Einführung in die Physik I. Dynamik des Massenpunkts (4)

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Einführung in die Physik I. Dynamik des Massenpunkts (4)"

Transkript

1 Einfühung in die Physik I Dynmik des Mssenpunkts (4) O. von de Lühe und U. Lndgf Gvittion Die Gvittionswechselwikung ist eine de fundmentlen Käfte in de Physik m 1 m Sie wikt zwischen zwei Mssen m 1 und m, die sich im Abstnd voneinnde befinden, nziehend Gefunden im Jhe 1665 von Si Isc Newton F m1 m G Univeselle Gvittionskonstnte G G [N m kg - ] Zentlkft Dynmik des Mssenpunkts 4 1

2 Gvittionskft kg 1 kg Kft F [N] Abstnd [m] Dynmik des Mssenpunkts 4 3 Gvittionsbeschleunigung de Ede Köpe umkeisen die Ede uf nnähend keisfömigen Bhnen (Keisbewegung) Die in einem konstnten Abstnd vom Edmittelpunkt usgeübte Schwekft bewikt eine konstnte Beschleunigung G, welche von de Zentipetlbeschleunigung Z genu ufgehoben wid Die Beschleunigung nimmt mit zunehmenden Abstnd b Objekt Obefläche Abstnd [km] Peiode [s] G Keisfequenz [s -1 ] Z ω Beschleunigung [m s - ] 9.81 Geosttionäe Stellit (1 Tg) Edmond (7 Tge) Dynmik des Mssenpunkts 4 4

3 100 Gvittionsbeschleunigung de Ede 10 Edobefläche Beschleunigung [m s^-] Geosttionäe Stellit Mond Abstnd vom Edmittelpunkt [km] Dynmik des Mssenpunkts 4 5 Eigenschften de Gvittion Nch bisheigen Ekenntnissen gilt ds 1/ Abstndsgesetz übe einen Beeich von wenigen Meten bis zu kosmischen Distnzen Die Newton sche Theoie de Gvittion ist 1916 von Albet Einstein im Rhmen de llgemeinen Reltivitätstheoie eheblich eweitet woden geinge Abhängigkeit von Reltivgeschwindigkeit und Rottion in Extemfällen Es sind keine Stoffe beknnt, die Gvittion bschimen können Die Gvittion ist die schwächste de physiklischen Fundmentlkäfte Die elektosttische Anziehung zwischen Potonen und Elektonen ist göße ls ihe Schwekft Die Gvittion wikt be usschließlich nziehend (keine negtiven Mssen) und knn dhe nicht neutlisiet weden Die Gvittion ist dhe die stäkste Kft, die übe kosmische Distnzen wikt Dynmik des Mssenpunkts 4 6 3

4 Gvittionsfeld und Potentil Eine Msse m gibt Anlss zu einem Gvittionskftfeld, welches mit eine Pobemsse m p untesucht weden knn Fp mp Feldstäke g des Gvittionsfeldes Wegen des Äquivlenzpinzips (täge Msse schwee Msse) ist die Feldstäke unbhängig vom Pobeköpe g m m p Dynmik des Mssenpunkts 4 7 Gvittionsfeld und Potentil Ds Gvittionsfeld eine Punktmsse ist konsevtiv es gibt ein Potentil Fü seh goße Entfenungen wid ds Potentil konstnt Veeinbung: Nullpunkt de potentiellen Enegie eine Pobemsse m p ist im Unendlichen Kft wid im Unendlichen Null Potentielle Enegie ist fü endliche Abstände negtiv Potentil ϕ() Feldstäken E ϕ F g pot () () F( ) d mp d mp E ϕ ( ) pot ( ) () () Dynmik des Mssenpunkts 4 8 4

5 Gezeiten Punktmssen sind eine Idelisieung, ele Mssenveteilungen usgedehnt Gvittionsfeld wid dduch komplexe, be imme konsevtiv es gibt imme ein Potentil Ausgedehnte Köpe efhen in einem Gvittionsfeld Gezeitenkäfte Gez G m Mond ( ± ) E 1 G m M Mond M 1 1 ± G m Mond E G mmond E m Dynmik des Mssenpunkts 4 M m M M 9 M Gethsen Physik 1 E M 1 enbhnen Die Bewegung zweie Mssen im gemeinsmen Gvittionsfeld knn mthemtisch geschlossen beschieben weden ( Zweiköpepoblem ) Ds beste Beispiel fü ein Zweiköpepoblem stellt de Umluf eines en um die Sonne d. Dbei knn de Einfluss de Schwekft ndee en zunächst venchlässigt weden Johnnes Keple ( ) ht mithilfe umfngeiche Beobchtungen von Tycho Bhe die dei Kepleschen Gesetze (1609 und 1619), welche die Dynmik de en umfssend bescheiben Isc Newton fomuliete späte (1687) die Axiome de Mechnik und ds Gvittionsgesetz, welche eine Vellgemeineung de kepleschen Gesetze dstellen Dynmik des Mssenpunkts

