Lineare Quellen. Martin Schlup. 7. Februar 2014

Größe: px
Ab Seite anzeigen:

Download "Lineare Quellen. Martin Schlup. 7. Februar 2014"

Transkript

1 Lineare Quellen Martin Schlup 7. Februar 204. Ideale Quellen Ideale Quellen sind Modelle mit Eigenschaften, die in Wirklichkeit nur näherungsweise realisiert werden können. Ideale Quellen sind z. B. in der Lage beliebig hohe Stromstärken und Spannungen und somit unbegrenzte Energiemengen abzugeben. Hier sollen zwei Arten von solchen idealen aktiven Elementen betrachtet werden: Spannungs- und Stromquellen... Ideale Spannungsquelle Eine ideale Spannungsquelle liefert eine vom Klemmenstrom I unabhängige Klemmenspannung U: U = U Q für alle Werte von I () Gleichung () gilt unabhängig vom Vorzeichen von I also auch für den Fall, wo die Quelle passiv wirkt, bzw. Energie aufnimmt 2. Die Abb. zeigt das Schaltzeichen einer idealen Spannungsquelle nach DIN 3. Das Bezugspfeilsystem (siehe Anhang A) entspricht hier dem eines Energielieferanten (Erzeugerpfeilsystem 4 ). Abbildung : Schaltzeichen einer idealen Spannungsquelle Als aktive Elemente bezeichnet man Zweipole deren U-I-Kennlinie nicht durch den Ursprung verläuft. 2 Praktisch können ideale Quellen mit elektronischen Mitteln realisiert werden (Stabilisierschaltung). Sie können aber im Allgemeinen nicht passiv betrieben werden, d. h. so, dass sie Energie aufnehmen. 3 EN 6067 Reihe, siehe: 4 Bei diesem Bezugspfeilsystem bedeutet P = U I = U Q I > 0, dass die Quelle Energie abgibt, andernfalls für P < 0 Energie aufnimmt. Die Bezeichnung Erzeugerpfeilsystem ist nicht zutreffend, da ja bekanntlich Energie nicht erzeugt werden kann...

2 2. Lineare Quellen.2. Ideale Stromquelle Eine ideale Stromquelle liefert eine von der Klemmenspannung U unabhängige Klemmenstromstärke I. I = I Q für alle Werte von U (2) Gleichung (2) gilt unabhängig vom Vorzeichen von U also auch für den Fall, wo die Quelle passiv wirkt, bzw. Energie aufnimmt. Die Abb. 2 zeigt das Schaltzeichen einer idealen Stromquelle nach DIN. Abbildung 2: Schaltzeichen einer idealen Stromquelle 2. Lineare Quellen Im Gegensatz zu idealen Quellen, verändern sich bei nichtidealen oder realen Quellen Klemmenspannung und -stromstärke mit der Belastung. Die bei leerlaufender Quelle vorhandene Klemmenspannung heisst Leerlaufspannung U 0 und die bei kurzgeschlossener Quelle fliessende Stromstärke Kurzschlussstromstärke I 0. Wirkt die Quelle aktiv, so ist ihre Klemmenspannung kleiner als die Leerlaufspannung, bzw. die Stromstärke kleiner als die Kurzschlussstromstärke. Ist die Differenz zwischen der Leerlauf- und der Klemmenspannung proportional zur Klemmenstromstärke (U 0 U I) oder äquivalent dazu, zwischen der Kurzschluss- und der Klemmenstromstärke proportional zur Klemmenspannung (I 0 I U), so spricht man von einer linearen Quelle. Die entsprechende Kennlinie ist in Abb. 3 normiert dargestellt. Offensichtlich ist die Kennlinie einer linearen Quelle eine Gerade zwischen den Punkten (U = U 0, I = 0) und (U = 0, I = I 0 ): U = U 0 U 0 I 0 I oder aufgelöst nach I: (3) I = I 0 I 0 U 0 U (4) Leerlaufspannung und Kurzschlussstromstärke beschreiben das elektrische (Klemmenverhalten) einer linearen Quelle vollständig. Theoretisch kann eine lineare Quelle auch passiv betrieben werden, d. h. im 2. oder 4. Quadranten (gestrichelter Teil der Kennlinie in der Abb. 3). 2

3 2. Lineare Quellen Abbildung 3: Normierte U-I-Kennlinie einer linearen Quelle Die auf der x-achse (Abszisse) entspricht der Kurzschlussstromstärke I 0, die auf der y-achse (Ordinate) der Leerlaufspannung U 0 der Quelle. Die Kennlinie einer linearen Quelle erstreckt sich über drei Quadranten: in ersten Quadrant wirkt die Quelle aktiv (gibt Energie ab), im 2. und 4. Quadrant wirkt sie passiv (nimmt Energie auf). 2.. Lineare Spannungsquelle Der an den Klemmen der belasteten linearen Quelle fehlende Spannungsanteil kann durch einen Innenwiderstand erklärt werden. Das Verhalten einer linearen Quelle kann somit durch die Serieschaltung einer idealen Spannungsquelle mit der Quellenspannung U Q = U 0 und eines Innenwiderstandes mit dem Widerstandswert R I = U 0 /I 0 nachgebildet werden (cf. Abb. 4). An diesem Widerstand entsteht ein dem Quellenstrom proportionalen Spannungsverlust. Die Gleichung der U-I-Kennlinie der linearen Spannungsquelle ergibt sich entsprechend der Gleichung (3): U = U Q R I I (5) 2.2. Lineare Stromquelle Der an den Klemmen der belasteten linearen Quelle fehlende Stromanteil kann ebenfalls durch einen Innenwiderstand erklärt werden. Das Verhalten einer linearen Quelle kann somit durch die Parallelschaltung einer idealen Stromquelle mit der Quellenstromstärke I Q = I 0 und eines Innenwiderstandes mit dem Leitwert G I = I 0 /U 0 nachgebildet werden (cf. Abb. 5). An diesem Widerstand entsteht ein der Klemmenspannung proportionaler Stromverlust. 3

