s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "s xy x i x y i y s xy = 1 n i=1 y 2 i=1 x 2 s 1 n x n i Streudiagramme empirische Kovarianz x=5,5 y=7,5"

Transkript

1 Streudiagramme für metrisch skalierte Variable paarweise Messwerte (x,y) x 5 7 y Aussage zu Zusammehäge. empirische Kovariaz Stadardabweichug der WertPAARE x i x y Wert x Mittelwert aller x Wert y Mittelwert aller y Wert x Mittelwert aller x Wert y Mittelwert aller y... Azahl der WertPAARE x 5 7 y 7 5 Erierug: Stadardabweichug x5,5 y7,5 5,5 7,5,5 7,5,5 7,5... 5,55 s x x i x s y y i i y

2 . empirischer Korrelatioskoeffiziet Bravais-Pearso "ormierte" Stadardabweichug der WertPAARE r r xy Der Teil / aus de Eizelformel kürzt sich weg Normierug r xy s x s y x i x y x i x y Abweichug zusamme Abweichug x Abweichug y x 5 7 y 7 5 s x,7 s y,7 5,55 r xy 5,55,7,7,7 r ka Werte zwische - ud + aehme, ud gibt damit Auskuft über Stärke ud Richtug des Zusammehags Iterpretatio: r - vollstädiger egativer Zusammehag (je mehr, desto weiger) r r alle Pukte liege auf eier fallede Gerade vollstädiger positiver Zusammehag (je mehr, desto mehr) alle Pukte liege auf eier steigede Gerade kei LINEARER Zusammehag...vielleicht aber ei icht-liearer (expoetieller, u-förmiger oder...) keie Aussage zu kausale Beziehuge! Scheikorrelatioe möglich! je höher der Absatz vo Witerreife, desto höher der Absatz vo Nikoläuse...

3 . lieare Regressio Regressiosgerade...auf der Suche ach eiem berechebare Zusammehag vo x ud y (i Form eier lieare Gleichug /Fuktio) Gleichug Fuktio x i f x x mit dem Ziel, ahad der Ausprägug eies (beliebige) x-wertes die Ausprägug des etsprechede y-wertes (ugefähr) bereche zu köe Beziehug zwische Uabhägiger Variable + Abhägiger Variable? x i Steigug der Gerade 7 Ausgleichsgerade Fehler ( ugefähr ) 5 y-achseabschitt 5 7

4 .. Berechug der Ausgleichs-/Regressiosgerade f x x Kleiste-Quadrate-Schätzer...auf der Suche ach eiem Achseabschitt α ud eier Steigug β mit dem Ziel, de Gesamtfehler (e+e+e+...) so klei wie möglich zu halte -> Miimierug der durchschittliche Abweichug der tatsächliche Werte vo de Werte auf der Ausgleichsgerade x i x y x i x y x x i x y x i x s xx s x vergleiche: x i x y x i x wege irgedwelche Wegkürzuge... s xx s x x 5 7 x5,5 y 7 5 y7,5 5,55 s xx, 5,5,,7 7,5,7 5,5, Sorry, etspricht i diesem Datesatz zufällig r, weil sx sy ud damit sx² sx sy 5 7 f x,,7 x

5 .. Berechug der eizele Fehler Residue x i x 5 7 y 5 7, 5,,,7 5,,5 7,7 7,,5,,5,5 -, -, 5, -,,5, -, -,5, -,5, +, 7 5 -, 5 7 Streudiagramm der Residue/Residualaalyse Residualplot x 5 7 -, -, -,,5, -, -,5, -,5, ideal: Die Residue streue usystematisch ud möglichst ahe bei adere Residualplots weise darauf hi, dass der Datesatz icht die Voraussetzuge für ei lieares Regressiosmodell erfüllt alterative Plots (statt x, e ) : y, e oder (mit stadardisierte Residue) y, d...

6 .. Berechug der uterschiedliche Variaze/ Variazateile Streuugszerlegug SQT SQE SQR Sum of SQuares Total: Gesamtstreuug Streuug der y-werte um ihre Mittelwert y SQT y Sum of SQuares Explaied: erklärte Streuug Streuug der vo der Regressiosgerade erfasste y -Werte um de Mittelwert y SQE y Sum of SQuares Residual: Residualstreuug / Reststreuug Streuug der vo der Regressiosgerade icht erfasste y -Werte um ihre etsprechede Wert y auf der Regressiosgerade "Streuug der Fehler " SQR wäre im Beispiel ugefähr,7, 5, (ziemlich großzügig passed gemacht, )

7 .. Wie geau lasse sich mit dem Modell (hier: eifache lieare Regressio) die y-werte vorhersage? Bestimmtheitsmaß / Determiatioskoeffiziet R R y y y y SQE SQT R r xy - Wertebereich zwische ud - je äher a, desto schlechter ist die Vorhersage - im Fall R² liege bereits die Origialdate auf eier Gerade R 7,,,5 r,7 heißt: Das Modell eiget sich icht so doll, um irgedwelche y-werte vorauszusage, (z.b. "wie wäre der y-wert zu x?") weil ur 5% der Gesamtstreuug vo y durch die Regressio erklärt werde Die Variaz der y-werte ist ur zu 5% auf die Variaz der x-werte zurückzuführe.