6 enbhnen 1. Keplesches Gesetz: Die en bewegen sich uf Ellipsen. Die Sonne befindet sich in einem de Bennpunkte.. Keplesches Gesetz: Die Vebindungslinie Sonne- übesteicht in gleichen Zeiten gleiche Flächen. 3. Keplesches Gesetz: Die Qudte de Umlufzeiten veschiedene en vehlten sich wie die Kuben ihe goßen Bhnchsen. Ds. Keplesche Gesetz ist eine diekte Folge de Ehltung des Dehimpulses Ds 1. und 3. Keplesche Gesetz folgen us de Eigenschft de Gvittion, eine Zentlkft mit einem 1/ Abstndsgesetz zu sein Dynmik des Mssenpunkts 4 11 enbhnen Ellipsen Ellipsen Goße Hlbchse, kleine Hlbchse b Abstnd Mittelpunkt-Bennpunkt e Exzentizität ε Wähle den Bennpunkt, in dem sich die Sonne befindet, ls Uspung des Koodintensystems Die Bewegung findet in eine Ebene sttt, die senkecht zum Dehimpulsvekto steht Dstellung in Polkoodinten (,ϕ), welche dem Poblem besse ngepsst sind ( 1 ε cosϕ ) e b e ε + ϕ b b e (Definition) Dynmik des Mssenpunkts 4 1 6

7 enbhnen. Keplesches Gesetz Ot des en: ϕ Geschwindigkeit v & des en: v vϕ & ϕ ϕ v Dehimpulsbetg: L m v m & ϕ konstnt ϕ In de Zeit Δt von de Vebindungslinie übestichene Fläche (Δt klein) t+δt 1 A m v dt t A 1 L konstnt Δt 1 m v Δt 1 L Δt Dynmik des Mssenpunkts 4 13 enbhnen Mn knn zeigen, dss Lösungen fü die Bewegungen im Gvittionsfeld (eine Punktmsse) Kegelschnitte sind p 1+ ecosϕ Allgemeine Zusmmenhng zwischen und ϕ p At de Bhn: Keis: e 0, p Ellipse: 0 < e < 1, p b / Pbel: e 1, p bestimmt Öffnung Hypebel: e > 1, p b / b Pbel Hypebel Dynmik des Mssenpunkts

8 enbhnen Gesmtenegie E (kinetische plus potentielle Enegie) bleibt ehlten Potentielle Enegie ist imme negtiv Gesmtenegie E < 0: Keisbhnen (hohe Dehimpuls) Elliptische Bhnen Bhnen sind geschlossen en, Monde Gesmtenegie E 0 Pbelbhnen Kometen Gesmtenegie E > 0 Hypebelbhnen Kometen E > 0 E 0 E < 0 E E Kin + E Pot 0 m EPot G Dynmik des Mssenpunkts 4 15 enbhnen 3. Keplesches Gesetz Die Bhnen de en sind in gute Näheung Keisbhnen Exzentizität ε 0.05 fü lle en uße Meku Gvittionsbeschleunigung unbhängig von enmssen lle kleine ls m Sonne Gvittionsbeschleunigung G und Zentipetlbeschleunigung Z sind gleich goß Ds Vehältnis von Qudt de Umlufzeit T und de ditten Potenz des Rdius de enbhn hängt nu von konstnten Gößen b G Z m G ω 4π G m Sonne Sonne π T T 3 π T m G Sonne konstnt Dynmik des Mssenpunkts

9 Dynmik des Mssenpunkts

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km

6. Gravitation. m s. r r. G = Nm 2 /kg 2. Beispiel: Mond. r M = 1738 km 00 0 6. Gavitation Gavitationswechselwikung: eine de vie fundaentalen Käfte (die andeen sind elektoagnetische, schwache und stake Wechselwikung) Ein Köpe it asse i Abstand zu eine Köpe it asse übt auf

Mehr

Inhalt der Vorlesung Experimentalphysik I

Inhalt der Vorlesung Experimentalphysik I Expeimentalphysik I (Kip WS 009) Inhalt de Volesung Expeimentalphysik I Teil : Mechanik. Physikalische Gößen und Einheiten. Kinematik von Massepunkten 3. Dynamik von Massepunkten 4. Gavitation 4. Keplesche

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK Physik A/B A WS SS 07 03/4 Inhalt de Volesung A. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kinematik: Quantitative Efassung Dynamik: Usachen de Bewegung Käfte Abeit + Leistung,

Mehr

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation

5. Gravitation Drehimpuls und Drehmoment. Mechanik Gravitation Mechanik Gavitation 5. Gavitation 5.1. Dehipuls und Dehoent De Dehipuls titt bei Dehbewegungen an die Stelle des Ipulses. Wi betachten zunächst den Dehipuls eines Teilchens (späte weden wi den Dehipuls

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

1.2.2 Gravitationsgesetz

1.2.2 Gravitationsgesetz VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 1.. Gavitationsgesetz Heleitung aus Planetenbewegung Keplesche Gesetze 1. Planeten bewegen sich auf Ellipsen. De von Sonne zum Planeten gezogene

Mehr

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2

Physik - Gravitation. 8.1 Weltbilder. Ptolemaios: Geozentrisches Weltbild (Modell mit Epizyklen) R. Girwidz 1. R. Girwidz 2 Physik - avitation. iwidz 8. Weltbilde Ptolemaios: eozentisches Weltbild (odell mit pizyklen). iwidz 8. Weltbilde. iwidz 3 8. Weltbilde Histoisch: Die Bewegung de Planeten wa übe Jahhundete nicht zu ekläen

Mehr

Mehrkörperproblem & Gezeitenkräfte

Mehrkörperproblem & Gezeitenkräfte 508.55 Satellitengeodäsie Mehköpepoblem & Gezeitenkäfte Tosten Maye-Gü Tosten Maye-Gü Bewegungsgleichung Bewegungsgleichung (Keplepoblem): Diffeentialgleichung. Odnung ( t) ( t) GM ( t) Bestimmt bis auf

