12 Wahrheitsbäume zur Beurteilung der logischen Wahrheit von Sätzen der Sprache AL

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "12 Wahrheitsbäume zur Beurteilung der logischen Wahrheit von Sätzen der Sprache AL"

Transkript

1 12 Wahrheitsbäume zur Beurteilung der logischen Wahrheit von Sätzen der Sprache L Eine zweite Methode Das Wahrheitsbaumverfahren Dieses Verfahren beruht auf der Methode des indirekten Beweises. Wahrheitsbäume (L) 1 Indirekter Beweis Wenn man zeigen will, dass eine bestimmte ussage wahr ist, kann man auch so vorgehen: Man leitet aus der nnahme, dass falsch ist, einen Widerspruch ab. Denn wenn aus der Falschheit von ein Widerspruch folgt, dann muss wahr sein. Wahrheitsbäume (L) 2

2 Beispiel Betrachten wir den Satz von L: (1 ) p (q r p) nnahme Dieser Satz ist nicht logisch wahr. D.h. es gibt eine Bewertung V, bzgl. deren dieser Satz falsch bzw. der Satz (p (q r p)) wahr ist. Wahrheitsbäume (L) 3 Wenn ' (p (q r p))' wahr ist bzgl. V, dann müssen aber auch p und (q r p) wahr sein bzgl. V. Und wenn wahr ist bzgl. V, dann müssen auch (4) q und (r p) wahr sein bzgl. V. Wahrheitsbäume (L) 4

3 Und wenn ' (r p)' wahr ist bzgl. V, dann müssen auch (6) r und (7) p wahr sein bzgl. V. Mit anderen Worten: Wenn wahr ist bzgl. einer Bewertung V, dann müssen bzgl. dieser Bewertung sowohl 'p' als auch ' p' wahr sein. Dies ist aber ein Widerspruch. lso kann es eine solche Bewertung nicht geben. lso ist der Satz 'p (q r p)' logisch wahr. Wahrheitsbäume (L) 5 Schematische Zusammenfassung (1*) 1. (p (q r p)) 2. p 3. (q r p) 4. q 5. (r p) 6. r 7. p Wahrheitsbäume (L) 6

4 Zweites Beispiel (13) (p q) ((q r) (p r)). nnahme (13) ist nicht logisch wahr. D.h., es gibt eine Bewertung V, bzgl. deren dieser Satz falsch ist, bzgl. deren also der Satz (14) ((p q) ((q r) (p r))) wahr ist. Wahrheitsbäume (L) 7 (13*) 1. ((p q) ((q r) (p r))) 2. p q 3. ((q r) (p r)) 4. q r 5. (p r) 6. p 7. r 8. p 9. q 10. q 11. r (4) Wahrheitsbäume (L) 8

5 Fazit Dass alle Äste des Wahrheitsbaums (13*) mit einem geschlossen werden können, zeigt, dass sich in allen möglichen Fällen aus der nnahme, dass der Satz (13) nicht logisch wahr ist, ein Widerspruch ergibt. Und damit ist gezeigt, dass dieser Satz entgegen dieser nnahme doch logisch wahr ist. Wahrheitsbäume (L) 9 llgemein Wenn im Wahrheitsbaum der Negation eines Satzes von L alle Äste mit einem geschlossen werden können, da in jedem dieser Äste ein Satz von L sowohl in negierter wie in nicht negierter Form vorkommt, dann ist logisch wahr. Wahrheitsbäume (L) 10

6 nmerkung Bisher hatten wir das Wahrheitsbaumverfahren als eine vereinfachte Methode eingeführt, indirekte Beweise zu notieren, mit deren Hilfe unter Bezugnahme auf die Bestimmungen der Definition 10.3 gezeigt werden soll, dass aus der nnahme, ein bestimmter Satz der Sprache L sei nicht logisch wahr, ein Widerspruch folgt. Wahrheitsbäume (L) 11 Man kann dieses Verfahren jedoch auch als ein rein syntaktisches Verfahren (einen Kalkül) charakterisieren, in dem nach einem festen Satz von Regeln, die nur auf die syntaktischen Eigenschaften von Sätzen Bezug nehmen, Sätze in baumartigen Strukturen an andere Sätze angehängt werden dürfen. Tatsächlich reichen zur Entwicklung von Wahrheitsbäumen nämlich die folgenden neun Regeln völlig aus. Wahrheitsbäume (L) 12

7 (DN) (S) B B (K) B (B) B B B B () B B Wahrheitsbäume (L) 13 (NK) ( B) (N) ( B) B B (N) ( B) (NB) ( B) B B B Wahrheitsbäume (L) 14

8 Dass diese neun Regeln ausreichen, bedeutet, dass folgendes gilt: Satz 13.1 Ein Satz der Sprache L ist logisch wahr, wenn jeder st eines Wahrheitsbaums der Negation dieses Satzes, der nur mit Hilfe der zuvor angegebenen Regeln entwickelt wurde, mit einem geschlossen werden kann, da in ihm ein Satz von L sowohl in negierter wie in nicht negierter Form vorkommt. Wahrheitsbäume (L) 15 Ist '( p q) q q p' logisch wahr? 1. (( p q) q q p) 2. ( p q) q 3. (q p) 4. p q 5. q 6. q 7. p 8. p 9. q (4) 10. p (7) Wahrheitsbäume (L) 16