Kapitel XI - Korrelationsrechnung

Kapitel XI - Korrelationsrechnung Istitut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökoometrie ud Statistik Kapitel XI - Korrelatiosrechug Deskriptive Statistik Prof. Dr. W.-D. Heller Hartwig Seska Carlo Siebeschuh Aufgabe der Korrelatiosrechug

Mehr

Formelsammlung. zur Klausur. Beschreibende Statistik

Formelsammlung. zur Klausur. Beschreibende Statistik Formelsammlug zur Klausur Beschreibede Statistik Formelsammlug Beschreibede Statistik. Semester 004/005 Statistische Date Qualitative Date Nomial skalierte Merkmalsauspräguge (Uterscheidugsmerkmale) köe

Mehr

h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h.

h a 2 b 1 h a1 b 2 h a1 b 1 h a1. h a 2. h.b1 h ij h 11 h 12 h 21 a b h. j h 1. h 2. h.1 a b h i. =h i1 h i2... h i m h. j =h 1j h 2j... h k j h. Kotigeztabelle / Kreuztabelle für 2 diskrete /omialskalierte Variable ethält: 1. absolute gemeisame Häufigkeite h 11 h 12 h 21 für Kombiatioe vo zwei Merkmale / Variable a b steht also für mit jeweils

Mehr

Herleitung der Parameter-Gleichungen für die einfache lineare Regression

Herleitung der Parameter-Gleichungen für die einfache lineare Regression Herleitug der Parameter-Gleichuge für die eifache lieare Regressio Uwe Ziegehage. März 03 Historie v.0 6.03.009, erste Versio hochgelade v.0 0.03.03, eie Vorzeichefehler beseitigt, diverse Gleichuge ud

Mehr

Lineare Regression. Roland Heynkes. 18. April 2006, Aachen

Lineare Regression. Roland Heynkes. 18. April 2006, Aachen Lieare Regressio Rolad Heykes 18. April 2006, Aache Es kommt i der Natur relativ oft vor, daß zwei Größe statistisch mit eiader verbude sid. We sich diese Verbudeheit mathematisch durch eie Fuktio beschreibe

Mehr

1. Einleitung. Uni- und bivariate Datenanalyse. Auswertung eines Merkmals. Verbundene Auswertung zweier Merkmale

1. Einleitung. Uni- und bivariate Datenanalyse. Auswertung eines Merkmals. Verbundene Auswertung zweier Merkmale . Eileitug Ui- ud ivariate Dateaalyse Uivariate Dateaalyse uswertug eies Merkmals Beispiele: Uivariate Häufigkeitsverteiluge, arithmetisches Mittel, Variaz ud Stadardaweichug Bivariate Dateaalyse Verudee

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Repräsentativität und Unabhängigkeit

Repräsentativität und Unabhängigkeit Repräsetativität ud Uabhägigkeit Ziel: Bestmögliche Erassug der Eigeschate der Grudgesamtheit Problem: Beurteilug der Repräsetativität ist ur durch umassede Iormatio über die Grudgesamtheit möglich Asatz:

Mehr

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft

Wissenschaftliches Arbeiten Studiengang Energiewirtschaft Wisseschaftliches Arbeite Studiegag Eergiewirtschaft - Auswerte vo Date - Prof. Dr. Ulrich Hah WS 01/013 icht umerische Date Tet-Date: Datebak: Name, Eigeschafte, Matri-Tabelleform Spalte: übliche Aordug:

Mehr

Lineare Transformationen

Lineare Transformationen STAT 4 FK Herleituge Lieare Trasformatioe Sei eie lieare Trasformatio vo, so gilt Allgemei: a b, () Lieare Trasformatio des arithmetische Mittels y a+b x i () Da a eie additiv verküpfte Kostate ist, ka

Mehr

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte

h i :=h a i f i = h a i n Absolute Häufigkeit: Relative Häufigkeit: h 2 h 4 h 6 :=h der Elemente mit der Ausprägung i=6 zu der Anzahl n aller Werte . Wer Rechtschreibfehler fidet, darf sie behalte. Rechefehler werde zurückgeomme. Absolute Häufigkeit: h Wie viele Elemete weise diese bestimmte Wert (= diese bestimmte Ausprägug) auf? > Azahl h der Elemete

Mehr

Zusammenhangsmaß Korrelation (Pearsons Produkt-Moment-Korrelation r)

Zusammenhangsmaß Korrelation (Pearsons Produkt-Moment-Korrelation r) Ergäzede Hiweise zur Iterpretatio Zusammehagsmaß Korrelatio (Pearsos Produkt-Momet-Korrelatio r) Thürigeweite Kompeteztests 3 Dipl.-Psych. Ulf Kröhe, Dr. Christof Nachtigall Lehrstuhl für Methodelehre

Mehr

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen

n 2(a + bx i y i ) = 0 und i=1 n 2(a + bx i y i )x i = 0 i=1 gilt. Aus diesen beiden Gleichungen erhalten wir nach wenigen einfachen Umformungen Regressio Dieser Text rekapituliert die i der Aalsis ud Statistik wohlbekate Methode der kleiste Quadrate, auch Regressio geat, zur Bestimmug vo Ausgleichsgerade Regressiosgerade ud allgemei Ausgleichpolome.