Mehr

Die Lagrangepunkte im System Erde-Mond

Die Lagrangepunkte im System Erde-Mond Die Lgngepunkte i Syste Ede-ond tthis Bochdt Tnnenbusch-ynsiu Bonn bochdt.tthis@t-online.de Einleitung: Welche Käfte spüt eine Rusonde, die sich ntiebslos in de Nähe von Ede und ond ufhält? Zunächst sind

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EP I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang Vesuche: 1. Feie Fall im evakuieten Falloh 2.Funkenflug (zu Keisbewegung) 3. Affenschuss (Übelageung von Geschwindigkeiten) 4. Luftkissen

Mehr

Von Kepler zu Hamilton und Newton

Von Kepler zu Hamilton und Newton Von Kele zu Hamilton und Newton Eine seh elegante Vaiante von 3 Kele egeben 1 Newton 1. Das este Kele sche Gesetz 2. Das zweite Kele sche Gesetz 3. Die Bahngeschwindigkeit v und de Hodogah 4. Die Beschleunigung

Mehr

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt

5 Rigorose Behandlung des Kontaktproblems Hertzscher Kontakt 5 Rigoose Behndlung des Kontktpoblems Hetsche Kontkt In diesem Kpitel weden Methoden u exkten Lösung von Kontktpoblemen im Rhmen de "Hlbumnäheung" eläutet. Wi behndeln dbei usfühlich ds klssische Kontktpoblem

Mehr

I)Mechanik: 1.Kinematik, 2.Dynamik

I)Mechanik: 1.Kinematik, 2.Dynamik 3. Volesung EPI 06 I) Mechanik 1.Kinematik Fotsetzung 2.Dynamik Anfang EPI WS 2006/07 Dünnwebe/Faessle 1 x 1 = x 1 y 1 x 1 x 1 = y 1 I)Mechanik: 1.Kinematik, 2.Dynamik Bewegung in Ebene und Raum (2- und

Mehr

Gravitation. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden.

Gravitation. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden. vittion Mssen zeihen sich gegenseitig n Aus stonoischen Beobchtungen de lnetenbewegungen knn ds vittionsgesetz bgeleitet weden Von 57-60 selte ycho Bhe it bloße Auge (ohne Fenoh) seh päzise Dten de lnetenbewegungen

Mehr

0.6.4) Lineare Regression Wenn wir fliegen könnten und den Greifvögeln ähnlich

0.6.4) Lineare Regression Wenn wir fliegen könnten und den Greifvögeln ähnlich VAK 5.04.900, WS03/04 J.L. Vehey, (CvO Univesität Oldenbug ) 0.6.4) Linee Regession Wenn wi fliegen könnten und den Geifvögeln ähnlich Msse m [kg] Spnnweite s [m] Bussd 1 1,3 Fischdle,0 1,6 S n ( y i 1

Mehr

Arbeit in Kraftfeldern

Arbeit in Kraftfeldern Abeit in Kaftfelden In einem Kaftfeld F ( ) ist F( )d die vom Feld bei Bewegung eines Köps entlang dem Weg geleistete Abeit. Achtung: Vozeichenwechsel bzgl. voheigen Beispielen Konsevative Kaftfelde Ein

Mehr

Lösen einer Gleichung 3. Grades

Lösen einer Gleichung 3. Grades Lösen eine Gleichung Gdes We sich uf dieses Abenteue einlssen will, bucht einige Kenntnisse übe komlee Zhlen Es eicht be, wenn mn folgende Schvehlte kennt und kochezettig (mn nehme) nwenden knn: Es gibt

Mehr

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1

Mechanik. 2. Dynamik: die Lehre von den Kräften. Physik für Mediziner 1 Mechanik. Dynamik: die Lehe von den Käften Physik fü Medizine 1 Usache von Bewegungen: Kaft Bislang haben wi uns auf die Bescheibung von Bewegungsvogängen beschänkt, ohne nach de Usache von Bewegung zu

Mehr

Physik A VL6 ( )

Physik A VL6 ( ) Physik A VL6 (19.10.01) Bescheibung on Bewegungen - Kinematik in dei Raumichtungen II Deh- und Rotationsbewegungen Zusammenfassung: Kinematik Deh- und Rotationsbewegungen Deh- und Rotationsbewegungen Paamete

Mehr

1. Stegreifaufgabe aus der Physik Lösungshinweise

1. Stegreifaufgabe aus der Physik Lösungshinweise . Stegreifufgbe us der Physik Lösungshinweise Gruppe A Aufgbe Ds.Newtonsche Gesetz lässt sich zum Beispiel so formulieren: Wirkt uf einen Körper keine Krft (oder ist die Summe ller Kräfte null) so bleibt

Mehr

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente

10.3 Statische Momente, Schwerpunkte und Trägheitsmomente 1.3 Sttische Momente, Schwerpunkte und Trägheitsmomente Sttisches Moment M g eines Mssenpunktes P (der Msse m) bezüglich einer Gerden g: M g := ml Msse Hebelrm l Abstnd von P zu g g 9 P l Bei n Mssenpunkten

Mehr

Kepler sche Bahnelemente

Kepler sche Bahnelemente Keple sche Bahnelemente Siegfied Eggl In de Dynamischen Astonomie ist es üblich, das Vehalten von gavitativ inteagieenden Köpen nicht im katesischen Koodinatensystem zu studieen, sonden die Entwicklung

Mehr

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden.