9 Was folgt daraus, dass im Wahrheitsbaum dieses Satzes nicht alle Äste geschlossen werden können? Es folgt, dass dieser Satz nicht logisch wahr ist. Denn Wenn wir bei der Entwicklung eines Wahrheitsbaums, bei der wir nur die oben angeführten Regeln verwendet haben, zum Ende kommen, ohne alle Äste abschließen zu können, dann dürfen wir aus dieser Tatsache schließen, dass der entsprechende Satz nicht logisch wahr ist Wahrheitsbäume (L) 17 Wir können den Satz 13.1 daher so verschärfen: Satz 13.1* Ein Satz der Sprache L ist genau dann logisch wahr, wenn jeder st eines Wahrheitsbaums der Negation dieses Satzes, der nur mit Hilfe der zuvor angegebenen Regeln entwickelt wurde, mit einem geschlossen werden kann, da in ihm ein Satz von L sowohl in negierter wie in nicht negierter Form vorkommt. Wahrheitsbäume (L) 18

10 Zwei weitere Beispiele Ist der Satz p q (p q) r logisch wahr? (p q (p q) r) p q 3. ((p q) r) (p q) 5. r Wahrheitsbäume (L) 19 Der einzige st dieses Wahrheitsbaum kann geschlossen werden; denn ihm kommt der Satz p q sowohl negiert als auch nicht negiert vor. Der Satz, der sowohl negiert als auch nicht negiert vorkommt, muss also nicht immer ein Satzbuchstabe (oder ein negierter Satzbuchstabe) sein. Wahrheitsbäume (L) 20

11 Sind die Sätze (p q) und p q logisch äquivalent? 1. ( (p q) p q) 2. (p q) 4. (p q) 3. ( p q) 5. p q 6. p 10. p q (4) 7. q 11. p (10) 12. q (10) 8. p 9. q 13. p 14. q Wahrheitsbäume (L) (((r q) p) (p q r)) ((r q) p) (p q r) 4. p 5. (q r) 6. q 7. r 8. (r q) r (8) 11. q (8) p 12. (r q) r (12) 15. q (12) p Wahrheitsbäume (L) 22

12 (((r q) p) (p q r)) ((r q) p) (p q r) 4. p 5. (q r) (r q) r q (6) (6) 7. p 10. q 11. r Wahrheitsbäume (L) 23 Das Wahrheitsbaumverfahren lässt sich auch zur Beurteilung der Frage verwenden, ob ein Satz logisch aus den Sätzen 1,, n folgt. In diesem Fall bilden jedoch mehrere Sätze den Stamm eines entsprechenden Wahrheitsbaums: die Prämissen 1,, n und die negierte Konklusion. Denn dass ein Satz nicht logisch aus den Sätzen 1,, n folgt, heißt, dass es eine Bewertung V gibt, bzgl. deren die Prämissen 1,, n und die negierte Konklusion alle wahr sind. Ein entsprechender Wahrheitsbaums soll zeigen, dass aus dieser nnahme ein Widerspruch folgt. Wahrheitsbäume (L) 24

13 uch in diesem Zusammenhang soll das Wahrheitsbaumverfahren jedoch wieder als rein syntaktisches Verfahren aufgefasst werden. Denn auch bei der Beurteilung der Frage, ob ein Satz logisch aus den Sätzen 1,, n folgt, reichen die oben angeführten neun Regeln völlig aus. Denn es gilt: Wahrheitsbäume (L) 25 Satz 13.2 Sind 1,, n und Sätze der Sprache L, dann folgt der Satz genau dann logisch aus den Sätzen 1,, n, wenn jeder st eines Wahrheitsbaums, dessen Stamm aus den Sätzen 1,, n und der Negation des Satzes gebildet wird und der nur mit Hilfe der oben angegebenen Regeln entwickelt wurde, mit einem geschlossen werden kann, da in ihm ein Satz von L sowohl in negierter wie in nicht negierter Form vorkommt. Wahrheitsbäume (L) 26

14 Frage Folgt der Satz p r logisch aus den Sätzen p (q r) und p q? Wahrheitsbäume (L) p (q r) 2. p q 3. (p r) 4. p 5. r 6. p p q 9. q r 10. q 11. r (9) Wahrheitsbäume (L) 28

15 Die Wahrheitsbaummethode ist besonders dann vorzuziehen, wenn der Satz oder die Sätze 1,, n relativ viele verschiedene Satzbuchstaben enthalten. Beispiel Überprüfung der Behauptung p q, q r, r s, s t u! L p u Wahrheitsbäume (L) p q 2. q r 3. r s 4. s t u 5. (p u) 6. p 7. u 8. p q 11. Wahrheitsbäume (L) 30 q r 12. r 13. s 14. (s t) 15. u (4) 16. s (14) 17. t (14)

16 nhang Wenn wir überprüfen wollen, ob ein Satz der Sprache L logisch wahr ist, können wir so vorgehen: Wir entwickeln mit Hilfe der neun Regeln einen Wahrheitsbaum für die Negation. ist genau dann logisch wahr, wenn in diesem Wahrheitsbaum alle Äste mit einem geschlossen werden können, da in jedem dieser Äste ein Satz von L sowohl in negierter wie in nicht negierter Form vorkommt. nhang 1 Wenn wir überprüfen wollen, ob ein Satz der Sprache L logisch aus den Sätzen 1,, n folgt, können wir so vorgehen: Wir entwickeln mit Hilfe der neun Regeln einen Wahrheitsbaum, dessen Stamm die Prämissen 1,, n und die negierte Konklusion bilden. folgt genau dann logisch aus den Sätzen 1,, n, wenn in diesem Wahrheitsbaum alle Äste mit einem geschlossen werden können, da in jedem dieser Äste ein Satz von L sowohl in negierter wie in nicht negierter Form vorkommt. nhang 2