4 3. Quellenersatzschaltungen Abbildung 4: Lineare Spannungsquelle mit idealer Spannungsquelle, Innenwiderstand und Lastwiderstand Für die lineare Quelle bilden die Bezugspfeilrichtungen für U und I ein Erzeugerpfeilssytem, für den Lastwiderstand hingegen, ein Verbraucherpfeilsytem. Die Gleichung der I-U-Kennlinie der linearen Stromquelle ergibt sich entsprechend der Gleichung (4): I = I Q G I U (6) Abbildung 5: Lineare Stromquelle mit idealer Stromquelle, Innenwiderstand und Lastwiderstand (die letzten zwei Grössen sind hier als Leitwerte angegeben) 3. Quellenersatzschaltungen Da sich von der Kennlinie her eine lineare Spannungs- nicht von einer linearen Stromquelle unterscheiden lässt, kann frei gewählt werden, welches der beiden Modelle benutzt werden soll, um die Kennlinie zu erklären. Je nach Anwendung eignet sich das eine besser als das andere. Zudem kann gezeigt werden, dass für eine beliebige Zusammenschaltung von idealen Quellen und linearen (ohm schen) Widerständen die U-I-Kennlinie immer eine Gerade bildet, egal wie kompliziert die Schaltung aussieht. Das bedeutet aber, dass das Verhalten jeder (linearen) Widerstandsschaltung durch eine Spannungsquellenersatz- oder Stromquellenersatzschaltung wiedergeben werden kann. Um eine Quellenersatzschaltung für eine komplexere lineare Schaltung zu finden, müssen nur Leerlaufspannung und Kurzschlussstromstärke ermittelt werden. Mit diesen beiden Parametern lässt sich dann eine Ersatzspannungs- oder -stromquelle finden, die das exakt gleiche Klemmenverhalten wie die Originalschaltung aufweist. 4

5 3. Quellenersatzschaltungen Die Quellenersatzschaltungen beschreiben nur das elektrische Verhalten der linearen Quelle an den Klemmen (d. h. die Kennlinie) und nicht den inneren Aufbau des Zweipols. Anstelle von Leerlaufspannung oder Kurzschlussstromstärke kann auch der Innenwiderstand R I = U 0 /I 0 oder -leitwert G I = I 0 /U 0 direkt ermittelt werden. Dazu müssen alle Quellen der betrachteten Schaltung Null gesetzt werden: d. h. Spannungsquellen kurzgeschlossen und Stromquellen leerlaufend, so dass nur noch ein reines Widerstandsnetzwerk übrig bleibt. Diese Widerstände können dann zu einem Ersatzwiderstand zusammengefasst werden, welcher dem Innenwiderstand entspricht. Beispiel: Potentiometerschaltung Um die belastete Potentiometerschaltung gemäss Abb. 6 einfach berechnen zu können, kann das Potentiometer mit der idealen Quelle durch eine Spannungsersatzquelle dargestellt werden. Dazu wird der Lastwiderstand R gedanklich entfernt. Für die Leerlaufspannung erhält man ziemlich direkt (Spannungsteiler): U 0 = R 2 R + R 2 U B = x R P ( x) R P + x R P U B = x U B Dabei ist offensichtlich, dass U 0 nicht mit U B übereinstimmt, ausgenommen für x =. Abbildung 6: Potentiometerschaltung mit Lastwiderstand R Das Potentiometer wird hier durch die beiden Widerstände R und R 2 dargestellt. Die Grösse x entspricht der normierten Stellung des Schleifers: x = 0 für unten, x = für oben. Nullsetzen (Kurzschliessen) der Quelle hinterlässt die Parallelschaltung der Widerstände R und R 2, welche dem gesuchten Innenwiderstand R I = U 0 /I 0 entspricht: R I = R + = R R 2 = R R 2 + R 2 ( x) R P x R P ( x) R P + x R P = x ( x) R P Der Innenwiderstand ändert sich mit der Schleiferstellung: er ist unter anderem Null für x = 0 und x = und maximal für x = /2. Mit dem obigen Ergebnis kann auch die Kurzschlussstromstärke bestimmt werden: I 0 = U 0 = U B R I x R P 5

6 3. Quellenersatzschaltungen Beispiel: Parallelschaltung zweier Gleichstromquellen Um die Belastung zweier parallelgeschalteten Spannungsquellen berechnen zu können (siehe Abb. 7, linke Seite), ist es zweckmässig die beiden linearen Spannungsquellen durch eine Ersatzspannungsquelle zu ersetzen (siehe Abb. 7, rechte Seite). Dazu wird der Lastwiderstand R gedanklich entfernt. Abbildung 7: Parallelschaltung zweier linearen Spannungsquellen mit Lastwiderstand Diese Konfiguration findet sich häufig, wenn ein Gleichstromgenerator (U Q, R ) einen Akkumulator (wiederaufladbare Batterie) auflädt und gleichzeitig eine Last (R) speist. In diesem Fall nimmt die durch die Quelle (U Q2, R 2 ) modellierte Batterie Energie auf, d. h. wird passiv betrieben. Für die Kurzschlussstromstärke (entspricht der Last R = 0) erhält man durch Superposition der von jeder einzeln genommenen Spannungsquelle gelieferten Stromanteilen: U Q2 = 0 I 0 = U Q R U Q = 0 I 02 = U Q2 R 2 I 0 = I 0 + I 02 = U Q R 2 + U Q2 R R R 2 Nullsetzen (Kurzschliessen) der beiden Quelle hinterlässt die Parallelschaltung der Widerstände R und R 2, welche dem gesuchten Ersatzinnenwiderstand R E = U 0 /I 0 entspricht: R E = R + = R R 2 R R 2 + R 2 Mit dem obigen Ergebnis kann auch die Leerlaufspannung und somit die Ersatzquellenspannung U E bestimmt werden: U E = U 0 = R E I 0 = U Q R 2 + U Q2 R R + R 2 6

7 A. Anhang Bezugspfeilsysteme A. Anhang Bezugspfeilsysteme Physikalische Grössen wie die elektrische Spannung, die Stromstärke oder der Energiefluss an den Klemmen eines Zweipols sind gerichtet (siehe Abbildung 8), d. h. sie besitzen einen wirklichen Richtungssinn 5. Diesem muss zur Beschreibung oder Berechnung eine, meistens willkürlich gewählte, Bezugsrichtung zugeordnet werden. Damit erhält die betrachtete Grösse ein Vorzeichen: Ist diese Grösse positiv, so deckt sich die Bezugsrichtung mit dem wirklichen Richtungssinn der betrachteten Grösse, ist sie negativ, liegt sie entgegengesetzt. Abbildung 8: Zweipol mit eingetragenen Bezugsrichtungen für Spannung U, Stromstärke I und Energiefluss P (Energiestrom: P = dw/dt) Es sind hier die beiden grundsätzlichen Varianten dargestellt. Da die Grössen Spannung U, Stromstärke I und Energiefluss P miteinander verknüpft sind 6, können nicht alle Kombinationen von Bezugsfeilen sinnvoll gewählt werden, wenn der formale Zusammenhang P = U I in allen Situationen gelten soll. Grundsätzlich gibt es zwei verschiedene, aber gleichberechtigte Bezugspfeilsysteme, welche sich durch die Festlegung der Richtung der Energieströme P unterscheiden. Die Festlegung einer Bezugsrichtung für P lässt zwei Varianten für die Wahl der Bezugsrichtungen von U und I offen: parallele oder antiparallele Pfeilrichtungen. Welches von den beiden Systemen benutzt wird ist willkürlich, insbesondere können je nach Situation beide nebeneinander eingesetzt werden, wie z. B. in den Abb. 4 und 5, wo für die linearen Quellen das eine und für den Lastwiderstand das andere Bezugspfeilsystem gilt. 5 Unter wirklich versteht man z. B. die Richtung der Verschiebung positiver Ladung (konventionelle Stromrichtung) oder eine positive Potentialdifferenz für die Spannung. Auch diese Festlegungen sind willkürlich aber allgemein üblich, da universell akzeptiert. 6 Der Energiestrom P = dw/dt am Tor der Zweipols wird durch die Grössen U und I bestimmt. Dabei ist die Spannung die intensive (treibende) und die Stromstärke die extensive (mengenartige) Grösse. 7