Gravitation. Massen zeihen sich gegenseitig an. Aus astronomischen Beobachtungen der Planetenbewegungen kann das Gravitationsgesetz abgeleitet werden. Gavitation Massen zeihen sich gegenseitig an. Aus astonomischen Beobachtungen de Planetenbewegungen kann das Gavitationsgesetz abgeleitet weden. Von 1573-1601 sammelte Tycho Bahe mit bloßem Auge (ohne

Mehr

Einführung in die Physik I. Kinematik der Massenpunkte

Einführung in die Physik I. Kinematik der Massenpunkte Einfühung in die Phsik I Kinemik de Mssenpunke O. von de Lühe und U. Lndgf O und Geschwindigkei Wi bechen den O eines ls punkfömig ngenommenen Köpes im Rum ls Funkion de Zei Eindimensionle Posiion O O

Mehr

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung.

Vektoraddition. Vektoraddition. Vektoraddition. Kraftwirkung bei Drehungen. Vektorzerlegung. Vektorzerlegung. Vektorzerlegung. Vektoaddition Vektozelegung Vektoaddition Vektozelegung N F Α Α F mg F s 25 26 Vektoaddition Vektozelegung Kaftwikung bei Dehungen Dehmoment Eine im Schwepunkt angeifende Kaft bewikt nu eine Beschleunigung

Mehr

Bewegungen im Zentralfeld

Bewegungen im Zentralfeld Egänzungen zu Physik I Wi wollen jetzt einige allgemeine Eigenschaften de Bewegung eines Massenpunktes unte dem Einfluss eine Zentalkaft untesuchen, dh de Bewegung in einem Zentalfeld Danach soll de spezielle

Mehr

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern

Kapitel 9 Integralrechnung für Funktionen einer Veränderlichen 9.6 Volumen von Rotationskörpern Wolte/Dhn: Anlsis Individuell c Spinge 75 Kpitel 9 Integlechnung fü Funktionen eine Veändelichen 9.6 Volumen von Rottionsköpen Wi wenden uns jetzt de Bestimmung des Volumens eines sogennnten Rottionsköpes

Mehr

Kapitel 2. Schwerpunkt

Kapitel 2. Schwerpunkt Kpitel Schwepunkt Schwepunkt Volumenschwepunkt Fü einen Köpe mit dem Volumen V emittelt mn die Koodinten des Schwepunktes S (Volumenmittelpunkt) us S dv dv z S S z S dv dv z dv dv z S S S Flächenschwepunkt

Mehr

4.11 Wechselwirkungen und Kräfte

4.11 Wechselwirkungen und Kräfte 4.11 Wechselwikungen und Käfte Kaft Wechselwikung Reichweite (m) Relative Stäke Gavitationskaft zwischen Massen Gavitationsladung (Anziehend) 1-22 Schwache Kaft Wechselwikung beim β-zefall schwache Ladung

Mehr

Bezugssysteme neu beleuchtet

Bezugssysteme neu beleuchtet Bezugssysteme neu beleuchtet D. Holge Hauptmann Euopa-Gymnasium Wöth Bezugsysteme neu beleuchtet, Folie 1 Kleine Vobemekung Beim Bezugssystemwechsel: ändet sich die mathematische Bescheibung das physikalische

Mehr

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M.

{ } v = v r. v dv = G M. a dr = v dv. 1 2 v2 = G M + C 1. = 1 2 v 02 g R. e r. F (r) = G m M r 2. a = dv dt. = dv dr dr. dr v G M. Otsabhängige Käfte Bsp.: Rakete im Gavitationsfeld (g nicht const.) F () = G m M 2 Nu -Komp. a = dv dt e v = v = dv d d dt a d = v dv v dv = G M 1 2 v2 = G M C 1 = 1 2 v 0 (späte meh) (Abschuss vom Pol)

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (2) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts () O. von de Lühe und U. Landgaf Abeit Käfte können aufgeteilt ode ugefot weden duch (z. B.) Hebel Flaschenzüge De Weg, übe welchen eine eduziete Kaft

Mehr

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.)

{ } e r. v dv C 1. g R. dr dt. dv dr. dv dr v. dv dt G M. 2 v 2. F (r) r 2 e r. r 2. (g nicht const.) Otsabhängige Käfte Bsp.: akete i Gavitationsfeld (g nicht const.) F () Nu -Kop. G M 2 e (späte eh) a v dv a d v dv v dv d v dv 1 G M 2 v2 C 1 1 2 v (Abschuss vo Pol) d G M 2 C 1 d 2 G M dv d v 1 2 v 2

Mehr

Übungen: Extremwertaufgaben

Übungen: Extremwertaufgaben Übungen: Extemwetufgben.0 Eine Stenwte ht meist die Fom eines Zylindes (Rdius, Höhe h) mit eine oben ufgesetzten Hlbkugel (siehe z. B. die im Bild unten gezeigte Fitz-Weiths-Stenwte in Neumkt). Die gesmte

Mehr

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN. 7. Übung/Lösung Mathematik für Studierende der Biologie LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR BIOLOGIE Pof. Anes Hez, D. Stefn Häusle emil: heusle@biologie.uni-muenchen.e Deptment Biologie II Telefon: 89-8-748 Goßhenest. Fx: 89-8-7483 85 Plnegg-Mtinsie

Mehr

Einführung in die Physik I. Elektromagnetismus 1

Einführung in die Physik I. Elektromagnetismus 1 infühung in die Physik I lektomagnetismus O. von de Lühe und. Landgaf lektische Ladung lektische Ladung bleibt in einem abgeschlossenen System ehalten s gibt zwei Aten elektische Ladung positive und negative