Mehr

Wahrscheinlichkeitstheorie und Statistik vom

Wahrscheinlichkeitstheorie und Statistik vom INSTITUT FÜR MATHEMATISCHE STOCHASTIK WS 005/06 UNIVERSITÄT KARLSRUHE Priv.-Doz. Dr. D. Kadelka Klausur Wahrscheilichkeitstheorie ud Statistik vom 9..006 Musterlösuge Aufgabe A: Gegebe sei eie Urliste

Mehr

10. Grundlagen der linearen Regressionsanalyse 10.1 Formulierung linearer Regressionsmodelle

10. Grundlagen der linearen Regressionsanalyse 10.1 Formulierung linearer Regressionsmodelle 10. Grudlage der lieare Regressiosaalyse 10.1 Formulierug liearer Regressiosmodelle Eifaches lieares Regressiosmodell: Das eifache lieare Regressiosmodell ist die simpelste Form eies ökoometrische Modells

Mehr

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und

Diesen Grenzwert nennt man partielle Ableitung von f nach x i und Bevor wir zum ächste Kapitel übergehe, werde wir de Begri eier Fuktio i mehrere Variable eiführe. Eie Fuktio vo Variable ist eie Vorschrift, die jedem Pukt (x 1,x,...,x ) eier Teilmege D des IR eie bestimmte

Mehr

Stetige Messwerte Diskrete Messwerte

Stetige Messwerte Diskrete Messwerte Sadra Schlick Seite 1 1.SemiarStat015.doc 1. Semiar Statistik 9.45 10.00 Übersicht Semester 10.00 10.15 Merkmale ud Auspräguge 10.15 10.30 Häufigkeitsverteiluge 10.30 11.30 Natürliche ud recherische Lage-

Mehr

Haszonits Iris Theoriefragen und interessante Beispiel

Haszonits Iris Theoriefragen und interessante Beispiel Schätze sie X als lieare Fuktio bzw. aufgrud vo Y Regressio Wie stark hägt X mit Y zusamme? Korrelatio Güte der Schätzug, Welcher Ateil der Variaz vo X wird durch Y erklärt Bestimmtheitsmaß (Quadrat der

Mehr

14 Regression, lineare Korrelation und Hypothesen-Testverfahren

14 Regression, lineare Korrelation und Hypothesen-Testverfahren 14 Regressio, lieare Korrelatio ud Hypothese-Testverfahre 141 Regressiosverfahre I der Meßtechik kommt es häufig vor, daß eie Schar vo aufgeommee Meßpukte durch eie geeigete aalytische Fuktio i Form eier

Mehr

Ökonometrie Formeln und Tabellen

Ökonometrie Formeln und Tabellen Ökoometrie Formel ud Tabelle Formelsammlug 1 Lieares Modell ud KQ-Schätzug 11 Eifachregressio Lieares Modell: Y i = β 0 + β 1 x i + U i, i = 1,2,, Aahme des lieare Modells: A1: E[U i ] = 0 für alle i =

Mehr

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen

Formelsammlung. Deskriptive Statistik und Elementare Wahrscheinlichkeitsrechnung. Prof. Dr. Ralf Runde Statistik und Ökonometrie, Universität Siegen Formelsammlug Deskriptive Statistik ud Elemetare Wahrscheilichkeitsrechug Prof. Dr. Ralf Rude Statistik ud Ökoometrie, Uiversität Siege Prof. Dr. Ralf Rude - Uiversität Siege I Statistische Grudbegriffe

Mehr

Übungen mit dem Applet erwartungstreu

Übungen mit dem Applet erwartungstreu Übuge mit dem Applet erwartugstreu Visualisierug vo erwartugstreu Begriffe ud statischer Hitergrud. Visualisieruge mit dem Applet..3. Zufallsstreuug der Eizelwerte...3. Mittelwerte 3.3 Variaz. 4.4 Variaz

Mehr

Statistik I Februar 2005

Statistik I Februar 2005 Statistik I Februar 2005 Aufgabe 0 Pukte Ei Merkmal X mit de mögliche Auspräguge 0 ud, das im Folgede wie ei kardialskaliertes Merkmal behadelt werde ka, wird a Merkmalsträger beobachtet. Dabei bezeichet

Mehr

Elektrische Messtechnik

Elektrische Messtechnik Spriger-Lehrbuch Elektrische Messtechik Aaloge, digitale ud computergestützte Verfahre vo Reihard Lerch 5., eu bearb. Aufl. Elektrische Messtechik Lerch schell ud portofrei erhältlich bei beck-shop.de

Mehr

Methode der kleinsten Quadrate

Methode der kleinsten Quadrate Methode der kleiste Quadrate KAPITEL 5: REGRESSIONSRECHNUNG Die Methode der kleiste Quadrate (MklQ) ist ei Verfahre zur Apassug eier Fuktio a eie Puktwolke. Agewadt wird sie beispielsweise, um eie Gesetzmäßigkeit

Mehr

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007

Lehrstuhl für Empirische Wirtschaftsforschung und Ökonometrie Dr. Roland Füss Statistik II: Schließende Statistik SS 2007 Lehrstuhl für Empirische Wirtschaftsforschug ud Ökoometrie Dr. Rolad Füss Statistik II: Schließede Statistik SS 2007 6. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug

Mehr

Jugendliche (18-24 Jahre) in Westdeutschland

Jugendliche (18-24 Jahre) in Westdeutschland Modus Beispiel: Modus Jugedliche (8-4 Jahre) i Westdeutschlad Parameter oder Kewerte eier Häufigkeitsverteilug sid Kegröße, mit dere Hilfe die Verteilug z.t. oder vollstädig rekostruiert werde ka D West

Mehr

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable.