17 Merke Die neun Regeln haben folgende Merkmale: 1. ußer für Satzbuchstaben und negierte Satzbuchstaben gibt es für jede Satzform eine Regel. 2. Die Regeln sind abschichtend; d.h. die Sätze, die an die Äste angehängt werden, sind immer kürzer als der Satz, auf den die Regel angewendet wird. Genau deshalb ist die Entwicklung jedes Wahrheitbaums nach endlich vielen Schritten beendet. nhang 3 Tipps 1. Man sollte immer zuerst versuchen, die nichtverzweigenden Regeln anzuwenden. 2. Bei der nwendung von verzweigenden Regeln sollte man schauen, dass man möglichst einen st sofort schließen kann. nhang 4

Musterlösung Übungszettel 8 (Probeklausur 1)

Musterlösung Übungszettel 8 (Probeklausur 1) Sommersemester 2005 Seite 1 von 5 Musterlösung Übungszettel 8 (Probeklausur 1) (1) Zeigen Sie mit Hilfe der Wahrheitstafelmethode, dass a) der Satz (p q) (q p) (p q) eine Tautologie ist (5 Punkte); p q

Mehr

20 Beurteilung umgangssprachlicher Sätze und Argumente mit prädikatenlogischen Mitteln

20 Beurteilung umgangssprachlicher Sätze und Argumente mit prädikatenlogischen Mitteln 20 Beurteilung umgangssprachlicher Sätze und Argumente mit prädikatenlogischen Mitteln Erinnerung Man kann die logischen Eigenschaften von Sätzen der Sprache PL in dem Maße zur Beurteilung der logischen

Mehr

Musterlösung. (1) Zeigen Sie mit Hilfe der Wahrheitstafelmethode, dass a) der Satz in AL (p q) ( p q) (p q) eine Kontradiktion ist (7 Punkte);

Musterlösung. (1) Zeigen Sie mit Hilfe der Wahrheitstafelmethode, dass a) der Satz in AL (p q) ( p q) (p q) eine Kontradiktion ist (7 Punkte); Sommersemester 2005 Seite 1 von 5 Musterlösung (1) Zeigen Sie mit Hilfe der Wahrheitstafelmethode, dass a) der Satz in AL (p q) ( p q) (p q) eine Kontradiktion ist (7 Punkte); p q (p q) ( p q) (p q) W

Mehr

Formale Logik - SoSe 2012

Formale Logik - SoSe 2012 2.44 % Formale Logik - SoSe 2012 Versuch einer Zusammenfassung Malvin Gattinger http://xkcd.com/435/ 4.88 % Gliederung Einleitung Was ist Logik? Begriffsklärungen Sätze und Wahrheit Argumente und Gültigkeit

Mehr

14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln

14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln 14 Beurteilung umgangssprachlicher Sätze und Argumente mit aussagenlogischen Mitteln Erinnerung Man kann die logischen Eigenschaften von Sätzen der Sprache AL in dem Maße zur Beurteilung der logischen

Mehr

Formale Logik. 4. Sitzung. Die Logik der Sprache AL. Die Logik der Sprache AL. Die Logik der Sprache AL

Formale Logik. 4. Sitzung. Die Logik der Sprache AL. Die Logik der Sprache AL. Die Logik der Sprache AL ormale Logik 4. Sitzung Prof. Dr. Ansgar Beckermann Sommersemester 2005 Erinnerung Ein Satz ist genau dann logisch wahr, wenn er unabhängig davon, was die in ihm vorkommenden deskriptiven Zeichen bedeuten

Mehr

Aufgabenblatt Punkte. Aufgabe 1 (Negation) Seien e R, n, m, k N und. Negieren Sie φ. 4. Lösung Es gilt

Aufgabenblatt Punkte. Aufgabe 1 (Negation) Seien e R, n, m, k N und. Negieren Sie φ. 4. Lösung Es gilt ufgabenblatt 3 40 Punkte ufgabe 1 (Negation) Seien e R, n, m, k N und φ e [e > 0 k n, m (((n k) (m k)) 1/n 1/m < e)] Negieren Sie φ. 4 Es gilt ϕ e [e > 0 k n, m (((n k) (m k)) 1/n 1/m < e)] e [e > 0 [

Mehr

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik

Kapitel 1.5 und 1.6. Ein adäquater Kalkül der Aussagenlogik Kapitel 1.5 und 1.6 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2010/11) Kapitel 1.5 und 1.6: Kalküle 1 /

Mehr

17 Grundbegriffe der Logik der Sprache PL

17 Grundbegriffe der Logik der Sprache PL 17 Grundbegriffe der Logik der Sprache PL Erinnerung Definition 11.1 Ein Satz A der Sprache AL ist genau dann logisch wahr, wenn sich allein aus der Bedeutung der in ihm vorkommenden logischen Ausdrücke

