzt ein grösstes Element ggt(a 1 Kapitel 1: Reste, Teiler, Vielfache Defiitio Es sei a 0. Die Zahl b 0 ist ei Teiler vo a, we es ei u 0 gibt, sodass ub= a. Ist b ei Teiler vo a, so ist a ei Vielfaches vo b. Bezeichug b a für b ist Teiler

Mehr

Einheitswurzeln und Polynome

Einheitswurzeln und Polynome Eiheitswurzel ud Polyome Axel Schüler, Mathematisches Istitut, Uiv. Leipzig mailto:schueler@mathematik.ui-leipzig.de Grüheide, 1.3.2000 Kojugatio ud Betrag Spiegelt ma eie komplexe Zahl z = a+b i a der

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr

Kapitel 2. Zahlenbereiche

Kapitel 2. Zahlenbereiche Kapitel 2. Zahlebereiche 2.1. Natürliche Zahle Die Mege N {1, 2, 3,... } der atürliche Zahle wird formal durch die Peao Axiome defiiert: (A1) 1 N (A2) N ( + 1) N (A3) m ( + 1) (m + 1) (A4) N ( + 1) 1 (A5)

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

Analysis I für M, LaG/M, Ph 8.Übungsblatt

Analysis I für M, LaG/M, Ph 8.Übungsblatt Aalysis I für M, LaG/M, Ph 8Übugsblatt Fachbereich Mathematik Sommersemester 200 Dr Robert Haller-Ditelma 0206200 David Bücher Christia Bradeburg Gruppeübug Aufgabe G (Kovergezkriterie/Kovergezradie) (a)

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

7.2 Grundlagen der Wahrscheinlichkeitsrechnung

7.2 Grundlagen der Wahrscheinlichkeitsrechnung 7.2 Grudlage der Wahrscheilichkeitsrechug Ei Ereigis heißt i Bezug auf eie Satz vo Bediguge zufällig, we es bei der Realisierug dieses Satzes eitrete ka, aber icht ubedigt eitrete muss. Def. 7.2.: Ei Experimet

Mehr

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $

$Id: reihen.tex,v /06/14 13:59:06 hk Exp $ Mathematik für Iformatiker B, SS 202 Doerstag 4.6 $Id: reihe.tex,v.9 202/06/4 3:59:06 hk Exp $ 7 Reihe 7.4 Kovergezkriterie für Reihe 7.4. Alterierede Reihe Wir hatte gesehe das die harmoische Reihe divergiert,

Mehr

Logik. Wahrheitstafeln - für verschiedene Belegungen der logischen Variable wird der Wahrheitswert logischer Ausdrücke angegeben

Logik. Wahrheitstafeln - für verschiedene Belegungen der logischen Variable wird der Wahrheitswert logischer Ausdrücke angegeben . Eiführug Logik Defiitio: Uter eier ussage versteht ma die gedakliche Widerspiegelug eies Sachverhaltes der objektive Realität, bei dem eideutig etschiede werde ka, ob er wahr oder falsch ist. Operatioe

Mehr

c B Analytische Geometrie

c B Analytische Geometrie KITL 9 alytische Geometrie Gerade arameterdarstellug eier Gerade ie Gerade g ist bestimmt durch eie Richtug, gegebe durch eie Vektor c, c 0, ud eie ukt, der auf der Gerade liegt Ma et de ufpukt i ukt X

Mehr

4.6 Berechnung von Eigenwerten

4.6 Berechnung von Eigenwerten 4.6 Berechug vo Eigewerte 4.6 Berechug vo Eigewerte I diesem Abschitt befasse wir us mit dem Eigewertproblem: zu gegebeer Matrix A R sid die Eigewerte (ud gegebeefalls Eigevektore) gesucht. Wir erier a

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37

Reelle Folgen. Definition. Eine reelle Folge ist eine Abbildung f : N R. liefert ( 7 9, 37 Reelle Folge Der Begriff der Folge ist ei grudlegeder Baustei der Aalysis, weil damit u.a. Grezprozesse defiiert werde köe. Er beschreibt de Sachverhalt eier Abfolge vo Elemete, wobei die Reihefolge bzw.