Empirische Ökonomie 1 Sommersemester Formelsammlung. Statistische Grundlagen. Erwartungswert und Varianz einer Zufallsvariable. Empirische Ökoomie 1 Sommersemester 2013 Formelsammlug Hiweis: Alle Variable, Parameter ud Symbole sid wie i de Vorlesugsuterlage defiiert. Statistische Grudlage Erwartugswert Erwartugswert ud Variaz eier

Mehr

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung

Fehlerrechnung. 3. Genauigkeit von Meßergebnissen am Beispiel der Längenmessung 1 Gie 11/000 Fehlerrechug 1. Physikalische Größe: Zahlewert ud Eiheit. Ursache vo Meßfehler 3. Geauigkeit vo Meßergebisse am Beispiel der Lägemessug 4. Messug eier kostate Größe ud Mittelwert 5. Messug

Mehr

Univariate Verteilungen

Univariate Verteilungen (1) Aalyse: "deskriptive Statistike" Aalysiere -> deskriptive Statistike -> deskriptive Statistik Keie tabellarische Darstellug der Häufigkeitsverteilug () Aalyse: "Häufigkeitsverteilug" Aalysiere -> deskriptive

Mehr

Kennwerte Univariater Verteilungen

Kennwerte Univariater Verteilungen Kewerte Uivariater Verteiluge Kewerte Beschreibug vo Verteiluge durch eie (oder weige) Werte Werde auch als Parameter oder Maße vo Verteiluge bezeichet Ma uterscheidet: Lagemaße oder auch Maße der zetrale

Mehr

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE

Versuch 13/1 NEWTONSCHE INTERFERENZRINGE Blatt 1 NEWTONSCHE INTERFERENZRINGE Versuch 3/ NEWTONSCHE INTERFERENZRINGE Blatt NEWTONSCHE INTERFERENZRINGE Die Oberfläche vo Lise hat im allgemeie Kugelgestalt. Zur Messug des Krümmugsradius diet das Sphärometer. Bei sehr flacher Krümmug

Mehr

Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse

Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse. Zweifaktorielle Varianzanalyse Ziel Überprüfug der Gleichheit der Erwartugswerte eies Merals i Utergruppe, die vo zwei Fatore erzeugt werde Fator A i a Stufe Fator B i b Stufe Ist jede Stufe vo Fator A it jeder vo Fator B obiiert, spricht

Mehr

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n.

und wird als n-dimensionaler (reeller) Vektorraum bezeichnet. heißt der von v 1,..., v k aufgespannte Unterraum des R n. Reeller Vektorraum Kapitel Vektorräume Die Mege aller Vektore x mit Kompoete bezeiche wir mit x R =. : x i R, i x ud wird als -dimesioaler (reeller) Vektorraum bezeichet. Defiitio Ei Vektorraum V ist eie

Mehr

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik

Statistik. 5. Schließende Statistik: Typische Fragestellung anhand von Beispielen. Kapitel 5: Schließende Statistik Statistik Kapitel 5: Schließede Statistik 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel 1» Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte der arithmetische

Mehr

2. OLS-Schätzung linearer Regressionsmodelle

2. OLS-Schätzung linearer Regressionsmodelle 2. OLS-Schätzug liearer Regressiosmodelle 2.1 Formulierug liearer Regressiosmodelle Eifaches lieares Regressiosmodell: Das eifache lieare Regressiosmodell ist die simpelste Form eies ökoometrische Modells

Mehr

Physikalisches Anfaengerpraktikum. Beugung und Brechung

Physikalisches Anfaengerpraktikum. Beugung und Brechung Physikalisches Afaegerpraktikum Beugug ud Brechug Ausarbeitug vo Marcel Egelhardt & David Weisgerber (Gruppe 37) Mittwoch, 3. Februar 005 I Utersuchuge am Prismespektroskop 1. Versuch zur Bestimmug des

Mehr

Klausur 3 Kurs 11ma3g Mathematik

Klausur 3 Kurs 11ma3g Mathematik 202-06-2 Klausur 3 Kurs ma3g Mathematik Lösug I eier Lotto-Ure befide sich 49 Kugel, die mit de Zahle vo bis 49 beschriftet sid. Eie eizige Kugel wird gezoge. Bereche Sie die Wahrscheilichkeit, dass diese

Mehr

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen

Grenzwert. 1. Der Grenzwert von monotonen, beschränkten Folgen . Der Grezwert vo mootoe, beschräkte Folge Der Grezwert vo mootoe, beschräkte Folge ist eifacher verstädlich als der allgemeie Fall. Deshalb utersuche wir zuerst diese Spezialfall ud verallgemeier aschliessed.

Mehr

Ereignis Wahrscheinlichkeit P (A) A oder B P (A + B) A und B P (AB) B, wenna P (B A)

Ereignis Wahrscheinlichkeit P (A) A oder B P (A + B) A und B P (AB) B, wenna P (B A) Kapitel 10 Statistik 10.1 Wahrscheilichkeit Das Ergebis eier Messug oder Beobachtug wird Ereigis geat. Ereigisse werde mit de Buchstabe A, B,...bezeichet. Die Messug eier kotiuierliche Variable x gibt

Mehr

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte.

Statistische Maßzahlen. Statistik Vorlesung, 10. März, 2010. Beispiel. Der Median. Beispiel. Der Median für klassifizierte Werte. Statistik Vorlesug,. ärz, Statistische aßzahle Iformatio zu verdichte, Besoderheite hervorzuhebe ittelwerte Aufgabe: die Lage der Verteilug auf der Abszisse zu zeige. Der odus: derjeige Wert, der im Häufigste

Mehr

STATISTIK 2 Teil 1 Regressionsanalyse Von: Anne Schmidt. Anordnung von Zahlen in Zeilen und Spalten (Tabelle)

STATISTIK 2 Teil 1 Regressionsanalyse Von: Anne Schmidt. Anordnung von Zahlen in Zeilen und Spalten (Tabelle) Kapitel 2 Deskriptive lieare Regressio Eigebude Kapitel 16 Das lieare Regressiosmodell 2.1. Eiführug Defiitio Regressiosaalyse Uterschied zu Variazaalyse Matrix/ Matrize Idices Vektor Decke Zusammehäge