8 A. Anhang Bezugspfeilsysteme A.. Verbraucherpfeilsystem Im Verbraucher-Bezugspfeilsystem zeigt die Bezugsrichtung des Energieflusses in das Tor des Zweipols hinein (siehe Abb. 8, linke Seite und die Beispiele aus Abb. 9). Damit sind die Bezugsrichtungen der Spannung und der Stromstärke parallel zueinander. Abbildung 9: Verbraucherpfeilsystem für aktive und passive Zweipole Für die ideale Spannungsquelle sind dabei zwei Betriebsarten möglich: aktiv wirkend für P < 0 und passiv wirkend für P > 0. Der Widerstand kann nur passiv betrieben werden: also P > 0. A.2. Erzeugerpfeilsystem Im Erzeuger-Bezugspfeilsystem 7 zeigt die Bezugsrichtung des Energieflusses aus dem Tor des Zweipols heraus (siehe Abb. 8, rechte Seite und die Beispiele aus Abb. 0). Damit liegen die Bezugsrichtungen der Spannung und der Stromstärke antiparallel. Abbildung 0: Erzeugerpfeilsystem für aktive und passive Zweipole Für die ideale Spannungsquelle sind dabei zwei Betriebsarten möglich: aktiv wirkend für P > 0 und passiv wirkend für P < 0. Der Widerstand kann nur passiv betrieben werden: also P < 0. 7 Diese Bezeichung ist falsch, da keine Energie erzeugt werden kann. Besser wäre der Begriff Energielieferant genau wie für den Verbraucher Energieabnehmer treffender wäre. 8

NTB Druckdatum: ELA I

NTB Druckdatum: ELA I GLEICHSTROMLEHRE Einführende Grundlagen - Teil 1 Elektrische Ladung Elektrische Stromdichte N elektrische Ladung Stromstärke Anzahl Elektronen Elementarladung elektrische Stromdichte Querschnittsfläche

Mehr

I. Bezeichnungen und Begriffe

I. Bezeichnungen und Begriffe UniversitätPOsnabrück Fachbereich Physik Vorlesung Elektronik 1 Dr. W. Bodenberger 1. Einige Bezeichnungen und Begriffe I. Bezeichnungen und Begriffe Spannung: Bezeichnung: u Signalspannung U Versorgungsspannung

Mehr

Dieses Buch darf ohne Genehmigung des Autors in keiner Form, auch nicht teilweise, vervielfältig werden.

Dieses Buch darf ohne Genehmigung des Autors in keiner Form, auch nicht teilweise, vervielfältig werden. Netzwerke berechnen mit der Ersatzspannungsquelle von Wolfgang Bengfort ET-Tutorials.de Elektrotechnik verstehen durch VIDEO-Tutorials zum Impressum Rechtlicher Hinweis: Alle Rechte vorbehalten. Dieses

Mehr

9. Netzwerksätze. Einführende Bemerkung. Der Überlagerungssatz. Satz von der Ersatzspannungsquelle. Satz von der Ersatzstromquelle

9. Netzwerksätze. Einführende Bemerkung. Der Überlagerungssatz. Satz von der Ersatzspannungsquelle. Satz von der Ersatzstromquelle Grundlagen der Elektrotechnik GET 2-387- 9. Netzwerksätze Einführende Bemerkung Der Überlagerungssatz Satz von der Ersatzspannungsquelle Satz von der Ersatzstromquelle [Buch GET 2: Seiten 323-343] Einführende

Mehr

Versuch B2/1: Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken

Versuch B2/1: Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken Versuch B2/1: Spannungs- und Stromquellen, Messung von Spannungen und Stromstärken 1.1 Quellen 1.1.1 Der Begriff des Zweipols (Eintores) Ein Zweipol ist vollständig beschrieben durch zwei Größen: Die Klemmenspannung

Mehr

1 Grössen und Einheiten

1 Grössen und Einheiten 1/7 1 Grössen und Einheiten 1.1 S-Einheiten Das Système nternational d'nités definiert die sieben Basiseinheiten: Meter für die Länge, Kilogramm für die Masse, Sekunde für die Zeit, Ampère für die Stromstärke,

Mehr

Grundlagen der Elektrotechnik 1

Grundlagen der Elektrotechnik 1 Grundlagen der Elektrotechnik Kapitel : Berechnungsverfahren für Netzwerke Berechnungsverfahren für Netzwerken. Überlagerungsprinzip. Maschenstromverfahren. Knotenpotentialverfahren 6. Zweipoltheorie 7.5

Mehr

Stand: 4. März 2009 Seite 1-1

Stand: 4. März 2009 Seite 1-1 Thema Bereiche Seite Ladung Berechnung - Spannung allgemeine Definition - Berechnung - Definition über Potential - Stromstäre Berechnung über Ladung - Stromdichte Berechnung - Widerstand Berechnung allgemein

Mehr

Versuch 2 Kirchhoff'sche Gesetze (Bilanzgesetze)

Versuch 2 Kirchhoff'sche Gesetze (Bilanzgesetze) 1/6 Lernziele Versuch 2 Kirchhoff'sche Gesetze (Bilanzgesetze) Sie kennen die Kirchhoff'schen Gesetze und können den Maschen- sowie den Knotensatz in ihrer Bedeutung als Bilanzgesetze erläutern. Sie können

Mehr

Spannungs- und Stromquellen

Spannungs- und Stromquellen Elektrotechnik Grundlagen Spannungs- und Stromquellen Andreas Zbinden Gewerblich- Industrielle Berufsschule Bern Inhaltsverzeichnis 1 Ideale Quellen 2 2 Reale Quellen 2 3 Quellenersatzschaltbilder 4 4

Mehr

GRUNDLAGENLABOR CLASSIC LINEARE QUELLEN ERSATZSCHALTUNGEN UND KENNLINIEN

GRUNDLAGENLABOR CLASSIC LINEARE QUELLEN ERSATZSCHALTUNGEN UND KENNLINIEN GRNDLAGENLABOR CLASSIC LINEARE QELLEN ERSATZSCHALTNGEN ND KENNLINIEN Inhalt:. Einleitung und Zielsetzung...2 2. Theoretische Aufgaben - Vorbereitung...2 3. Praktische Messaufgaben...3 Anhang: Theorie Quellen,