Mehr

5. Übungsblatt Aufgaben mit Lösungen

5. Übungsblatt Aufgaben mit Lösungen 5. Übugsblatt Aufgabe mit Lösuge Aufgabe 2: Bestimme Sie alle Häufugspukte der komplexe) Folge mit de Glieder a) a = ) 5 + 7 + 2 ) b) b = i Lösug 2: a) Die Folge a ) zerfällt vollstädig i die beide Teilfolge

Mehr

Lineare Algebra I. Def. Äquivalenzrelation: Eine Relation mit den Eigenschaften: Reflexivität, Symmetrie, Transitivität

Lineare Algebra I. Def. Äquivalenzrelation: Eine Relation mit den Eigenschaften: Reflexivität, Symmetrie, Transitivität www.schlurcher.de.vu Eileitug Kurze Megelehre (vgl. Aalysis) Lieare Algebra I Def. Relatio: Eie Relatio ist eie Teilmege vo A x A. Mögliche Eigeschafte Def. Äquivalezrelatio: Eie Relatio mit de Eigeschafte:

Mehr

1 Funktionen und Flächen

1 Funktionen und Flächen Fuktioe ud Fläche. Fläche Defiitio: Die Ebee R ist defiiert als Mege aller geordete Paare vo reelle Zahle: R = {(,, R} Der erste Eitrag heißt da auch Koordiate ud der zweite Koordiate. Für zwei Pukte (,,

Mehr

2 Die natürlichen, ganzen und rationalen Zahlen

2 Die natürlichen, ganzen und rationalen Zahlen 2 Die atürliche, gaze ud ratioale Zahle 21 Aufgabe 21 Beweise Sie die folgede Aussage mittels vollstädiger Iduktio: (a) Für alle N gilt: Elemete köe auf 1 2 =! verschiedee Arte ageordet werde (b) Die Summe

Mehr

Sinus- + Cosinus-Funktion und komplexe Wurzel

Sinus- + Cosinus-Funktion und komplexe Wurzel Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 6 Polarkoordiate Sius- + Cosius-Fuktio ud komplexe Wurzel 6.1 Im folgede seik 1 1 := {z C z = 1} der Kreis i C mit Radius 1 ud Mittelpukt 0. Wir defiiere

Mehr

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS

ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS ELEMENTE DER ZAHLENTHEORIE UND AUFBAU DES ZAHLENSYSTEMS vo Rolf Waldi 1 Kapitel I. Elemetare Zahletheorie 1 Grudlegede Regel ud Prizipie Es wird vorausgesetzt, daß der Leser mit gaze Zahle reche ka ud

Mehr

1 Vollständige Induktion

1 Vollständige Induktion 1 Vollstädige Idutio 1.1 Idutiosbeweise Das Beweisprizip der vollstädige Idutio ist eies der wichtigste Hilfsmittel der Mathemati icht ur der Aalysis. Es fidet Verwedug bei pratische alle Aussage, die

Mehr

Normierte Vektorräume

Normierte Vektorräume Normierte Vektorräume Wir betrachte im Folgede ur Vektorräume über R 1. Sei also V ei Vektorraum. Wir möchte Metrike auf V betrachte, die im folgede Sie mit der Vektorraumstruktur verträglich sid:, y,

Mehr

n=0 f(x) = log(1 + x) = n=1

n=0 f(x) = log(1 + x) = n=1 Potez - Reihe Machmal ist es praktisch eie Fuktio f() mir Hilfe ihrer Potezreihe auszudrücke. Eie Potezreihe um de Etwicklugspukt 0 sieht im Allgemeie so aus a ( 0 ) Fuktioe, für die eie Potezreihe eistiert,

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Tests statistischer Hypothesen

Tests statistischer Hypothesen KAPITEL 0 Tests statistischer Hypothese I der Statistik muss ma oft Hypothese teste, z.b. muss ma ahad eier Stichprobe etscheide, ob ei ubekater Parameter eie vorgegebee Wert aimmt. Zuerst betrachte wir