Mehr

Aufgabe 3.1. Aufgabe 3.2 Man berechne den Schwerpunkt der nebenstehenden Platte aus homogenem Material mit Hilfe der Ergebnisse aus Aufgabe

Aufgabe 3.1. Aufgabe 3.2 Man berechne den Schwerpunkt der nebenstehenden Platte aus homogenem Material mit Hilfe der Ergebnisse aus Aufgabe Institut für ngewndte und Eperimentelle Mechnik Technische Mechnik I ZÜ 3.1 ufgbe 3.1 Bestimmen Sie mit Hilfe der entsprechenden Guldin schen Regel die Höhe der Schwerpunkte von homogenen Blechstücken,

Mehr

B Figuren und Körper

B Figuren und Körper B Figuen und Köpe 1 Keis und Keisteile Ein Keis mit dem Rdius ht den Flächen inhlt A = p 2 und den Umfng U = 2p. Die Keiszhl p = 3,14159 ist eine itionle Zhl. Als Nähe ungswete fü p benutzt mn oftmls p

Mehr

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung:

(Newton II). Aus der Sicht eines mitbeschleunigten Beobachters liest sich diese Gleichung: f) Scheinkäfte.f) Scheinkäfte Tägheitskäfte in beschleunigten Systemen, z.b. im anfahenden ode bemsenden Auto ode in de Kuve ( Zentifugalkaft ). In nicht beschleunigten Systemen ( Inetialsysteme ) gibt

Mehr

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen.

e r a Z = v2 die zum Mittelpunkt der Kreisbahn gerichtet ist. herbeigeführt. Diese Kraft lässt sich an ausgelenkter Federwaage ablesen. Im (x 1, y 1 ) System wikt auf Masse m die Zentipetalbeschleunigung, a Z = v2 e die zum Mittelpunkt de Keisbahn geichtet ist. Folie: Ableitung von a Z = v2 e Pfeil auf Keisscheibe, Stoboskop Die Keisbewegung

Mehr

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften

Experimentierfeld 1. Statik und Dynamik. 1. Einführung. 2. Addition von Kräften Expeimentiefeld 1 Statik und Dynamik 1. Einfühung Übelegungen im Beeich de Statik und Dynamik beuhen stets auf de physikalischen Göße Kaft F. Betachten wi Käfte und ihe Wikung auf einen ausgedehnten Köpe,

Mehr

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes

Zusammenfassung Kapitel 2 Mechanik eines Massenpunktes Zusmmenfssung Kpiel Mechnik eines Mssenpunkes 1 Mechnik eines Mssenpunkes idelisiees Gebilde : lle Msse des Köpes in einem Punk konzenie keine Beücksichigung de Ausdehnung eines Köpes Ausdehnung d sei

Mehr

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt?

Wie muss x gewählt werden, so dass K 1 anschließend einen geraden Stoß mit K 3 ausführt? ZÜ 2.1 Aufgbe 2.1 Drei Kugeln K 1, K 2 und K 3 Mssen, m 2 und m 3 befinden sich in einer Rille und berühren sich nicht. Die erste Kugel gleitet mit der Geschwindigkeit v1 und stößt vollkommen elstisch

Mehr

6 Die Gesetze von Kepler

6 Die Gesetze von Kepler 6 DIE GESETE VON KEPER 1 6 Die Gesetze von Kele Wi nehmen an, dass de entalköe (Sonne) eine seh viel gössee Masse M besitzt als de Planet mit de Masse m, so dass de Schweunkt in gute Näheung im entum de

Mehr

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte)

Aufgaben zur Analytischen Mechanik SS 2013 Blatt 10 - Lösungen. Aufgabe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte) Aufgben zur Anlytischen Mechnik SS 013 Bltt 10 - en Aufgbe 1 Wiederholung Eigenwerte und Eigenvektoren (15 Punkte Bestimmen Sie Eigenwerte λ 1 und λ sowie die Eigenvektoren v 1 und v der folgenden Mtrix:

Mehr

Lineare Abbildung des Einheitskreises

Lineare Abbildung des Einheitskreises Linere Abbildung des Einheitskreises Peter Stender 27.06.2017 Peter Stender Linere Abbildung des Einheitskreises 27.06.2017 1 / 14 Mtrix und Dynmik m Kreis Fälle, bei denen B nicht uf der berechneten Prbel

Mehr

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung

Abschlussprüfung Berufliche Oberschule 2012 Physik 12 Technik - Aufgabe II - Lösung athphys-online Abschlusspüfung Beufliche Obeschule 0 Physik Technik - Aufgabe II - Lösung Teilaufgabe.0 Die Raustation ISS ist das zuzeit gößte künstliche Flugobjekt i Edobit. Ihe ittlee Flughöhe übe de

Mehr

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren.

Vektorrechnung. In der Physik unterscheiden wir grundsätzlich zwei verschiedene Typen physikalischer Einheiten: Skalare und Vektoren. Kntonsschule Solothun Vektoechung RYS Vektoechnung. Gundlgen. Skl / Vekto In de Phsik untescheiden wi gundsätlich wei veschiedene Tpen phsiklische Einheiten: Skle und Vektoen. Ein Skl ist eine elle Zhl.