Mehr

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise

1. Gleichstrom 1.2 Aktive und passive Zweipole, Gleichstromschaltkreise Elektrischer Grundstromkreis Reihenschaltung von Widerständen und Quellen Verzweigte Stromkreise Parallelschaltung von Widerständen Kirchhoffsche Sätze Ersatzquellen 1 2 Leerlauf, wenn I=0 3 4 Arbeitspunkt

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GRUNDLAGEN DER ELEKTROTECHNIK Versuch 1: Gleichstrommessungen Übersicht In dieser Übung sollen die Vielfachmessgeräte (Multimeter) des Labors kennengelernt werden. In mehreren Aufgaben sollen Spannungen,

Mehr

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i

Lo sung zu UÜ bung 1. I Schaltung Ersatzquellenberechnung. 1.1 Berechnung von R i Lo sung zu UÜ bung 1 I Schaltung 1 Schaltbild 1: 1.Schaltung mit Spannungsquelle 1. Ersatzquellenberechnung 1.1 Berechnung von R i Zunächst Ersatzschaltbild von den Klemmen aus betrachtet zeichnen: ESB

Mehr

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung

Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung Elektrizitätslehre und Schaltungen Versuch 14 ELS-14-1 Innenwiderstand einer Spannungsquelle Potentiometer- und Kompensationsschaltung 1 Vorbereitung 1.1 Allgemeine Vorbereitung für die Versuche zur Elektrizitätslehre.

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. T. Uelzen Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

[ Q] [ s] Das Ampere, benannt nach André Marie Ampère. ( ) bildet die Einheit des elektrischen Stromes und eine weitere SI Basiseinheit!

[ Q] [ s] Das Ampere, benannt nach André Marie Ampère. ( ) bildet die Einheit des elektrischen Stromes und eine weitere SI Basiseinheit! 11 Elektrodynamik Der elektrische Gleichstromkreis 11.1 Strom Schliesst man eine Spannungsquelle (z.b. Batterie), eine Lampe und zwei Kabel (leitfähiges Material) richtig zusammen, so beginnt die Lampe

Mehr

Übungsaufgaben zur Vorlesung Elektrotechnik 1

Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik Übungsaufgaben zur Vorlesung Elektrotechnik 1 Fachhochschule Esslingen - Hochschule für Technik Fachbereich Informationstechnik

Mehr

2 Netze an Gleichspannung

2 Netze an Gleichspannung Carl Hanser Verlag München 2 Netze an Gleichspannung Aufgabe 2.13 Die Reihenschaltung der Widerstände R 1 = 100 Ω und R 2 liegt an der konstanten Spannung U q = 12 V. Welchen Wert muss der Widerstand R

Mehr

2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb

2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb HS EL / Fachb. Technik / Studiengang Medientechnik 13.04.14 Seite 2-1 2.) Grundlagen der Netzwerkberechnung / Gleichstrombetrieb 2.1 Quellen 2.1.1 Grundlagen, Modelle, Schaltsymbole Eine elektrische Spannungsquelle

Mehr

GRUNDLAGEN DER WECHSELSTROMTECHNIK

GRUNDLAGEN DER WECHSELSTROMTECHNIK ELEKTROTECHNIK M GLEICHSTROM. ELEKTRISCHE GRÖßEN UND GRUNDGESETZE. ELEKTRISCHE LADUNG UND STROM.3 ELEKTRISCHES FELD UND STROM.4 ELEKTRISCHES SPANNUNG UND POTENTIAL.5 ELEKTRISCHES LEISTUNG UND WIRKUNGSGRAD.6

Mehr

Ein Glühweinkocher für 230 V hat ein Heizelement aus Chrom-Nickel-Draht mit dem Temperaturkoeffizienten 20 =

Ein Glühweinkocher für 230 V hat ein Heizelement aus Chrom-Nickel-Draht mit dem Temperaturkoeffizienten 20 = Aufgabe MG01 Ein Glühweinkocher für 230 V hat ein Heizelement aus Chrom-Nickel-Draht mit dem Temperaturkoeffizienten 20 =4 10 4 1 C. Um welchen Faktor ist seine Stromaufnahme bei der Anfangstemperatur

Mehr

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung Grundstromkreis, Widerstandsmessung Stichworte zur Vorbereitung Informieren Sie sich zu den folgenden Begriffen: Widerstand, spezifischer Widerstand, OHMsches Gesetz, KIRCHHOFFsche Regeln, Reihenund Parallelschaltung,

Mehr

Labor Einführung in die Elektrotechnik

Labor Einführung in die Elektrotechnik Laborleiter: Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Einführung in die Elektrotechnik Prof. Dr. M. Prochaska Laborbetreuer: Versuch 2: Erstellen technischer Berichte,

Mehr

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik

Verbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik erbundstudiengang Wirtschaftsingenieurwesen (Bachelor) Praktikum Grundlagen der Elektrotechnik und Elektronik ersuch 2 Ersatzspannungsquelle und Leistungsanpassung Teilnehmer: Name orname Matr.-Nr. Datum

Mehr

ELEKTRISCHE SPANNUNGSQUELLEN

ELEKTRISCHE SPANNUNGSQUELLEN Physikalisches Grundpraktikum I Versuch: (Versuch durchgeführt am 17.10.2000) ELEKTRISCHE SPANNUNGSQUELLEN Denk Adelheid 9955832 Ernst Dana Eva 9955579 Linz, am 22.10.2000 1 I. PHYSIKALISCHE GRUNDLAGEN

Mehr

ELEKTRISCHE GRUNDSCHALTUNGEN

ELEKTRISCHE GRUNDSCHALTUNGEN ELEKTRISCHE GRUNDSCHALTUNGEN Parallelschaltung Es gelten folgende Gesetze: (i) An parallel geschalteten Verbrauchern liegt dieselbe Spannung. (U = U 1 = U 2 = U 3 ) (ii) Bei der Parallelschaltung ist der

Mehr

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2

Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 1 (GET1) Versuch 2 Spannungsteiler Ersatzspannungsquelle

Mehr

Lösungen der Übungsaufgaben zur Berechnung von Netzwerken

Lösungen der Übungsaufgaben zur Berechnung von Netzwerken Lösungen der Übungsaufgaben zur Berechnung von Netzwerken W. Kippels 1. Dezember 2013 Inhaltsverzeichnis 1 Allgemeines 2 2 Übungsfragen mit Antworten 2 2.1 Übungsfragen zu Spannungs- und Stromquellen..............