Mehr

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015

Lösungen zum Ferienkurs Analysis 1, Vorlesung 2 Wintersemester 2014/2015 Lösuge zum Feriekurs Aalysis, Vorlesug Witersemester 04/05 Fabia Hafer, Thomas Baldauf I Richtig oder Falsch Sid folgede Aussage richtig oder falsch? Korrigiere bzw. ergäze Sie falsche Aussage. Gebe Sie

Mehr

Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung

Repetitorium Analysis 1 für Physiker WS08/09 Montag - Folgen und Reihen Musterlösung Repetitorium Aalysis für Physier WS08/09 Motag - Folge ud Reihe Musterlösug. Verstädisfrage Thomas Blasi a Sid folgede Aussage richtig oder falsch: Jede overgete Folge hat eie Grezwert. Richtig. i Der

Mehr

Aussagenlogik. Aussagenlogik

Aussagenlogik. Aussagenlogik I der mathematische Logik gibt es geau zwei Wahrheitswerte ämlich ur wahr oder falsch. Ei Drittes gibt es icht (Tertium o datur!). Zu eier Aussage a lässt sich die Negatio a (die Vereiug, sprich: "icht

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathematik PROF. DR.DR. JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathematik für Iformatiker II (Sommersemester 004 Lösuge zu Aufgabeblatt 7

Mehr

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8

Übungen zur Analysis 1 für Informatiker und Statistiker. Lösung zu Blatt 8 Mathematisches Istitut der Uiversität Müche Prof Dr Peter Otte WiSe 203/4 Lösug 8 032203 Übuge zur Aalysis für Iformatiker ud Statistiker Lösug zu Blatt 8 Aufgabe 8 [8 Pukte] (a) Für alle N sei = (+) Wir

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Lösungen zum Übungsblatt 2

Lösungen zum Übungsblatt 2 Fakultät für Luft- ud Raumfahrttechik Istitut für Mathematik ud Recherawedug Partielle Differetialgleichuge II (ME), Prof. Dr. J. Gwier Übug: N. Ovcharova, K. Dvorsky 6. Jauar bis 9. Februar 011 Lösuge

Mehr

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet.

Algebra. (R1) Die Summe zweier Endomorphismen ist punktweise definiert, daher ist es leicht einzusehen, daß End(A) eine abelsche Gruppe bildet. Fachbereich Mathemati Prof. Dr. Nils Scheithauer Walter Reußwig TECHNISCHE UNIVERSITÄT DARMSTADT WS 08/09 14. Otober 2008 Algebra 1. Übug mit Lösugshiweise Aufgabe 1 Es seie R,S Rige ud ϕ : R S ei Righomomorphismus.

Mehr

4. Übungsblatt Aufgaben mit Lösungen

4. Übungsblatt Aufgaben mit Lösungen 4. Übugsblatt Aufgabe mit Lösuge Aufgabe 6: Bestimme Sie alle Häufugspukte der Folge mit de Folgeglieder a) a 2 + cosπ), b) b i) i j, ud gebe Sie jeweils eie Teilfolge a, die gege diese Häufugspukte kovergiert.

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN TECHNISCHE UNIVERSITÄT MÜNCHEN Zetrum Mathemati PROF DRDR JÜRGEN RICHTER-GEBERT, VANESSA KRUMMECK, MICHAEL PRÄHOFER Höhere Mathemati für Iformatier I Witersemester 2003/2004 Aufgabeblatt 8 12 Dezember

Mehr

Mathematische Vorgehensweise

Mathematische Vorgehensweise Kapitel 2 Mathematische Vorgehesweise Um eue Ergebisse zu erziele, ist es häufig otwedig, Aussage präzise zu formuliere ud zu beweise. Daher werde i diesem Kapitel die mathematische Begriffsbilduge ud