Mehr

Fakultät für Wirtschafts- und Rechtswissenschaften

Fakultät für Wirtschafts- und Rechtswissenschaften F A C H H O C H S C H U L E K Ö L N Fakultät für Wirtschafts- ud Rechtswisseschafte F O R M E L S A M M L U N G Deskriptive Statistik Iduktive Statistik Herausgeber: c 2004 Fachgruppe Quatitative Methode

Mehr

Zahlenfolgen und Konvergenzkriterien

Zahlenfolgen und Konvergenzkriterien www.mathematik-etz.de Copyright, Page of 7 Zahlefolge ud Kovergezkriterie Defiitio: (Zahle-Folge, Grezwert) Eie Folge ist eie Abbildug der atürliche Zahle i die Mege A. Es ist also im Fall A: ; f: mit

Mehr

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz

Wiederholung: Linearer Ausgleich 1. Linearer Ausgleich. Vorlesung April. Aufgabe Gegeben Naturgesetz Vorlesug 4 6 + 9 April Bei w,, w m, v R ; (w,, w m =: A R (,m ud ieres Produkt = euklidisches Produkt schrieb sich das Approximatiosproblem so: Fide w = Wiederholug: m ζ k w k mit w v w v w spa{w,, w m

Mehr

Prof. Dr. Roland Füss Statistik II SS 2008

Prof. Dr. Roland Füss Statistik II SS 2008 1. Grezwertsätze Der wichtigste Grud für die Häufigkeit des Auftretes der Normalverteilug ergibt sich aus de Grezwertsätze. Grezwertsätze sid Aussage über eie Zufallsvariable für de Fall, dass die Azahl

Mehr

Mathematik Funktionen Grundwissen und Übungen

Mathematik Funktionen Grundwissen und Übungen Mathematik Fuktioe Grudwisse ud Übuge Potezfuktio Hyperbel Epoetialfuktio Umkehrfuktio Stefa Gärter 004 Gr Mathematik Fuktioe Seite Grudwisse Potezfuktio Defiitio Durch die Zuordugsvorschrift f: Æ mit

Mehr

Teil II Zählstatistik

Teil II Zählstatistik Teil II Zählstatistik. Aufgabestellug. Vergleiche Sie experimetelle Zählverteiluge mit statistische Modelle (POISSON-Verteilug ud Normalverteilug) 2. Theoretische Grudlage Stichworte zur Vorbereitug: Impulszahl,

Mehr

Tests für beliebige Zufallsvariable

Tests für beliebige Zufallsvariable Kapitel 10 Tests für beliebige Zufallsvariable 10.1 Der Chi-Quadrat-Apassugstest Sei x eie gaz beliebige Zufallsvariable, dere Dichtefuktio icht oder icht geau bekat ist. Beispiel: Es seie z.b. mittels

Mehr

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,...

Harmonisches Mittel. Streuungsmaße. Die mittlere Abweichung. Die Standardabweichung. Die Varianz. Statistik 3. Vorlesung, März 11, ,... Statistik. Vorlesug, März, 9 Harmoisches Mittel xh = w wk +... + x x k Wobei w, w,... w k sid die gewichte (w + w + w +...+ w k = Beispiel: wir habe km mit eier Geschwidigkeit vo km/h, ud eie adere km

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Domiik Faas Stochastik Witersemester 00/0 Klausur vom 7.0.0 Aufgabe 3+.5+.5=6 Pukte Bei eier Umfrage wurde 60 Hotelbesucher ach ihrer Zufriedeheit

Mehr

Kennwerte eindimensionaler Häufigkeitsverteilungen Einführung

Kennwerte eindimensionaler Häufigkeitsverteilungen Einführung Kewerte eidimesioaler Häufigkeitsverteiluge Eiführug Statistische Kewerte vo Verteiluge sid umerische Maße mit der Fuktio, zusammefassed eie Eidruck vo 1) dem Schwerpukt, ) der Variabilität ud 3) der Form

Mehr

Analysis ZAHLENFOLGEN Teil 4 : Monotonie

Analysis ZAHLENFOLGEN Teil 4 : Monotonie Aalysis ZAHLENFOLGEN Teil 4 : Mootoie Datei Nr. 40051 Friedrich Buckel Juli 005 Iteretbibliothek für Schulmathematik Ihalt 1 Eiführugsbeispiele 1 Mootoie bei arithmetische Folge Defiitioe 3 3 Welche Beweistechik

Mehr

Klausur 1 über Folgen

Klausur 1 über Folgen www.mathe-aufgabe.com Klausur über Folge Hiweis: Der GTR darf für alle Aufgabe eigesetzt werde. Aufgabe : Bestimme eie explizite ud eie rekursive Darstellug! a) für eie arithmetische Folge mit a = 6, ;

Mehr

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5

Vl Statistische Prozess- und Qualitätskontrolle und Versuchsplanung Übung 5 Vl Statistische Prozess- ud Qualitätskotrolle ud Versuchsplaug Übug 5 Aufgabe ) Sei p = P(A) die Wahrscheilichkeit für ei Ereigis A, dh., es gilt 0 p. Bereche Sie das Maximum der Fuktio f(p) = p(-p). Aufgabe

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Semiar für Theoretische Wirtschaftslehre Vorlesugsprogramm 11.06.2013 Zweidimesioale Datesätze (Fortsetzug) 3. Regressiosaalyse:

Mehr

Kapitel 5: Schließende Statistik

Kapitel 5: Schließende Statistik Kapitel 5: Schließede Statistik Statistik, Prof. Dr. Kari Melzer 5. Schließede Statistik: Typische Fragestellug ahad vo Beispiele Beispiel Aus 5 Messwerte ergebe sich für die Reißfestigkeit eier Garsorte

Mehr

Konzentration und Disparität

Konzentration und Disparität Begleitede Uterlage zur Übug Deskriptive Statistik Michael Westerma Uiversität Esse Ihaltsverzeichis 6 Kozetratios- ud Disparitätsmessug................................ 2 6.1 Begriff ud Eileitug.......................................