Mehr

Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen

Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen Elektrotechnik: Übungsblatt 3 - Gleichstromschaltungen 1. Aufgabe: Nennen sie die Kirchhoffschen Gesetzte und erläutern sie ihre physikalischen Prinzipien mit eigenen Worten. Lösung: Knotenregel: Die vorzeichenrichtige

Mehr

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung:

1. Grundlagen! 2. Netzwerke bei Gleichstrom. 2.2 Bezugspfeile. 2.3 Passive Zweipole Ohmsches Gesetz: 2.4 Aktive Zweipole. Stromstärke: Spannung: Elektrotechnik - Zusammenfassung. Grundlagen Stromstärke: Stromdichte: 𝐽, 𝐽 𝐴 Spannung: 𝑈" " 𝐸 𝑙" 2. Netzwerke bei Gleichstrom 2.2 Bezugspfeile Erzeuger- Pfeilsystem: Verbraucher- Pfeilsystem: Spannungs-

Mehr

22. Netzwerke II. 4. Maschenstromanalyse 5. Knotenpotentialanalyse

22. Netzwerke II. 4. Maschenstromanalyse 5. Knotenpotentialanalyse . Netzwerke II 4. Maschenstromanalyse 5. Knotenpotentialanalyse 4. Netzwerkberechnungsverfahren Das Maschenstromanalyse Paul, Elektrotechnik 2, Seite 68 ff. Unbehauen, Grundlagen der Elektrotechnik 1,

Mehr

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin:

Spannungsquellen. Grundpraktikum I. Mittendorfer Stephan Matr. Nr Übungsdatum: Abgabetermin: Grundpraktikum I Spannungsquellen 1/5 Übungsdatum: 7.11. Abgabetermin: 3.1. Grundpraktikum I Spannungsquellen stephan@fundus.org Mittendorfer Stephan Matr. Nr. 9956335 Grundpraktikum I Spannungsquellen

Mehr

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr.

Elektrotechnisches Grundlagen-Labor I. Netzwerke. Versuch Nr. Anzahl Bezeichnung, Daten GL-Nr. Elektrotechnisches Grundlagen-Labor I Netzwerke Versuch Nr. 1 Erforderliche Geräte Anzahl Bezeichnung, Daten GL-Nr. 2 n (Netzgeräte) 0...30V, 400mA 111/112 2 Vielfachmessgeräte 100kΩ/V 125/126 2 Widerstandsdekaden

Mehr

Technische Grundlagen: Übungssatz 1

Technische Grundlagen: Übungssatz 1 Fakultät Informatik Institut für Technische Informatik Professur für VLSI-Entwurfssysteme, Diagnostik und Architektur Lösungen Technische Grundlagen: Übungssatz Aufgabe. Wiederholungsfragen zum Physik-Unterricht:

Mehr

Grundlagen der Elektrotechnik Teil 2

Grundlagen der Elektrotechnik Teil 2 Grundlagen der Elektrotechnik Teil 2 Dipl.-Ing. Ulrich M. Menne ulrich.menne@ini.de 18. Januar 2015 Zusammenfassung: Dieses Dokument ist eine Einführung in die Grundlagen der Elektrotechnik die dazu dienen

Mehr

Praktikum Grundlagen der Elektrotechnik

Praktikum Grundlagen der Elektrotechnik Praktikum Grundlagen der Elektrotechnik 1 Versuch GET 1: Vielfachmesser, Kennlinien und Netzwerke Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik Fachgebiet Grundlagen

Mehr

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin. Stand

AFu-Kurs nach DJ4UF. Technik Klasse E 03 Ohmsches Gesetz, Leistung & Arbeit. Amateurfunkgruppe der TU Berlin.  Stand Technik Klasse E 03 Ohmsches, & Amateurfunkgruppe der TU Berlin http://www.dk0tu.de Stand 27.10.2015 This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License. Amateurfunkgruppe

Mehr

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben

1 Elektrotechnik. 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1 Elektrotechnik 1.1 Schaltungsbeispiele mit idealen Spannungs- und Stromquellen zur Vereinfachung oder Komplexitätserhöhung von Aufgaben 1.1.1 Widerstand parallel zur idealen Spannungsquelle I R1 I R2

Mehr

Aufgabe 1 - Knotenspannungsanalyse

Aufgabe 1 - Knotenspannungsanalyse KLAUSUR Grundlagen der Elektrotechnik 02.03.2011 Prof. Ronald Tetzlaff Dauer: 150 min. Aufgabe 1 2 3 4 5 Σ Punkte 11 7 10 11 11 50 Aufgabe 1 - Knotenspannungsanalyse Gegeben ist das Netzwerk mit den folgenden

Mehr

Grundlagen der Elektrotechnik. Übungsaufgaben

Grundlagen der Elektrotechnik. Übungsaufgaben Grundlagen der Elektrotechnik Sönke Carstens-Behrens Wintersemester 2009/2010 RheinAhrCampus 1 Grundlagen der Elektrotechnik, WiSe 2009/2010 Aufgabe 1: Beantworten Sie folgende Fragen: a) Wie viele Elektronen

Mehr

Grundlagen der ET. Gleichstrom

Grundlagen der ET. Gleichstrom Grundlagen der ET Gleichstrom Gleichstrom Gleichstrom Gleichspannungsquelle - Gleichstrom - Widerstand I = U P=UI=I =U / Erzeuger/ Verbraucher Kichhoffsche Gleichungen/Maschengleichung Wir erinnern uns:

Mehr

Grundstromkreis. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines

Grundstromkreis. Praktikum. Grundlagen der Elektrotechnik. Versuch: Versuchsanleitung. 0. Allgemeines HOCHSCHULE FÜR TECHNIK UND WIRTSCHFT DRESDEN (FH) University of pplied Sciences Fachbereich Elektrotechnik Praktikum Grundlagen der Elektrotechnik Versuch: Grundstromkreis Versuchsanleitung 0. llgemeines

Mehr

Grundlagen der ET. Gleichstrom

Grundlagen der ET. Gleichstrom Grundlagen der ET Gleichstrom Gleichstrom Gleichstrom Gleichspannungsquelle - Gleichstrom - Widerstand I = U P=UI=I =U / Erzeuger/ Verbraucher Kichhoffsche Gleichungen/Maschengleichung Wir erinnern uns:

Mehr

Elektrizitätslehre. Kapitel 1 Grundbegriffe

Elektrizitätslehre. Kapitel 1 Grundbegriffe 1/38 Elektrizitätslehre Kapitel 1 Grundbegriffe 1.1 Elektrischer Strom Ein elektrischer Strom stellt sich ein, wenn eine Leiterschleife geschlossen wird die eine Quelle (z.b. eine Batterie) enthält. Der

Mehr

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α

Übungsaufgaben GET. Zeichnen Sie qualitativ den Verlauf des Gesamtwiderstandes R ges zwischen den Klemmen A und B als Funktion des Drehwinkels α Übungsaufgaben GET FB Informations- und Elektrotechnik Prof. Dr.-Ing. F. Bittner Gleichstromnetze 1. In der in Bild 1a dargestellten Serienschaltung der Widerstände R 1 und R 2 sei R 1 ein veränderlicher

Mehr

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten

Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen

Mehr

Vorbereitung zum Versuch

Vorbereitung zum Versuch Vorbereitung zum Versuch elektrische Messverfahren Armin Burgmeier (347488) Gruppe 5 2. Dezember 2007 Messungen an Widerständen. Innenwiderstand eines µa-multizets Die Schaltung wird nach Schaltbild (siehe