Mehr

v, a Aufgabe D1 H11 Geg.: a = c w v 2, c w = const, c w > 0, v 0, τ Ges.:

v, a Aufgabe D1 H11 Geg.: a = c w v 2, c w = const, c w > 0, v 0, τ Ges.: Aufgbe D1 H11 Nchdem seine Mschinen gestoppt werden, verringert ein Continerschiff seine nfängliche eschwindigkeit v 0 lleine durch Reibung im Wsser. Für die Beschleunigung soll ngenommen werden, dss diese

Mehr

Allgemeine Mechanik Musterlösung 3.

Allgemeine Mechanik Musterlösung 3. Allgemeine Mechanik Mustelösung 3. HS 014 Pof. Thomas Gehmann Übung 1. Umlaufbahnen fü Zweiköpepobleme Die Bewegungsgleichung von zwei Köpen in einem zentalwikenem Kaftfel, U() = α/, lautet wie folgt:

Mehr

Differenzial- und Integralrechnung III

Differenzial- und Integralrechnung III Differenzil- und Integrlrechnung III Riner Huser April 2012 1 Einleitung 1.1 Polynome und Potenzfunktionen Die Polynome oder Polynomfunktionen lssen sich durch die endliche Anzhl von n+1 Prmetern i R in

Mehr

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche

Volumen von Rotationskörpern, Bogenlänge und Mantelfläche Modul Integle 3 Volumen von Rottionsköpen, Bogenlänge und Mntelfläche In diesem Modul geht es um einige spezielle Anwendungen de Integlechnung, und Volumin, Längen und Flächen zu estimmen. Fngen wi mit

Mehr

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω

e r Rotationsbewegung gleichförmige Kreisbewegung dϕ =ds/r und v=ds/dt=rdϕ/dt=rω Rotatonsbewegung ω d ϕ / dt glechfömge Kesbewegung dϕ ds/ und vds/dtdϕ/dtω δϕ ds m v (Umlaufgeschwndgket v, Kesfequenz ode Wnkelgeschwndgket ωdϕ/dt. ) F Außedem glt ωπν mt de Fequenz ν. Umlaufzet T : T1/νπ/ω

Mehr

Kapitel 4 Energie und Arbeit

Kapitel 4 Energie und Arbeit Kapitel 4 negie und Abeit Kaftfelde Wenn wi jedem unkt des Raums eindeutig einen Kaft-Vekto zuodnen können, ehalten wi ein Kaftfeld F ( ) Häufig tauchen in de hysik Zental-Kaftfelde auf : F( ) f ( ) ˆ

Mehr

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten.

Inertialsysteme. Physikalische Vorgänge kann man von verschiedenen Standpunkten aus beobachten. Inetialsysteme Physikalische Vogänge kann man on eschiedenen Standpunkten aus beobachten. Koodinatensysteme mit gegeneinande eschobenem Uspung sind gleichbeechtigt. Inetialsysteme Gadlinig-gleichfömig

Mehr

Notizen zur Vorlesung Analysis 3

Notizen zur Vorlesung Analysis 3 Notizen zur Vorlesung Anlysis 3 Henrik chumcher TUHH, 26. Jnur 207 2 Integrtion über Oberflächen 2. Oberflächenintegrl einer Funktion Definition 2.37 (Metrische Fundmentlform) ei R 2 ein reguläres Gebiet

Mehr

Inhalt der Vorlesung A1

Inhalt der Vorlesung A1 PHYSIK A S 03/4 Inhalt de Volesung A. Einfühung Methode de Physik Physikalische Gößen Übesicht übe die vogesehenen Theenbeeiche. Teilchen A. Einzelne Teilchen Bescheibung von Teilchenbewegung Kineatik:

Mehr

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.)

(a) Entscheide, ob aus der angegebenen Stellung Spieler A gewinnen kann. (Der Index gibt jeweils die Zugnummer an.) Detment Mthemtik Tg de Mthemtik 31. Oktobe 2009 Klssenstufen 9, 10 Aufgbe 1 (6+7+7 Punkte). Zwei Siele A und B sielen uf einem 2 9- Kästchen-Sielfeld. Sie ziehen bwechselnd, Siele A beginnt. Ein Zug besteht

Mehr

Ferienkurs Experimentalphysik

Ferienkurs Experimentalphysik Ferienkurs Experimentlphysik 4 009 Übung 1 Heisenberg sche Unschärfereltion Zeigen Sie, dss eine Messprtur beim Doppelspltexperiment, die den Durchgng eines Teilchens durch ein Loch detektieren knn, ds

Mehr

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt.

Statische Magnetfelder In der Antike war natürlich vorkommender Magnetstein und seine anziehende Wirkung auf Eisen bekannt. Statische Magnetfelde In de Antike wa natülich vokommende Magnetstein und seine anziehende Wikung auf Eisen bekannt.. Jahhundet: Vewendung von Magneten in de Navigation. Piee de Maicout 69: Eine Nadel,

Mehr

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler

3b) Energie. Wenn Arbeit W von außen geleistet wird: W = E gesamt = E pot + E kin + EPI WS 2006/07 Dünnweber/Faessler 3b) Enegie (Fotsetzung) Eines de wichtigsten Natugesetze Die Gesamtenegie eines abgeschlossenen Systems ist ehalten, also zeitlich konstant. Enegie kann nu von eine Fom in eine andee vewandelt weden kann