Mehr

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit

Kapitel 3: Bedingte Wahrscheinlichkeiten und Unabhängigkeit - 18 - (Kapitel 3 : Bedigte Wahrscheilichkeite ud Uabhägigkeit) Kapitel 3: Bedigte Wahrscheilichkeite ud Uabhägigkeit Wird bei der Durchführug eies stochastische Experimets bekat, daß ei Ereigis A eigetrete

Mehr

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39

Statistik Einführung // Konfidenzintervalle für einen Parameter 7 p.2/39 Statistik Eiführug Kofidezitervalle für eie Parameter Kapitel 7 Statistik WU Wie Gerhard Derfliger Michael Hauser Jörg Leeis Josef Leydold Güter Tirler Rosmarie Wakolbiger Statistik Eiführug // Kofidezitervalle

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

2.3 Kontingenztafeln und Chi-Quadrat-Test

2.3 Kontingenztafeln und Chi-Quadrat-Test 2.3 Kotigeztafel ud Chi-Quadrat-Test Die Voraussetzuge a die Date i diesem Kapitel sid dieselbe, wie im voragegagee Kapitel, ur dass die Stichprobe hier aus Realisieruge vo kategorielle Zufallsvariable

Mehr

Parameter von Häufigkeitsverteilungen

Parameter von Häufigkeitsverteilungen Kapitel 3 Parameter vo Häufigkeitsverteiluge 3. Mittelwerte Mo Der Modus (:= häufigster Wert, Abk.: Mo) ist der Merkmalswert mit der größte Häufigkeit, falls es eie solche gibt. Er sollte ur bei eigipflige

Mehr

Hallo, kurze Anmerkung: Diese Scripte stammen von 1999. Ich kann leider dazu. keine Fragen mehr beantworten! : ( Euch trotzdem viel Erfolg!

Hallo, kurze Anmerkung: Diese Scripte stammen von 1999. Ich kann leider dazu. keine Fragen mehr beantworten! : ( Euch trotzdem viel Erfolg! Hallo, kurze Amerkug: Diese Scripte stamme vo 999. Ich ka leider dazu keie Frage mehr beatworte! : ( Euch trotzdem viel Erfolg! Dorthe dorthe@luebbert.et Statistik-C Skript ud Diplomklausurvorbereitug

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte SS00 7.Sitzug vom.06.00 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluß Grudlage des Iduktiosschlusses:

Mehr

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1

Kapitel 2. Terme. oder (x + 1)(x 1) = x 2 1 Kapitel 2 Terme Josef Leydold Auffrischugskurs Mathematik WS 207/8 2 Terme / 74 Terme Ei mathematischer Ausdruck wie B R q q (q ) oder (x + )(x ) x 2 heißt eie Gleichug. Die Ausdrücke auf beide Seite des

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD.

Einführende Beispiele Arithmetische Folgen. Datei Nr SW. Das komplette Manuskript befindet sich auf der Mathematik - CD. ZAHLENFOLGEN Eiführede Beispiele Arithmetische Folge Datei Nr. 400 SW Das komplette Mauskript befidet sich auf der Mathematik - CD Friedrich Buckel Februar 00 Iteratsgymasium Schloß Torgelow Ihalt Eiführede

Mehr

Fehlerrechnung und Fehlerabschätzung

Fehlerrechnung und Fehlerabschätzung Fehlerrechug ud Fehlerabschätzug Vorbemerkug Eiteilug der Meßfehler. Grobe Fehler. Systematische Fehler.3 Zufällige oder statistische Fehler Fehlerrechug ud Fehlerabschätzug. Bei direkte Messuge.. Durchschittlicher

Mehr

Normalverteilung. Voraussetzung und verwandte Themen. Einführung. Ziel und Nutzen. Grundlagen

Normalverteilung. Voraussetzung und verwandte Themen. Einführung. Ziel und Nutzen. Grundlagen h Normalverteilug Voraussetzug ud verwadte Theme Für diese Beschreibuge sid Grudlage der Statistik ud isbesodere der statistische Verteiluge vorteilhaft. Weiterführede Theme sid: www.versuchsmethode.de/verteilugstests.pdf

Mehr

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II

Strukturelle Modelle in der Bildverarbeitung Markovsche Ketten II Strukturelle Modelle i der Bildverarbeitug Markovsche Kette II D. Schlesiger TUD/INF/KI/IS Statioäre Verteilug Verborgee Markovsche Kette (HMM) Erkeug stochastisches Automate D. Schlesiger SMBV: Markovsche

Mehr

Schätzen von Populationswerten

Schätzen von Populationswerten Schätze vo Populatioswerte 7.Sitzug 35 Seite, SoSe 003 Schätze vo Populatioswerte Ziel: Ermöglichug vo Aussage über die Grudgesamtheit ahad vo Stichprobedate Logische Methode: Iduktiosschluss Grudlage