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Laborpraktikum 3 Arbeitspunkt und Leistungsanpassung

Laborpraktikum 3 Arbeitspunkt und Leistungsanpassung 18. Januar 2017 Elektrizitätslehre I Martin Loeser Laborpraktikum 3 rbeitspunkt und Leistungsanpassung 1 Lernziele Sie kennen die formalen Zusammenhänge zwischen Spannung, Stromstärke und (dissipierter)

Mehr

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz

Der elektrische Widerstand R. Auswirkung im Stromkreis Definition Ohmsches Gesetz Der elektrische Widerstand R Auswirkung im Stromkreis Definition Ohmsches Gesetz Kennlinie Wir wissen, am gleichen Leiter bewirken gleiche Spannungen gleiche Ströme. Wie ändert sich der Strom, wenn man

Mehr

1 Elektrische Stromkreise und lineare Netzwerke /20

1 Elektrische Stromkreise und lineare Netzwerke /20 Elektrische Stromkreise und lineare Netzwerke /20 Zwei Batterien G und G2 mit unterschiedlichen elektrischen Eigenschaften wurden polrichtig parallel geschaltet und an den Anschlussklemmen A, B mit einem

Mehr

Kirchhoffsche Gesetze Anwendung der Kirchhoffschen Gesetze zur Berechnung der Spannungen und Ströme in elektrischen Netzwerken Beispiel:

Kirchhoffsche Gesetze Anwendung der Kirchhoffschen Gesetze zur Berechnung der Spannungen und Ströme in elektrischen Netzwerken Beispiel: Kirchhoffsche esetze Es gibt zwei Kirchhoffsche esetze in elektrischen Netzwerken:. Maschenregel: die Summe der Spannungsgewinne entlang eines geschlossenen Weges ist gleich Null. Spannungsgewinne und

Mehr

Übungsserie: Diode 1

Übungsserie: Diode 1 7. März 2016 Elektronik 1 Martin Weisenhorn Übungsserie: Diode 1 1 Vorbereitung Eine Zenerdiode ist so gebaut, dass der Betrieb im Durchbruchbereich sie nicht zerstört. Ihre Kennlinie ist in Abb. 1 dargestellt.

Mehr

Versuch B1/4: Zweitore

Versuch B1/4: Zweitore Versuch B1/4: Zweitore 4.1 Grundlagen 4.1.1 Einleitung Ein elektrisches Netzwerk, das von außen durch vier Anschlüsse zugänglich ist, wird Zweitor genannt. Sind in einen Zweitor keine Quellen vorhanden,

Mehr

Reihenschaltung von Widerständen

Reihenschaltung von Widerständen Reihenschaltung von Widerständen Zwei unterschiedliche große Widerstände werden in Reihe geschaltet. Welche der folgenden Aussagen ist richtig? 1. Durch den größeren Widerstand fließt auch der größere

Mehr

6. Ideale und reale Spannungsquellen

6. Ideale und reale Spannungsquellen 6.1 Ideale Spannungsquelle Unter einer idealen Spannungsquelle versteht man eine Spannungsquelle deren usgangsspannung sich nicht verringert, egal wie groß der usgangsstrom wird. Sie kann also theoretisch

Mehr

Geschrieben von: Volker Lange-Janson Montag, den 09. März 2015 um 07:46 Uhr - Aktualisiert Montag, den 09. März 2015 um 08:11 Uhr

Geschrieben von: Volker Lange-Janson Montag, den 09. März 2015 um 07:46 Uhr - Aktualisiert Montag, den 09. März 2015 um 08:11 Uhr // // // Spannungs-Stabilisierung mit einer Z-Diode - Berechnung Diese Grundschaltung einer Spannungsstabilisierung stellt die einfachste Anwendung einer Zenerdiode dar. Die Schaltung wandelt eine schwankende

Mehr

Lineare elektrische Netze

Lineare elektrische Netze Lineare elektrische Netze Energiegewinn &-verlust Energiegewinn, Erzeugung Energieverlust, Verbrauch ds E ds E, U I U I F= m g d s F= m g U I Drei Beispiele aus der Mechanik und aus der Elektrotechnik

Mehr

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen

von Alexander Wenk 2005, Alexander Wenk, 5079 Zeihen Repetition Elektrotechnik für Elektroniker im 4. Lehrjahr von Aleander Wenk 05, Aleander Wenk, 5079 Zeihen Inhaltsverzeichnis Temperaturabhängigkeit von Widerständen 1 Berechnung der Widerstandsänderung

Mehr

2 Elektrischer Stromkreis

2 Elektrischer Stromkreis 2 Elektrischer Stromkreis 2.1 Aufbau des technischen Stromkreises Nach der Durcharbeitung dieses Kapitels haben Sie die Kompetenz... Stromkreise in äußere und innere Abschnitte einzuteilen und die Bedeutung

Mehr

Aufgabensammlung zu Kapitel 1

Aufgabensammlung zu Kapitel 1 Aufgabensammlung zu Kapitel 1 Aufgabe 1.1: In welchem Verhältnis stehen a) die Querschnitte gleich langer und widerstandsgleicher Aluminium- und Kupferleiter, b) die Widerstände gleich langer Kupferleiter,

Mehr

Schaltungen mit mehreren Widerständen

Schaltungen mit mehreren Widerständen Grundlagen der Elektrotechnik: WIDERSTANDSSCHALTUNGEN Seite 1 Schaltungen mit mehreren Widerständen 1) Parallelschaltung von Widerständen In der rechten Schaltung ist eine Spannungsquelle mit U=22V und

Mehr

Gleichstromlehre Theorie-Mitschrift

Gleichstromlehre Theorie-Mitschrift Modul: ELA 1 Semester: Wintersemester 06/07 Kurs: Elektrotechnik Dozent: H. Senn Gleichstromlehre Theorie-Mitschrift Martin Züger ELA 1: Elektrotechnik 27.02.2007 Dieses Dokument beinhaltet die im Unterricht

Mehr

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie

1. Gleichstrom 1.4 Berechnungsverfahren für die Netzwerke Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie Überlagerungsprinzip Maschenstromverfahren Knotenpotenzialverfahren Zweipoltheorie 1 Überlagerungsprinzip (Superposition) Vorgehensweise: Jede Energiequelle wird getrennt betrachtet Resultierende Gesamtwirkung

Mehr

2. Der Gleichstromkreis

2. Der Gleichstromkreis L.Kerbl, HTL Abteilung Lernbehelf für AET,.JG Letzte Änderung:..999; 5:00 D.. Lothar KEBL, Donaustadtstr 45, 0 WEN. Der Gleichstromkreis. Der Widerstand lineare Widerstände Messwerttabelle, Grafik (Widerstandskennlinie)