Mehr

TECHNISCHE UNIVERSITÄT MÜNCHEN

TECHNISCHE UNIVERSITÄT MÜNCHEN Prof. Dr. Simone Wrzel Mx Lein Husufgben 1. Flächeninhlte Teil 1 TECHNISCHE UNIVERSITÄT MÜNCHEN Zentrum Mthemtik Mthemtik 4 für Physik Anlysis 3 Wintersemester 9/1 Lösungsbltt 1.1.9 Wie gross ist der Flächeninhlt

Mehr

Elektronische Bandstruktur und elektrische Leitfähigkeit

Elektronische Bandstruktur und elektrische Leitfähigkeit ExpeimentlPhysik IV SS15-1 - (3. July 015) Wiedeholung k h ikx π Feies Elektonen Gs: E =, ψ ( x ) = Ce, k = ( nx, ny, nz ) m L V Zustndsdichte im k-rum: ρ( k ) = 3 (π) WICHTIG: k -Vektoen sind NICHT uf

Mehr

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. FRIEDRICH W. BUCKEL. Text Nr Stand

Versiera der Agnesi INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.  FRIEDRICH W. BUCKEL. Text Nr Stand Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Versiera der Agnesi DEMO. Text Nr Stand FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Vesie de Agnesi Tet N. 5455 Stnd 5.. FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mthe-cd.de 5455 Vesie de Agnesi Vowot Die Vesie de Agnesi ist eine lgebische Kuve. Gdes, die mn uf eine

Mehr

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf

Einführung in die Physik I. Dynamik des Massenpunkts (3) O. von der Lühe und U. Landgraf Einfühung in die Physik I Dynaik des Massenpunkts (3) O. on de Lühe und U. Landgaf Beispiele zu Ipuls- und Enegiesatz - Rakete Eine Rakete it de Masse fliegt it de Geschindigkeit i leeen, käftefeien Rau

Mehr

Geodäten. Mathias Michaelis. 28. Januar 2004

Geodäten. Mathias Michaelis. 28. Januar 2004 Geodäten Mthis Michelis 28. Jnur 2004 1 Vektorfelder Definition 1.1 Sei S 3 eine reguläre Fläche. Ein Vektorfeld uf S ist eine Abbildung v : S 3 so, dss v(p) T n S für lle p S. Ein Vektorfeld ordnet lso

Mehr

Aufgabe 30: Periheldrehung

Aufgabe 30: Periheldrehung Aufge 30: Periheldrehung Auf einen Plneten soll zusätzlich zum Grvittionspotentil ds folgende Potentil einwirken U z = η r. (1 Im Folgenden sollen eene Polrkoordinten verwendet werden. Ds können wir mchen,

Mehr

Inhalt: 2. 3. 4. 5. 6. Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2015/2016

Inhalt: 2. 3. 4. 5. 6. Prof. Dr.-Ing. Barbara Hippauf Hochschule für Technik und Wirtschaft des Saarlandes; Physik, WS 2015/2016 Inhalt: 1.. 3. 4. 5. 6. Einleitung Keplesche Gesetze Das Gavitationsgesetz Täge Masse und schwee Masse Potentielle Enegie de Gavitation Beziehung zwischen de Enegie und de Bahnbewegung Pof. D.-Ing. Babaa

Mehr

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen

PN 2 Einführung in die Experimentalphysik für Chemiker und Biologen PN 2 Einfühung in die alphysik fü Chemike und Biologen 2. Volesung 27.4.07 Nadja Regne, Thomas Schmiee, Gunna Spieß, Pete Gilch Lehstuhl fü BioMolekulae Optik Depatment fü Physik LudwigMaximiliansUnivesität

Mehr

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf

Einführung in die Physik I. Elektromagnetismus 3. O. von der Lühe und U. Landgraf Einfühung in die Physik Elektomagnetismus 3 O. von de Lühe und U. Landgaf Magnetismus Neben dem elektischen Feld gibt es eine zweite Kaft, die auf Ladungen wikt: die magnetische Kaft (Loentz-Kaft) Die

Mehr

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik)

I MECHANIK. 1. EINFÜHRUNG Grundlagen, Kinematik, Dynamik (Wiederholung der Schulphysik) Physik EI1 Mechnik - Einfühung Seie I MECHNIK 1. EINÜHRUNG Gundlgen, Kinemik, Dynmik (Wiedeholung de Schulphysik) _Mechnik_Einfuehung1_Bneu.doc - 1/9 Die einfühenden Kpiel weden wi zunächs uf dem Niveu

Mehr

Aufgaben zu Kreisen und Kreisteilen

Aufgaben zu Kreisen und Kreisteilen www.mthe-ufgben.com ufgben zu Keisen und Keisteilen Keisfläche: ( Rdius des Keises) Keisumfng: U Keisingfläche: ( ußen innen ) Keisusschnitt / Keissekto: Öffnungswinkel, b Keisbogen α bzw. b 60 α α b 60

Mehr

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik

Seminar Gewöhnliche Dierentialgleichungen Anwendungen in der Mechanik Semina Gewöhnliche Dieentialgleichungen Anwendungen in de Mechanik Geog Daniilidis 6.Juli 05 Inhaltsvezeichnis Einleitung Motivation:.Newtonsche Gesetz 3 Vowissen 4 Konsevativen Systeme 3 5 Zentale Kaftfelde

Mehr

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken.