Mehr

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls

Kapitel 1.5. Ein adäquater Kalkül der Aussagenlogik. Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Kapitel 1.5 Ein adäquater Kalkül der Aussagenlogik Teil 1: Kalküle und Beweisbarkeit und die Korrektheit des Shoenfield-Kalküls Mathematische Logik (WS 2012/13) Kapitel 1.5: Kalküle 1/30 Syntaktischer

Mehr

Erinnerung 1. Erinnerung 2

Erinnerung 1. Erinnerung 2 Erinnerung 1 Ein Argument ist eine Folge von Aussagesätzen, mit der der Anspruch verbunden ist, dass ein Teil dieser Sätze (die Prämissen) einen Satz der Folge (die Konklusion) in dem Sinne stützen, dass

Mehr

Beweistechniken. Vorkurs Informatik - SoSe April 2014

Beweistechniken. Vorkurs Informatik - SoSe April 2014 Vorkurs Informatik SoSe14 07. April 2014 Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Motivation Wozu Beweise in der Informatik? Quelle: http://www.nileguide.com Wozu Beweise in der

Mehr

Argumentationstheorie 4. Sitzung

Argumentationstheorie 4. Sitzung Noch ein Beispiel Argumentationstheorie 4. Sitzung Prof. Dr. Ansgar Beckermann Wintersemester 2004/5 empirische Hypothese (P1) echte Noch ein Beispiel Noch ein Beispiel empirische Hypothese (P1) Ein metaphysischer

Mehr

6. AUSSAGENLOGIK: TABLEAUS

6. AUSSAGENLOGIK: TABLEAUS 6. AUSSAGENLOGIK: TABLEAUS 6.1 Motivation 6.2 Wahrheitstafeln, Wahrheitsbedingungen und Tableauregeln 6.3 Tableaus und wahrheitsfunktionale Konsistenz 6.4 Das Tableauverfahren 6.5 Terminologie und Definitionen

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Elementare Beweistechniken

Elementare Beweistechniken Elementare Beweistechniken Beispiel: Satzform (Pythagoras) Voraussetzung: Gegeben sei ein beliebiges rechtwinkeliges Dreieck, die Länge der Hypothenuse sei c und die Längen der anderen Seiten seien a und

Mehr

Seminar. Methoden Wissenbasierter Systeme. Überblick. Was sind Regeln? Überblick

Seminar. Methoden Wissenbasierter Systeme. Überblick. Was sind Regeln? Überblick Seminar Regelbasierte Systeme ie Wissensbasis eines regelbasierten Systems regelbasierten System as Problem der Widersprüchlichkeit rklärungskomponente 06.12.2007 1 06.12.2007 2 ie Wissensbasis eines regelbasierten

Mehr

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

2.2.4 Logische Äquivalenz

2.2.4 Logische Äquivalenz 2.2.4 Logische Äquivalenz (I) Penélope raucht nicht und sie trinkt nicht. (II) Es ist nicht der Fall, dass Penélope raucht oder trinkt. Offenbar behaupten beide Aussagen denselben Sachverhalt, sie unterscheiden

Mehr

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken

typische Beweismuster Allgemeine Hilfe Beweistechniken WS2014/ Januar 2015 R. Düffel Beweistechniken Beweistechniken Ronja Düffel WS2014/15 13. Januar 2015 Warum ist Beweisen so schwierig? unsere natürliche Sprache ist oft mehrdeutig wir sind in unserem Alltag von logischen Fehlschlüssen umgeben Logik

Mehr

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1

Musterlösung Grundbegriffe der Mathematik Frühlingssemester 2016, Aufgabenblatt 1 Musterlösung Grundbegriffe der Mathematik Frühlingssemester 01, Aufgabenblatt 1 Aufgabenblatt 1 0 Punkte Aufgabe 1 Welche der folgenden Ausdrücke sind Aussagen, welche sind Aussageformen und welche sind

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Mittwoch den 8.9.011 Vorkurs Mathematik WS 011/1 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Vorlesung. Beweise und Logisches Schließen

Vorlesung. Beweise und Logisches Schließen Vorlesung Beweise und Logisches Schließen Der folgende Abschnitt dient nur zur Wiederholung des Stoffes der ersten Vorlesung und sollten nur genannt bzw. Teilweise schon vor der Vorlesung angeschrieben

Mehr

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen?

1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung 1 1. [Aufgabe] Welche der folgenden Aussagen sind gültige Einwände gegen das Sprichwort Alles verstehen heisst alles verzeihen? a Niemand versteht

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30

Formale Methoden II. Gerhard Jäger. SS 2008 Universität Bielefeld. Teil 8, 11. Juni 2008. Formale Methoden II p.1/30 Formale Methoden II SS 2008 Universität Bielefeld Teil 8, 11. Juni 2008 Gerhard Jäger Formale Methoden II p.1/30 Beispiele Anmerkung: wenn der Wahrheitswert einer Formel in einem Modell nicht von der Belegungsfunktion

Mehr

Aussagenlogische Kalküle

Aussagenlogische Kalküle Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige

Mehr

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl.

Donnerstag, 11. Dezember 03 Satz 2.2 Der Name Unterraum ist gerechtfertigt, denn jeder Unterraum U von V ist bzgl. Unterräume und Lineare Hülle 59 3. Unterräume und Lineare Hülle Definition.1 Eine Teilmenge U eines R-Vektorraums V heißt von V, wenn gilt: Unterraum (U 1) 0 U. (U ) U + U U, d.h. x, y U x + y U. (U )

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2017 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe17 Ronja Düffel 22. März 2017 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

Rhetorik und Argumentationstheorie.