Mehr

2 Gleichstrom-Schaltungen

2 Gleichstrom-Schaltungen für Maschinenbau und Mechatronik Carl Hanser Verlag München 2 Gleichstrom-Schaltungen Aufgabe 2.1 Berechnen Sie die Kenngrößen der Ersatzquellen. Aufgabe 2.5 Welchen Wirkungsgrad hätte die in den Aufgaben

Mehr

Elektrotechnik für MB

Elektrotechnik für MB Elektrotechnik für MB Gleichstrom Elektrische und magnetische Felder Wechsel- und Drehstrom Grundlagen und Bauelemente der Elektronik Studium Plus // IW-MB WS 2015 Prof. Dr. Sergej Kovalev 1 Ziele 1. Gleichstrom:

Mehr

Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" Physikalische Grundbegriffe... 1

Gliederung des Vorlesungsskriptes zu Grundlagen der Elektrotechnik I Physikalische Grundbegriffe... 1 - Grundlagen der Elektrotechnik I - I 23.05.02 Gliederung des Vorlesungsskriptes zu "Grundlagen der Elektrotechnik I" 1 Physikalische Grundbegriffe... 1 1.1 Aufbau der Materie, positive und negative Ladungen...

Mehr

LABORÜBUNG Belasteter Spannungsteiler

LABORÜBUNG Belasteter Spannungsteiler LABORÜBUNG Belasteter Spannungsteiler Letzte Änderung: 24.9.2004 Lothar Kerbl Messaufgabe 1: Leerlaufspannung in Abhängigkeit von der Schleiferstellung... 2 Messaufgabe 2: Kurzschlussstrom in Abhängigkeit

Mehr

3 Lineare elektrische Gleichstromkreise

3 Lineare elektrische Gleichstromkreise 3. Eigenschaften elektrischer Stromkreise 7 3 Lineare elektrische Gleichstromkreise 3. Eigenschaften elektrischer Stromkreise Lineare elektrische Stromkreise bestehen aus auelementen mit einer linearen

Mehr

Klasse : Name : Datum :

Klasse : Name : Datum : Elektrischer Stromkreis eihenschaltung und Parallelschaltung Elektrischer Stromkreis eihenschaltung und Parallelschaltung Klasse : Name : Datum : Wir wollen zunächst einige rundlagen wiederholen. Elektrischer

Mehr

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen:

Elektrotechnische Grundlagen, WS 00/01. Musterlösung Übungsblatt 1. Hieraus läßt sich der Strom I 0 berechnen: Elektrotechnische Grundlagen, WS 00/0 Prof. aitinger / Lammert esprechung: 06..000 ufgabe Widerstandsnetzwerk estimmen Sie die Werte der Spannungen,, 3 und 4 sowie der Ströme, I, I, I 3 und I 4 in der

Mehr

Stabilisierungsschaltung mit Längstransistor

Stabilisierungsschaltung mit Längstransistor Stabilisierungsschaltung mit Längstransistor Bestimmung des Innenwiderstandes Eine Stabilisierungsschaltung gemäß nebenstehender Schaltung ist mit folgenden Daten gegeben: 18 V R 1 150 Ω Für die Z-Diode

Mehr

Hochschule Esslingen Fakultät Informationstechnik. Sicherheitshinweise. Fakultät Informationstechnik, Labor Elektrotechnik 1

Hochschule Esslingen Fakultät Informationstechnik. Sicherheitshinweise. Fakultät Informationstechnik, Labor Elektrotechnik 1 Hochschule Esslingen Fakultät Informationstechnik Fakultät Informationstechnik, Labor Elektrotechnik 1 Hinweise zu den Laborübungen in Elektrotechnik 1 Die Anmeldung zu den Laborübungen erfolgt in der

Mehr

Ferienkurs Experimentalphysik 2

Ferienkurs Experimentalphysik 2 Ferienkurs Experimentalphysik 2 Lösung Übungsblatt 2 Tutoren: Elena Kaiser und Matthias Golibrzuch 2 Elektrischer Strom 2.1 Elektrischer Widerstand Ein Bügeleisen von 235 V / 300 W hat eine Heizwicklung

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2009 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 009 VL #6 am 7.05.009 Vladimir Dyakonov / Volker Drach Leistungsbeträge 00 W menschlicher Grundumsatz

Mehr

1 Wiederholung einiger Grundlagen

1 Wiederholung einiger Grundlagen TUTORIAL MODELLEIGENSCHAFTEN Im vorliegenden Tutorial werden einige der bisher eingeführten Begriffe mit dem in der Elektrotechnik üblichen Modell für elektrische Netzwerke formalisiert. Außerdem soll

Mehr

Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach. Musterprüfung

Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach. Musterprüfung Fachhochschule Köln University of Applied Sciences Cologne Campus Gummersbach Prof. Dr. Jürgen Weber Einführung in die Elektrotechnik I Name Matrikelnummer Hinweise zur Prüfung Neben der Prüfungsordnung

Mehr

Fragenkatalog zur Übung Halbleiterschaltungstechnik

Fragenkatalog zur Übung Halbleiterschaltungstechnik Fragenkatalog zur Übung Halbleiterschaltungstechnik WS 2017/18 Übungsleiter: Christian Diskus Thomas Voglhuber-Brunnmaier Herbert Enser Institut für Mikroelektronik und Mikrosensorik Altenbergerstr. 69,

Mehr

Fragenausarbeitung TPHY TKSB, WS 2001/2002

Fragenausarbeitung TPHY TKSB, WS 2001/2002 Fragenausarbeitung TPHY TKSB, WS 2001/2002 1. Blatt, Kapitel Gleichstrom! siehe Ausarbeitungen...... 17 19, sowie 22 39 Johannes Helminger... 17 26 Matthias Tischlinger... 17-23 sowie 15 Manfred Jakolitsch

Mehr

Elektrotechnik. Aufgabensammlung mit Lösungen. Manfred Albach Janina Fischer

Elektrotechnik. Aufgabensammlung mit Lösungen. Manfred Albach Janina Fischer Elektrotechnik Aufgabensammlung mit en Manfred Albach Janina Fischer Higher Education München Harlow Amsterdam Madrid Boston San Francisco Don Mills Mexico City Sydney a part of Pearson plc worldwide 3

Mehr

Elektrizitätslehre. Kapitel 1 Grundbegriffe

Elektrizitätslehre. Kapitel 1 Grundbegriffe 1/51 Elektrizitätslehre Kapitel 1 Grundbegriffe 1.1 Elektrischer Strom Ein elektrischer Strom stellt sich ein, wenn eine Leiterschleife geschlossen wird die eine Quelle (z.b. eine Batterie) enthält. Der

Mehr

Hinweise zum Extrapolieren (Versuche 202, 301, 109)

Hinweise zum Extrapolieren (Versuche 202, 301, 109) Hinweise zum Extrapolieren (Versuche 202, 301, 109) Bei vielen physikalischen Experimenten wird das (End-) Messergebnis von Größen mitbestimmt, die in einer einfachen Beschreibung nicht auftauchen (z.b.