Mehr

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II Strukturelle Modelle i der Bildverarbeitug Markovsche Kette II D. Schlesiger TUD/INF/KI/IS Statioäre Verteilug Verborgee Markovsche Kette (HMM) Erkeug stochastisches Automate D. Schlesiger SMBV: Markovsche

Mehr

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen

Dirichlet-Reihen II. 1 Konvergenzeigenschaften von Dirichlet-Reihen Vortrag zum Semiar zur Fuktioetheorie, 7.2.2007 Holger Witermayr I diesem Vortrag werde wir Kovergezeigeschafte vo Dirichlet-Reihe erarbeite ud eie Vergleich zu Potezreihe ziehe. Ei weiteres Ziel dieses

Mehr

AT AB., so bezeichnet man dies als innere Teilung von

AT AB., so bezeichnet man dies als innere Teilung von Teilverhältisse Aus der Geometrie der Dreiecke ket ma die Aussage, dass der Schwerpukt T eies Dreiecks die Seitehalbierede im Verhältis : teilt. Für die Strecke AT ud TM gilt gemäß der Abbildug AT : TM

Mehr

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009

Lösungen zu Übungsblatt 2 Signale, Codes und Chiffren II Sommersemester 2009 Übung vom 26. Mai 2009 Uiversität Karlsruhe TH Istitut für Kryptographie ud Sicherheit Willi Geiselma Vorlesug Marius Hillebrad Übug Lösuge zu Übugsblatt 2 Sigale, Codes ud Chiffre II Sommersemester 2009 Übug vom 26. Mai 2009

Mehr

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen

Beweistechniken Vollständige Induktion - Beispiele, Erweiterungen und Übungen Beweistechike Vollstädige Iduktio - Beispiele, Erweiteruge ud Übuge Alex Chmelitzki 15. März 005 1 Starke Iduktio Eie etwas abgewadelte Form der Iduktio ist die sogeate starke Iduktio. Bei dieser Spielart

Mehr

Übungen zur Funktionentheorie

Übungen zur Funktionentheorie Mathematisches Istitut SS 2009 Uiversität Müche Prof. Dr. M. Schotteloher C. Paleai M. Schwigeheuer A. Stadelmaier Übuge zur Fuktioetheorie Übugsblatt. (a) Sei α: C C x y x + iy y x da ist α offesichtlich

Mehr

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S

Statistik mit Excel 2013. Themen-Special. Peter Wies. 1. Ausgabe, Februar 2014 W-EX2013S Statistik mit Excel 2013 Peter Wies Theme-Special 1. Ausgabe, Februar 2014 W-EX2013S 3 Statistik mit Excel 2013 - Theme-Special 3 Statistische Maßzahle I diesem Kapitel erfahre Sie wie Sie Date klassifiziere

Mehr

Variationstheoreme und ihre Anwendungen

Variationstheoreme und ihre Anwendungen Variatiostheoreme ud ihre Aweduge Berhard Wallmeyer 14.12.2011 Westfälische Wilhelms-Uiversität Müster BSc Physik Semiar zur Theorie der Atome, Kere ud kodesierte Materie Ihaltsverzeichis 1 Eiführug 3

Mehr

Einige wichtige Ungleichungen

Einige wichtige Ungleichungen Eiige wichtige Ugleichuge Has-Gert Gräbe, Leipzig http://www.iformatik.ui-leipzig.de/~graebe 1. Februar 1997 Ziel dieser kurze Note ist es, eiige wichtige Ugleichuge, die i verschiedee Olympiadeaufgabe

Mehr

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug

Arbeitsblatt 22: Rekursive Reihen Alkoholentzug Arbeitsblatt 22: Reursive Reihe Aloholetzug Erläuteruge ud Aufgabe Zeicheerlärug: [ ] - Drüce die etsprechede Taste des Graphirechers! [ ] S - Drüce erst die Taste [SHIFT] ud da die etsprechede Taste!

Mehr

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf.