Rhetorik und Argumentationstheorie. Rhetorik und Argumentationstheorie 2 [frederik.gierlinger@univie.ac.at] Teil 2 Was ist ein Beweis? 2 Wichtige Grundlagen Tautologie nennt man eine zusammengesetzte Aussage, die wahr ist, unabhängig vom

Mehr

Vorkurs Beweisführung

Vorkurs Beweisführung Vorkurs Beweisführung Fachschaft Mathematik und Informatik 30.08.2013 Agenda 1 Einleitung 2 Direkter Beweis 3 Widerspruchsbeweis 4 Vollständige Induktion 5 Aussagen widerlegen 6 Gleichheit von Mengen 7

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2015 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe15 Ronja Düffel 23. März 2015 Logik und Beweise > Motivation Wozu Beweise in der Informatik? Quelle:http://www.capcomespace.net Logik und Beweise

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 1. Grundlegende Beweisstrategien: Noethersche Induktion 23.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesung 1. Grundlegende

Mehr

Formale Logik. 1. Sitzung. Allgemeines vorab. Allgemeines vorab. Terminplan

Formale Logik. 1. Sitzung. Allgemeines vorab. Allgemeines vorab. Terminplan Allgemeines vorab Formale Logik 1. Sitzung Prof. Dr. Ansgar Beckermann Sommersemester 2005 Wie es abläuft Vorlesung Übungszettel Tutorien Es gibt ca. in der Mitte und am Ende des Semesters je eine Klausur

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik

Mathematische und logische Grundlagen der Linguistik. Kapitel 3: Grundbegriffe der Aussagenlogik Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Grundbegriffe der Aussagenlogik 1 Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1

Mathematische und logische Grundlagen der Linguistik. Mathematische und logische Grundlagen der Linguistik. Karl Heinz Wagner. Hier Titel eingeben 1 Grundbegriffe der Aussagenlogik 1 Mathematische und logische Grundlagen der Linguistik Kapitel 3: Grundbegriffe der Aussagenlogik Die Aussagenlogik ist ein Zweig der formalen Logik, der die Beziehungen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Zur Semantik der Junktorenlogik

Zur Semantik der Junktorenlogik Zur Semantik der Junktorenlogik Elementare Logik I Michael Matzer Inhaltsverzeichnis 1 Präliminarien 2 2 Tautologien, Kontradiktionen und kontingente Sätze von J 2 2.1 Tautologien von J................................

Mehr

Argumentationstheorie 7. Sitzung

Argumentationstheorie 7. Sitzung Erinnerung rgumentationstheorie 7. Sitzung Prof. Dr. nsgar Beckermann intersemester 2004/5 a priori a posteriori Eine ussage ist a priori wahr, wenn man ihre ahrheit ohne Rückgriff auf Erfahrung (allein

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 2. Beweistechniken Malte Helmert Gabriele Röger Universität Basel 18. Februar 2015 Beweis Beweis Ein Beweis leitet die Korrektheit einer mathematischen Aussage aus einer Menge von

Mehr

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016

Logik und Beweise. Logik und Beweise. Vorsemesterkurs SoSe März 2016 Logik und Beweise Logik und Beweise Vorsemesterkurs SoSe16 Ronja Düffel 21. März 2016 Logik und Beweise Wozu Beweise in der Informatik?... um Aussagen wie 1 Das Programm erfüllt die gewünschte Aufgabe.

Mehr

2.1 Direkter Beweis. Theorie der Informatik. Theorie der Informatik. 2.1 Direkter Beweis. 2.2 Indirekter Beweis

2.1 Direkter Beweis. Theorie der Informatik. Theorie der Informatik. 2.1 Direkter Beweis. 2.2 Indirekter Beweis Theorie der Informatik 18. Februar 2015 2. Beweistechniken Theorie der Informatik 2. Beweistechniken 2.1 Direkter Beweis Malte Helmert Gabriele Röger 2.2 Indirekter Beweis Universität Basel 18. Februar

Mehr

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6.

Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den x > 1 3x > 3 3x + 3 > 6 6x + 3 > 3x + 6. Fachbereich Mathematik Aufgaben und Lösungen zum Vorkurs Mathematik: Beweismethoden Für Donnerstag den 7.9.01 Vorkurs Mathematik WS 01/13 Die mit * gekennzeichneten Aufgaben sind etwas schwerer. Dort braucht

Mehr

Analysis I für Studierende der Ingenieurwissenschaften

Analysis I für Studierende der Ingenieurwissenschaften Analysis I für Studierende der Ingenieurwissenschaften Ingenuin Gasser Department Mathematik Universität Hamburg Technische Universität Hamburg Harburg Wintersemester 2008/2009 1 Kapitel 1: Aussagen, Mengen

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden.