Mehr

Lösungen Grundgrößen Elektrotechnik UT Skizzieren Sie in ein Diagramm die Kennlinien folgender Widerstände: R = 1kΩ, R= 680Ω, R=470Ω

Lösungen Grundgrößen Elektrotechnik UT Skizzieren Sie in ein Diagramm die Kennlinien folgender Widerstände: R = 1kΩ, R= 680Ω, R=470Ω 8 Das Ohmsche Gesetz 8.1 Teilkapitel ohne Aufgaben 8.2 Aufgaben: Widerstandskennlinien zeichnen 8.2.1 Skizzieren Sie in ein Diagramm die Kennlinien folgender Widerstände: R = 1kΩ, R= 680Ω, R=470Ω in ma

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester VL #19 am Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 007 VL #9 am 30.05.007 Vladimir Dyakonov Leistungsbeträge 00 W menschlicher Grundumsatz 00 kw PKW-Leistung

Mehr

3) Lösungen ET1, Elektrotechnik(Grundlagen), Semester 13/13 4) Beuth-Hochschule, Prof. Aurich, Semester 1-1/6-

3) Lösungen ET1, Elektrotechnik(Grundlagen), Semester 13/13 4) Beuth-Hochschule, Prof. Aurich, Semester 1-1/6- 3 Lösungen ET1, Elektrotechnik(Grundlagen, Semester 13/13 4 Beuth-Hochschule, Prof. Aurich, Semester 1-1/6- Prüfungstag: 30.9.2013 Studiengang: Raum: D136-H5 Haus Bauwesen 2. Wiederholung (letzter Versuch?

Mehr

Christian H. Kautz Tutorien zur Elektrotechnik

Christian H. Kautz Tutorien zur Elektrotechnik Christian H. Kautz Tutorien zur Elektrotechnik ein Imprint von Pearson Education München Boston San Francisco Harlow, England Don Mills, Ontario Sydney Mexico City Madrid Amsterdam ÜBUNG LADEN UND ENTLADEN

Mehr

1 Die Brückenschaltung mit komplexen Widerständen

1 Die Brückenschaltung mit komplexen Widerständen Elektrotechnik - Brückenschaltung 1 Die Brückenschaltung mit komplexen Widerständen 1.1 Aufbau der Brückenschaltung mit Belastung Z2 Z4 1.2 Lösung bei abgeglichener Brückenschaltung Wenn die Brücke abgeglichen

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente

Gleichstromkreis. 2.2 Messgeräte für Spannung, Stromstärke und Widerstand. Siehe Abschnitt 2.4 beim Versuch E 1 Kennlinien elektronischer Bauelemente E 5 1. Aufgaben 1. Die Spannungs-Strom-Kennlinie UKl = f( I) einer Spannungsquelle ist zu ermitteln. Aus der grafischen Darstellung dieser Kennlinie sind Innenwiderstand i, Urspannung U o und Kurzschlussstrom

Mehr

Elektrische Nachrichtentechnik Grundlagen der Elektrotechnik Versuch M-4 im Fachbereich Technik an der HS Emden-Leer

Elektrische Nachrichtentechnik Grundlagen der Elektrotechnik Versuch M-4 im Fachbereich Technik an der HS Emden-Leer 1. Versuchsanleitung Ziel des Versuchs M-4 ist das VerstÄndnis der Eigenschaften von Spannungsquellen får Gleichspannung und Wechselspannung sowie Signalquellen allgemein. Der Versuch geht auf die Beschreibung

Mehr

Spule, Kondensator und Widerstände

Spule, Kondensator und Widerstände Spule, Kondensator und Widerstände Schulversuchspraktikum WS 00 / 003 Jetzinger Anamaria Mat.Nr.: 975576 Inhaltsverzeichnis. Vorwissen der Schüler. Lernziele 3. Theoretische Grundlagen 3. Der elektrische

Mehr

2.3.2 Messverstärker für Spannungen

2.3.2 Messverstärker für Spannungen Dipl.-ng. G.Lebelt.3..3. Messverstärker für Spannungen Sachworte: Messverstärker, u/u-verstärker, Spannungsfolger, mpedanzwandler, Superposition, Nullpunktfehler, Offsetspannung, Offsetstrom, Eingangsstrom,

Mehr

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d

Elektronik- und Messtechniklabor, Messbrücken. A) Gleichstrom-Messbrücken. gespeist. Die Brücke heisst unbelastet, weil zwischen den Klemmen von U d A) Gleichstrom-Messbrücken 1/6 1 Anwendung und Eigenschaften Im Wesentlichen werden Gleichstrommessbrücken zur Messung von Widerständen eingesetzt. Damit können indirekt alle physikalischen Grössen erfasst

Mehr

GEM1 & 2, Kontrollfragen. Grundbegriffe

GEM1 & 2, Kontrollfragen. Grundbegriffe 1/9 Grundbegriffe 1. Erläutern Sie die Begriffe physikalische Grössen, Symbole, Einheiten, sowie Grössengleichung und Einheitengleichung. Nennen Sie dafür Beispiele. 2. Nennen Sie Beispiele für Basiseinheiten

Mehr

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht)

Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Aufgabe 1: Emitterfolger als Spannungsquelle (leicht) Ein Emitterfolger soll in bezug auf den Lastwiderstand R L als Spannungsquelle eingesetzt werden. Verwendet werde ein Transistor mit der angegebenen

Mehr

1 Gemischte Schaltung Wie gross ist der Gesamtwiderstand? (A) (B) (C) (D) (F) keiner. Begründen Sie Ihren Lösungsvorschlag!

1 Gemischte Schaltung Wie gross ist der Gesamtwiderstand? (A) (B) (C) (D) (F) keiner. Begründen Sie Ihren Lösungsvorschlag! 1 Gemischte Schaltung Wie gross ist der Gesamtwiderstand? (A) (B) (C) (D) 1,00kΩ 1,48kΩ 1,71kΩ 6,80kΩ (E) 7,36 kω (F) keiner U 1 I 1 2 3 = 1, 20kΩ 1 2 = 560Ω = 5, 60kΩ 3 Begründen Sie Ihren Lösungsvorschlag!

Mehr

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v.

Bundestechnologiezentrum für Elektro- und Informationstechnik e.v. Lernprogramm Grundlagen der Elektrotechnik 2 Themenübersicht Elektischer Widerstand und deren Schaltungen Linearer Widerstand im Stromkreis Ohmsches Gesetz Ohmsches Gesetz Strom und Spannung am linearen

Mehr

Vorlage für Expertinnen und Experten

Vorlage für Expertinnen und Experten 2011 Qualifikationsverfahren Multimediaelektroniker / Multimediaelektronikerin Berufskenntnisse schriftlich Basiswissen Elektrotechnik Vorlage für Expertinnen und Experten Zeit 120 Minuten für alle 3 Positionen

Mehr