Komplexe Zahlen. Gauss (1831) stellte eine strenge Theorie zur Begründung der komplexen Zahlen auf. Komplexe Zahle Problem: x 2 + 1 = 0 ist i R icht lösbar. Zur Geschichte: Cardao 1501-1576: Auflösug quadratischer ud kubischer Gleichuge. Empfehlug: Reche z.b. mit 1 wie mit gewöhliche Zahle. Descartes

Mehr

5.3 Wachstum von Folgen

5.3 Wachstum von Folgen 53 Wachstum vo Folge I diesem Abschitt betrachte wir (rekursiv oder aders defiierte) Folge {a } = ud wolle vergleiche, wie schell sie awachse, we wächst Wir orietiere us dabei a W Hochstättler: Algorithmische

Mehr

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung

6. Übungsblatt Aufgaben mit Lösungen + Selbsttest-Auflösung 6. Übugsblatt Aufgabe mit Lösuge + Selbsttest-Auflösug Aufgabe 6: Utersuche Sie die Folge, dere Glieder ute für N agegebe sid, auf Beschräktheit, Mootoie ud Kovergez bzw. Beschräktheit, Mootoie ud Kovergez

Mehr

Aufgrund der Körperaxiome ist jedoch

Aufgrund der Körperaxiome ist jedoch Hiweise: Der Doppelstrich // steht für eie Kommetarzeile. Tipp- ud Rechtschreibfehler köe trotz mehrfacher Kotrolle icht hudertprozetig vermiede werde. Die selbst erstellte Lösugsasätze orietiere sich

Mehr

1.2. Taylor-Reihen und endliche Taylorpolynome

1.2. Taylor-Reihen und endliche Taylorpolynome 1.. aylor-reihe ud edliche aylorpolyome 1..1 aylor-reihe Wir köe eie Fuktio f() i eier Umgebug eies Puktes o gut durch ihre agete i o: t o () = f(o) + f (o) (-o) aäher: Wir sehe: Je weiter wir vo o weg

Mehr

Übungsblatt 8: Gruppen und Symmetrien

Übungsblatt 8: Gruppen und Symmetrien Übugsblatt 8: Gruppe ud Symmetrie 1. SYMMETRISCHE UND ALTERNIERENDE GRUPPEN 1.1. Es gilt S = (1,2),(2,3),...,( 1,). Ebeso gilt S = (1,2),(1,3),...,(1,). Lösugshiweise: Der erste Teil steht im Skript. Der

Mehr

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion

8. Die Exponentialfunktion und die trigonometrischen Funktionen. 8.1 Definition der Exponentialfunktion 8. Die Expoetialfuktio ud die trigoometrische Fuktioe 8. Defiitio der Expoetialfuktio Fudametallemma: Für jede Folge w mit dem Grezwert w gilt: w lim + = k = 0 k w. k! Defiitio der Expoetialfuktio : k

Mehr

Beispiellösungen zu Blatt 105

Beispiellösungen zu Blatt 105 µ κ Mathematisches Istitut Georg-August-Uiversität Göttige Aufgabe 1 Beispiellösuge zu Blatt 105 Alva liebt Advetskaleder. Aber sie hat keie Lust, die Türe vo 1 bis i der ormale Reihefolge zu öffe. Daher

Mehr

r heißt Nullvektor, wenn bzw. r heißt Einsvektor, wenn

r heißt Nullvektor, wenn bzw. r heißt Einsvektor, wenn 2 SPEZIELLE MATRIZEN 2.1 NULLMATRIZEN UND EINSMATRIZEN Defiitioe: R heißt Nullmatrix ud m r heißt Nullvektor, we m1 0 1,..., ; 1,..., bzw. r 0 i 1,..., m r i m j Für R bzw. r schreibt ma 0 0 O 0 0 bzw.

Mehr

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2

D-MATH Topologie FS 15 Theo Bühler. Musterlösung 2 D-MATH Topologie FS 15 Theo Bühler Musterlösug 2 1. a) Per Defiitio ist A = {x : x berührt A}. I der Vorlesug wurde die Formel (X A) = ( A ) c gezeigt, also A = ( X A ) c. Daher ist A = A A = A (A ) c

Mehr