Logische Aussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. Logische Operationen Logische ussagen können durch die in der folgenden Tabelle angegebenen Operationen verknüpft werden. ezeichnung Schreibweise (Sprechweise) wahr, genau dann wenn Negation (nicht ) falsch

Mehr

2.1.3 Interpretation von aussagenlogischen Formeln. 1) Intensionale Interpretation

2.1.3 Interpretation von aussagenlogischen Formeln. 1) Intensionale Interpretation 2.1.3 Interpretation von aussagenlogischen Formeln 1) Intensionale Interpretation Definition 11: Eine intensionale Interpretation einer aussagenlogischen Formel besteht aus der Zuordnung von Aussagen zu

Mehr

2.6 Natürliches Schließen in AL

2.6 Natürliches Schließen in AL 2.6 Natürliches Schließen in AL Bisher wurde bei der Überprüfung der Gültigkeit von Schlüssen oder Schlussschemata insofern ein semantisches Herangehen verfolgt, als wir auf die Bewertung von Formeln mit

Mehr

Das Pumping-Lemma Formulierung

Das Pumping-Lemma Formulierung Das Pumping-Lemma Formulierung Sei L reguläre Sprache. Dann gibt es ein n N mit: jedes Wort w L mit w n kann zerlegt werden in w = xyz, so dass gilt: 1. xy n 2. y 1 3. für alle k 0 ist xy k z L. 59 / 162

Mehr

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17

Vorlesung Mathematik I für Wirtschaftswissenschaftler. Universität Leipzig, WS 16/17 Vorlesung Mathematik I für Wirtschaftswissenschaftler Universität Leipzig, WS 16/17 Prof. Dr. Bernd Kirchheim Mathematisches Institut kirchheim@math.uni-leipzig.de 1 / 19 Dies ist der Foliensatz zur Vorlesung

Mehr

Frank Heitmann 2/48. 2 Substitutionen, um formal auszudrücken wie in Formelmengen. auf!

Frank Heitmann 2/48. 2 Substitutionen, um formal auszudrücken wie in Formelmengen. auf! Motivation ormale der Informatik 1 Kapitel 17 und rank Heitmann heitmann@informatik.uni-hamburg.de Der Sinn von : Aufgrund syntaktischer Eigenschaften von ormeln/ormelmengen auf semantische Eigenschaften

Mehr

Deduktion in der Aussagenlogik

Deduktion in der Aussagenlogik Deduktion in der Aussagenlogik Menge von Ausdrücken der Aussagenlogik beschreibt einen bestimmten Sachverhalt, eine "Theorie" des Anwendungsbereiches. Was folgt logisch aus dieser Theorie? Deduktion: aus

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Kapitel 1. Grundlagen Mengen

Kapitel 1. Grundlagen Mengen Kapitel 1. Grundlagen 1.1. Mengen Georg Cantor 1895 Eine Menge ist die Zusammenfassung bestimmter, wohlunterschiedener Objekte unserer Anschauung oder unseres Denkens, wobei von jedem dieser Objekte eindeutig

Mehr

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2

Boolesche Algebra. Hans Joachim Oberle. Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 Universität Hamburg Department Mathematik Boolesche Algebra Hans Joachim Oberle Vorlesung an der TUHH im Wintersemester 2006/07 Montags, 9:45-11:15 Uhr, 14täglich TUHH, DE 22, Audimax 2 http://www.math.uni-hamburg.de/home/oberle/vorlesungen.html

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Elizaveta Kovalevskaya WS 2017/18 6. Oktober 2017 Vorkurs Informatik - WS 2017/18 1/44 Vorsemesterkurs Informatik Übersicht 1 Relationen 2 Funktionen

Mehr

Vorkurs Mathematik für Informatiker Aussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek,

Vorkurs Mathematik für Informatiker Aussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek, Vorkurs Mathematik für Informatiker -- 4 ussagenlogik -- Thomas Huckle Stefan Zimmer Matous Sedlacek, 7..2 ussagenlogik Rechnen mit Wahrheitswerten: oder, oder Objekte, die wir untersuchen, sind jetzt

Mehr

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden

Logik in der Schule. Bildungsplan 2004 (Zitat:) Begründen. Elementare Regeln und Gesetze der Logik kennen und anwenden 1 Nr.2-21.04.2016 Logik in der Schule Bildungsplan 2004 (Zitat:) Begründen Elementare Regeln und Gesetze der Logik kennen und anwenden Begründungstypen und Beweismethoden der Mathematik kennen, gezielt

Mehr

Lösung zu Serie 3. Lineare Algebra D-MATH, HS Prof. Richard Pink. Sei K ein beliebiger Körper.

Lösung zu Serie 3. Lineare Algebra D-MATH, HS Prof. Richard Pink. Sei K ein beliebiger Körper. Lineare Algebra D-MATH, HS 204 Prof. Richard Pink Lösung zu Serie 3 Sei K ein beliebiger Körper.. [Aufgabe] Sei n Z 0 eine gegebene nicht-negative ganze Zahl. Übersetzen Sie die folgenden Aussagen in eine

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Einführung in die moderne Logik

Einführung in die moderne Logik Sitzung 1 1 Einführung in die moderne Logik Einführungskurs Mainz Wintersemester 2011/12 Ralf Busse Sitzung 1 1.1 Beginn: Was heißt Einführung in die moderne Logik? Titel der Veranstaltung: Einführung

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T )

Beweistechnik: Beweise in Bezug auf Mengen. Formale Methoden 2 LVA , Beweistechnik: Widerspruchsbeweise. Satz R (S T ) = (R S) (R T ) Formale Methoden 2 LVA 703019, 703020 (http://clinformatik.uibk.ac.at/teaching/ss06/fmii/) Georg Moser (VO) 1 Martin Korp (UE) 2 Friedrich Neurauter (UE) 3 Christian Vogt (UE) 4 1 georg.moser@uibk.ac.at