Mehr

Innerbetriebliche Leistungsverrechnung

Innerbetriebliche Leistungsverrechnung Ierbetriebliche Leistugsverrechug I der Kostestellerechug bzw. im Betriebsabrechugsboge (BAB ist ach der Erfassug der primäre Kostestellekoste das Ziel, die sekudäre Kostestellekoste, also die Koste der

Mehr

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I

Gütefunktion und Fehlerwahrscheinlichkeiten Rechtsseitiger Test (µ 0 = 500) zum Signifikanzniveau α = Interpretation von Testergebnissen I 6 Hypothesetests Gauß-Test für de Mittelwert bei bekater Variaz 6.3 Gütefuktio ud Fehlerwahrscheilichkeite Rechtsseitiger Test (µ 0 = 500) zum Sigifikaziveau α = 0.30 6 Hypothesetests Gauß-Test für de

Mehr

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa

4.1 Dezimalzahlen und Intervallschachtelungen. a) Reelle Zahlen werden meist als Dezimalzahlen dargestellt, etwa 20 I. Zahle, Kovergez ud Stetigkeit 4 Kovergete Folge 4. Dezimalzahle ud Itervallschachteluge. a) Reelle Zahle werde meist als Dezimalzahle dargestellt, etwa 7,304 = 0+7 +3 0 +0 00 +4 000. Edliche Dezimalzahle

Mehr

Grundlagen der Biostatistik und Informatik

Grundlagen der Biostatistik und Informatik Vergleich vo mehrere Stichprobe Grudlage der Biostatisti ud Iformati Hypotheseprüfuge III., Nichtparametrische Methode dr László Smeller Semmelweis Uiversität 0 Vergleich vo mehrere Stichprobe Boferroi

Mehr

Linsengesetze und optische Instrumente

Linsengesetze und optische Instrumente Lisegesetze ud optische Istrumete Gruppe X Xxxx Xxxxxxxxx Xxxxxxx Xxxxxx Mat.-Nr.: XXXXX Mat.-Nr.: XXXXX XX.XX.XX Theorie Im olgede werde wir eie kurze Überblick über die Fuktio, de Aubau ud die Arte vo

Mehr

Folgen und Reihen. 23. Mai 2002

Folgen und Reihen. 23. Mai 2002 Folge ud Reihe Reé Müller 23. Mai 2002 Ihaltsverzeichis 1 Folge 2 1.1 Defiitio ud Darstellug eier reelle Zahlefolge.................. 2 1.1.1 Rekursive Defiitio eier Folge......................... 3 1.2

Mehr

Abschlussprüfung 2012 an den Realschulen in Bayern

Abschlussprüfung 2012 an den Realschulen in Bayern Prüfugsdauer: 150 Miute Abschlussprüfug 01 a de Realschule i Bayer Mathematik II Aufgabe B 1 Haupttermi B 1.0 Die Parabel p verläuft durch die Pukte P( 5 19) ud Q(7 5). Sie hat eie Gleichug der Form y

Mehr

Lage- und Streuungsmaße

Lage- und Streuungsmaße Statistik 1 für SoziologIe Lage- ud Streuugsmaße Uiv.Prof. Dr. Marcus Hudec Streuugsmaße Statistische Maßzahle, welche die Variabilität oder die Streubreite i de Date messe. Sie beschreibe die Abweichug

Mehr

Kreuztabellenanalyse und Assoziationsmaße

Kreuztabellenanalyse und Assoziationsmaße FB 1 W. Ludwig-Mayerhofer Statistik 1 Herzlich willkomme zur Vorlesug Statistik Zusammehäge zwische omiale (ud/oder ordiale) Merkmale: aalyse ud FB 1 W. Ludwig-Mayerhofer Statistik 2 eige sich zur Darstellug

Mehr

Aufgaben zur Übung und Vertiefung

Aufgaben zur Übung und Vertiefung Aufgabe zur Übug ud Vertiefug ARITHMETISCHE ZAHLENFOLGEN Berufliches Gymasium / Uterstufe () Stelle Sie fest, welche der gegebee Folge arithmetisch sid: Bestimme Sie zuächst die erste füf Folgeglieder,

Mehr

LGÖ Ks VMa 12 Schuljahr 2017/2018

LGÖ Ks VMa 12 Schuljahr 2017/2018 LGÖ Ks VMa Schuljahr 7/8 Zusammefassug: Gleichuge ud Ugleichuge Ihaltsverzeichis Polyomgleichuge ud -ugleichuge Bruch-, Wurzel- ud Betragsgleichuge ud ugleichuge 6 Für Experte 8 Polyomgleichuge ud -ugleichuge

Mehr

Empirische Verteilungsfunktion

Empirische Verteilungsfunktion KAPITEL 3 Empirische Verteilugsfuktio 3.1. Empirische Verteilugsfuktio Seie X 1,..., X uabhägige ud idetisch verteilte Zufallsvariable mit theoretischer Verteilugsfuktio F (t) = P[X i t]. Es sei (x 1,...,

Mehr

Messabweichungen. x x. Relativer Fehler (rel.messabweichung) r x M...Messbereichsendwert, xw

Messabweichungen. x x. Relativer Fehler (rel.messabweichung) r x M...Messbereichsendwert, xw Messabweichuge FEHLERRECHNUNG Der Begriff : Messabweichug / Messfehler Messuge physiskalischer Größe sid grudsätzlich fehlerbehaftet, d.h. ma erhält Messwerte, die vom wahre Wert mehr oder weiger abweiche.