Mehr

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Deduktionssysteme der Aussagenlogik, Kap. 3: Tableaukalküle 38 3 Tableaukalküle 3.1 Klassische Aussagenlogik 3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Ein zweites Entscheidungsverfahren

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

7 Gültigkeit und logische Form von Argumenten

7 Gültigkeit und logische Form von Argumenten 7 Gültigkeit und logische Form von Argumenten Zwischenresümee 1. Logik ist ein grundlegender Teil der Lehre vom richtigen Argumentieren. 2. Speziell geht es der Logik um einen spezifischen Aspekt der Güte

Mehr

ALLGEMEINE LÖSUNG DES 12-KUGEL-PROBLEMS. Inhaltsverzeichnis 1. Einleitung 1

ALLGEMEINE LÖSUNG DES 12-KUGEL-PROBLEMS. Inhaltsverzeichnis 1. Einleitung 1 ALLGEMEINE LÖSUNG DES 1-KUGEL-PROBLEMS DOMINIK BRODOWSKI Inhaltsverzeichnis 1. Einleitung 1. Beweis 1 : n 3w 3 1.1. Behauptung 1.. Teil 1.3. Teil 3. Definitionen und Hilfsbeweis 3.1. Definitionen 3.. Hilfsbeweis

Mehr

Logik/Beweistechniken

Logik/Beweistechniken Mathematikvorkurs bei Marcos Soriano Logik/Beweistechniken erstellt von: Daniel Edler -II- Inhaltsverzeichnis 1 Logik/Beweistechniken 1 1.1 Allgemeine Vorgehensweise......................... 1 2 Konjunktion/Disjunktion

Mehr

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen

Rückblick. Erweiterte b-adische Darstellung von Kommazahlen. 7,1875 dargestellt mit l = 4 und m = 4 Bits. Informatik 1 / Kapitel 2: Grundlagen Rückblick Erweiterte b-adische Darstellung von Kommazahlen 7,1875 dargestellt mit l = 4 und m = 4 Bits 66 Rückblick Gleitkommazahlen (IEEE Floating Point Standard 754) lassen das Komma bei der Darstellung

Mehr

Tutorium: Diskrete Mathematik

Tutorium: Diskrete Mathematik Tutorium: Diskrete Mathematik Vorbereitung der Bonusklausur am 01.12.2017 (Teil 1) 22. November 2017 Steven Köhler mathe@stevenkoehler.de mathe.stevenkoehler.de 2 c 2017 Steven Köhler 22. November 2017

Mehr

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise

ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise ELEMENTARE DISKRETE MATHEMATIK Kapitel 2: Elementare Logik und Beweise MAA.01011UB MAA.01011PH Vorlesung mit Übung im WS 2016/17 Christoph GRUBER Günter LETTL Institut für Mathematik und wissenschaftliches

Mehr

Logische Grundlagen des Mathematikunterrichts

Logische Grundlagen des Mathematikunterrichts Logische Grundlagen des Mathematikunterrichts Referat zum Hauptseminar Mathematik und Unterricht 10.11.2010 Robert Blenk Holger Götzky Einleitende Fragen Was muss man beweisen? Woraus besteht ein Beweis?

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

2.3 Deduktiver Aufbau der Aussagenlogik

2.3 Deduktiver Aufbau der Aussagenlogik 2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte

Mehr

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7

Warum Mathe? IG/StV-Mathematik der KFU-Graz. 1 Mengen Mengenoperationen Rechenregeln Mengen 4. Funktionen 7 Warum Mathe? IG/StV-Mathematik der KFU-Graz März 2011 Inhalt 1 Mengen 1 1.1 Mengenoperationen.............................. 2 1.2 Rechenregeln.................................. 3 2 Übungsbeispiele zum

Mehr

Aussagenlogik. Aussagen und Aussagenverknüpfungen

Aussagenlogik. Aussagen und Aussagenverknüpfungen Aussagenlogik Aussagen und Aussagenverknüpfungen Aussagen sind Sätze, von denen sich sinnvollerweise sagen läßt, sie seien wahr oder falsch. Jede Aussage besitzt also einen von zwei möglichen Wahrheitswerten,

Mehr

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente

b. Lehre des vernünftigen Schlussfolgerns (1. System von Regeln von Aristoteles ( v. Chr.); sprachliche Argumente II. Zur Logik 1. Bemerkungen zur Logik a. Logisches Gebäude der Mathematik: wenige Axiome (sich nicht widersprechende Aussagen) bilden die Grundlage; darauf aufbauend Lehrsätze unter Berücksichtigung der

Mehr

Beweistechniken. Beweistechniken. Vorsemesterkurs Informatik Theoretischer Teil Wintersemester 2013/ Oktober Vorsemesterkurs WS 2013/1

Beweistechniken. Beweistechniken. Vorsemesterkurs Informatik Theoretischer Teil Wintersemester 2013/ Oktober Vorsemesterkurs WS 2013/1 Beweistechniken Beweistechniken Vorsemesterkurs Informatik Theoretischer Teil Wintersemester 2013/14 7. Oktober 2013 Beweistechniken > Motivation Wozu Beweise in der Informatik?... um Aussagen wie 1 Das

Mehr

Kapitel 1. Grundlegendes

Kapitel 1. Grundlegendes Kapitel 1 Grundlegendes Abschnitt 1.4 Vollständige Induktion Charakterisierung der natürlichen Zahlen Die Menge N 0 = {0, 1, 2, 3,...} der natürlichen Zahlen läßt sich wie folgt charakterisieren: 1. 0

Mehr

Tableaux-Beweise in der Aussagenlogik

Tableaux-Beweise in der Aussagenlogik Tableaux-Beweise in der Aussagenlogik Wie kann man auf syntaktische Weise eine Belegung mit Wahrheitswerten finden, die einen gegebenen Ausdruck wahr oder falsch macht? Die Frage schliesst Beweise durch

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

II. Wissenschaftliche Argumentation

II. Wissenschaftliche Argumentation Gliederung I. Motivation II. Wissenschaftliche Argumentation i. Direkter Beweis ii. iii. Indirekter Beweis Beweis durch vollständige Induktion Seite 35 II. Wissenschaftliche Argumentation Ein Beweis ist

Mehr

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1

Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 Mathem.Grundlagen der Computerlinguistik I, WS 2004/05, H. Leiß 1 1 Vorbemerkungen Mathematische Begriffe und Argumentationsweisen sind in vielen Fällen nötig, wo man über abstrakte Objekte sprechen und

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Handout zu Beweistechniken

Handout zu Beweistechniken Handout zu Beweistechniken erstellt vom Lernzentrum Informatik auf Basis von [Kre13],[Bün] Inhaltsverzeichnis 1 Was ist ein Beweis? 2 2 Was ist Vorraussetzung, was ist Behauptung? 2 3 Beweisarten 3 3.1

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren

Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren Lösungen 1 zum Mathematik-Brückenkurs für alle, die sich für Mathematik interessieren µfsr, TU Dresden Version vom 11. Oktober 2016, Fehler, Ideen, Anmerkungen und Verbesserungsvorschläge bitte an benedikt.bartsch@myfsr.de

Mehr

Grundlagen der Mathematik

Grundlagen der Mathematik Universität Hamburg Winter 2016/17 Fachbereich Mathematik Janko Latschev Grundlagen der Mathematik Lösungsskizzen 2 Präsenzaufgaben (P2) Wir betrachten drei Teilmengen der natürlichen Zahlen: - A = {n

Mehr

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1

Kapitel 1.1. Aussagenlogik: Syntax. Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Kapitel 1.1 Aussagenlogik: Syntax Mathematische Logik (WS 2011/12) Kapitel 1.1: Aussagenlogik: Syntax 1/ 1 Übersicht 1.1.1 Die Sprache der Aussagenlogik 1.1.2 Explizite vs. implizite Definitionen 1.1.3

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller

technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller technische universität dortmund Dortmund, im Dezember 2011 Fakultät für Mathematik Prof. Dr. H. M. Möller Lineare Algebra für Lehramt Gymnasien und Berufskolleg Zusammenfassung der Abschnitte 4.3 und 4.4

Mehr

Martin Goldstern Der logische Denker Kurt Gödel und sein Unvollständigkeitssatz. 6.

Martin Goldstern Der logische Denker Kurt Gödel und sein Unvollständigkeitssatz.  6. Martin Goldstern Der logische Denker Kurt Gödel und sein Unvollständigkeitssatz http://www.tuwien.ac.at/goldstern/ 6.September 2006 1 Kurt Gödel, 1906-1978 1906: geboren am 28.April in Brünn (heute Brno)

Mehr

Einschub: Erkennung durch Monoide

Einschub: Erkennung durch Monoide Einschub: Erkennung durch Monoide Achtung: Diese Einheit finden Sie NICHT im Buch von Schöning. Sei L eine formale Sprache und M ein Monoid. Wir sagen M erkennt L, wenneineteilmengea M und ein Homomorphismus

Mehr

-,.. 3) -(-A & -B) modus tollendo tollens 1,2 4) A v B de Morgan 3

-,.. 3) -(-A & -B) modus tollendo tollens 1,2 4) A v B de Morgan 3 Ben - Alexander Bohnke Köln, den 6.11.78 Einige Überlegungen zur logischen Analyse (des Beweises) der These der zweiten Antinomie in KANTS "Kritik der rein~n Vernunft" I) Aussagenlogische Analyse Wie ich

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

mathe plus Aussagenlogik Seite 1

mathe plus Aussagenlogik Seite 1 mathe plus Aussagenlogik Seite 1 1 Aussagenlogik 1.1 Grundbegriffe Def 1 Aussage Eine Aussage ist ein beschriebener Sachverhalt, dem eindeutig einer der Wahrheitswerte entweder wahr oder falsch zugeordnet

Mehr

Die Logik der Sprache AL

Die Logik der Sprache AL II Die Logik der Sprache AL 10 Der Aufbau der Sprache AL Vorbemerkung Die Sprachen AL und PL enthalten nur Aussagesätze, da wir nur an Argumenten interessiert sind. Jeder Aussagesatz hat eine Syntax und

Mehr

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18

Vorkurs Mathematik. Prof. Udo Hebisch WS 2017/18 Vorkurs Mathematik Prof. Udo Hebisch WS 2017/18 1 1 Logik 2 1 Logik Unter einer Aussage versteht man in der Mathematik einen in einer natürlichen oder formalen Sprache formulierten Satz, für den eindeutig

Mehr