Mehr

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert

h i Deskriptive Statistik 1-dimensionale Daten Daten und Häufigkeiten Seite 1 Nominal Ordinal Metrisch (Kardinal) Metrisch - klassiert Deskriptive Statistik dimesioale Date Date ud Häufigkeite Seite Nomial Ordial Metrisch (Kardial Metrisch klassiert Beschreibug: Date habe keie atürliche Reihefolge. Bsp: Farbe, Religio, Geschlecht, Natioalität...

Mehr

2 Asymptotische Schranken

2 Asymptotische Schranken Asymptotische Schrake Sowohl die Laufzeit T () als auch der Speicherbedarf S() werde meist durch asymptotische Schrake agegebe. Die Kostate c i, welche i der Eiführug deiert wurde, sid direkt vo der Implemetatio

Mehr

Kochrezept für die Auswertung von V11:

Kochrezept für die Auswertung von V11: Kochrezet für die Auswertug vo V11: vo Viktor Fischer ud Walter Lauko, erstellt im WS 7/8 1.1 Auswertug: 1. Ma berechet de amfdruck gemäß: =Aaratur evakuiert - gemesse. Um va zu bereche wird l( / ) gege

Mehr

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier

Der natürliche Werkstoff Holz - Statistische Betrachtungen zum uniaxialen Zugversuch am Beispiel von Furnier Der atürliche Werkstoff Holz - Statistische Betrachtuge zum uiaxiale Zugversuch am Beispiel vo Furier B. Bellair, A. Dietzel, M. Zimmerma, Prof. Dr.-Ig. H. Raßbach Zusammefassug FH Schmalkalde, 98574 Schmalkalde,

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Methodelehre e e Prof. Dr. G. Meihardt 6. Stock, Wallstr. 3 (Raum 06-206) Sprechstude jederzeit ach Vereibarug ud ach der Vorlesug. Mathematische ud statistische Methode I Dr. Malte Persike persike@ui-maiz.de

Mehr

14 Statistische Beziehungen zwischen nomi nalen Merkmalen

14 Statistische Beziehungen zwischen nomi nalen Merkmalen 14 Statistische Beziehuge zwische omi ale Merkmale 14.1 Der Chi Quadrat Test auf Uabhägigkeit für Vier Feldertafel 14.2 Der Chi Quadrat Test auf Uabhägigkeit für r s Kotigeztafel 14.3 Zusammmehagsmaße

Mehr

Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf.

Exponentialfunktionen und die e- Funktion. Bei den bisher betrachteten Funktionen traten Exponenten nur als Zahlen auf. R. Brikma http://brikma-du.de Seite.. Eiführug Epoetialfuktioe ud die e- Fuktio Bei de bisher betrachtete Fuktioe trate Epoete ur als Zahle auf. q Potezfuktio : f a mit q Beispiel: f Fuktioe mit positiver

Mehr

1 Randomisierte Bestimmung des Medians

1 Randomisierte Bestimmung des Medians Praktikum Diskrete Optimierug (Teil 0) 0.07.006 Radomisierte Bestimmug des Medias. Problemstellug ud Ziel I diesem Abschitt stelle wir eie radomisierte Algorithmus zur Bestimmug des Medias vor, der besser

Mehr

4. Vektorräume mit Skalarprodukt

4. Vektorräume mit Skalarprodukt 4. Vektorräume mit Skalarprodukt Wiederholug: V=R x, y R: x= x x i x, y= y y, :R R R Skalarprodukt Stadardskalarprodukt lieare Abbildug mit 2 Argumete 4. Eigeschafte vo Skalarprodukte Def.: Es sei V ei

Mehr

X in einer Grundgesamtheit vollständig beschreiben.

X in einer Grundgesamtheit vollständig beschreiben. Prof. Dr. Rolad Füss Statistik II SS 008. Puktschätzug vo Parameter eier Grudgesamtheit Nur durch eie Totalerhebug ka ma die Verteilug eier Zufallsvariable X i eier Grudgesamtheit vollstädig beschreibe.

Mehr

Formelsammlung Mathematik

Formelsammlung Mathematik Formelsammlug Mathematik 1 Fiazmathematik 1.1 Reterechug Sei der Zissatz p%, der Zisfaktor q = 1 + p 100. Seie R die regelmäßig zu zahlede Rate, die Laufzeit. Edwert: Barwert: achschüssig R = R q 1 q 1

Mehr

WISTA WIRTSCHAFTSSTATISTIK

WISTA WIRTSCHAFTSSTATISTIK WISTA WIRTSCHAFTSSTATISTIK PROF. DR. ROLF HÜPEN FAKULTÄT FÜR WIRTSCHAFTSWISSENSCHAFT Seiar für Theoretische Wirtschaftslehre Vorlesugsprogra 14.05.2013 Streuugsaße 1. Norierte Etropie 2. Spaweite, Quartilsabstad,

Mehr

Wahrscheinlichkeitstheorie und Statistik

Wahrscheinlichkeitstheorie und Statistik Kapitel 15 Wahrscheilichkeitstheorie ud Statistik Verstädisfrage Sachfrage 1. Erläuter Sie de Begriff der absolute ud relative Häufigkeit eier Stichprobe! 2. Erläuter Sie de Begriff der Klassehäufigkeit

Mehr

8. Übungsblatt Aufgaben mit Lösungen

8. Übungsblatt Aufgaben mit Lösungen 8. Übugsblatt Aufgabe mit Lösuge Aufgabe 36: Bestimme Sie alle z C, für die die folgede Potezreihe kovergiere: z z a, b! +, c z +. = = Lösug 36: Wir bezeiche de Kovergezradius mit r. a Wir wede das Quotietekriterium

Mehr