Elektrostatik. Salze lösen sich in Wasser um Lösungen geladener Ionen zu bilden, die drei Viertel der Erdoberfläche bedecken. Elektostatik Elektische Wechselwikungen zwischen Ladungen bestimmen gosse Teile de Physik, Chemie und Biologie. z.b. Sie sind die Gundlage fü stake wie schwache chemische Bindungen. Salze lösen sich in

Mehr

Abitupüfung Mthemtik Bden-Wüttembeg (ohne CAS) Pflichtteil Aufgben Aufgbe : ( VP) Bilden Sie die este Ableitung de Funktion f mit f() ( ) e weit wie möglich. und veeinfchen Sie so Aufgbe : ( VP) Beechnen

Mehr

Rotationskurve der Milchstraßengalaxie auf Basis der Modifizierten Newtonschen Dynamik (MOND) Klaus Retzlaff

Rotationskurve der Milchstraßengalaxie auf Basis der Modifizierten Newtonschen Dynamik (MOND) Klaus Retzlaff Zusmmenfssung: Die MOdifiziete Newtonsche Dynmik (MOND) wude 1983 von Modehi Milgom ls Altentive zum Postult de Dunklen Mteie vogeschlgen []. Diese hypothetische Theoie sollte die Eigent de beobchteten

Mehr

Exkurs: Portfolio Selection Theory

Exkurs: Portfolio Selection Theory : Litetu: Reinhd Schmidt und Ev Tebege (1997): Gundzüge de Investitions- und Finnzieungstheoie, 4. Auflge, Wiesbden: Gble Velg BA-Mikoökonomie II Pofesso D. Mnfed Königstein 1 Aktien und Aktienenditen

Mehr

3.3.1 Biot-Savart-Gesetz. 3.3 Quellen des magnetischen Feldes Biot-Savart-Gesetz Biot-Savart-Gesetz Biot-Savart-Gesetz

3.3.1 Biot-Savart-Gesetz. 3.3 Quellen des magnetischen Feldes Biot-Savart-Gesetz Biot-Savart-Gesetz Biot-Savart-Gesetz 3.3 Quellen des gnetischen Feldes Biot-Svt-Gesetz Mgnetfeld eines diffeentiell kleinen Stofdens Mgnetfeld eine Spule Mgnetfeld eines geden Leites Apeesches Gesetz dl db 3 R. Giwidz R. Giwidz Mgnetfeld

Mehr

Physik für Nicht-Physikerinnen und Nicht-Physiker

Physik für Nicht-Physikerinnen und Nicht-Physiker FAKULTÄT FÜR PHYSIK UND ASTRONOMIE Physik fü Nicht-Physikeinnen und Nicht-Physike A. Belin 15.Mai2014 Lenziele Die Gößen Winkelgeschwindigkeit, Dehmoment und Dehimpuls sind Vektoen die senkecht auf de

Mehr

Magnetismus EM 33. fh-pw

Magnetismus EM 33. fh-pw Magnetismus Das magnetische eld 34 Magnetische Kaft (Loentz-Kaft) 37 Magnetische Kaft auf einen elektischen Leite 38 E- eld s. -eld 40 Geladenes Teilchen im homogenen Magnetfeld 41 Magnetische lasche (inhomogenes

Mehr

Von Kepler III zu Kepler III

Von Kepler III zu Kepler III Von Keple III zu Keple III Joachi Hoffülle jh.schule@googleail.co Luitpold-Gynasiu München Seeaust. 80538 München Voaussetzungen: F a t Geschwindigkeit als Göße it Betag und Richtung Vetautheit it de Beechnung

Mehr

Wichtige Begriffe dieser Vorlesung:

Wichtige Begriffe dieser Vorlesung: Wichtige Begiffe diese Volesung: Impuls Abeit, Enegie, kinetische Enegie Ehaltungssätze: - Impulsehaltung - Enegieehaltung Die Newtonschen Gundgesetze 1. Newtonsches Axiom (Tägheitspinzip) Ein Köpe, de

Mehr

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag

Blatt 9. Bewegung starrer Körper- Lösungsvorschlag Fkultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhnov Übungen zu Klssischer Mechnik (T) im SoSe 0 Bltt 9. Bewegung strrer Körper- Lösungsvorschlg Aufgbe 9.. Trägheitstensor

Mehr

7 Bewegung von Punkten

7 Bewegung von Punkten 81 7 Bewegung von Punkten 7.1 Übersicht Bewegung von Punkten Differenzierbrkeit. Wo liegt die Ableitung Tylorreihe, Vektordreieck Physiklische Bezeichnungen Abstnd zu einer Kurve Geschwindigkeit Bogenlänge

Mehr

Übungsaufgaben zum Thema Kreisbewegung Lösungen

Übungsaufgaben zum Thema Kreisbewegung Lösungen Übungsaufgaben zum Thema Keisbewegung Lösungen 1. Ein Käfe (m = 1 g) otiet windgeschützt auf de Flügelspitze eine Windkaftanlage. Die Rotoen de Anlage haben einen Duchmesse von 30 m und benötigen fü eine

Mehr

Trägheitsmoment - Steinerscher Satz

Trägheitsmoment - Steinerscher Satz 91 Cl von Ossietzky Univesität Oldenbug - Fkultät V- Institut fü Physik Modul Gundpktikum Physik Teil I Tägheitsmoment - Steinesche Stz Stichwote: Rottionsbewegung, Winkelgeschwindigkeit, Winkelbeschleunigung,

Mehr

Induktivität und Energie des Magnetfeldes

Induktivität und Energie des Magnetfeldes Induktivität und Enegie de Mgnetfelde 1. D CMS (Compct Muon Solenoid) m CERN it ein ieige Teilchendetekto fü den HC (ge Hdon Collide). D Kentück de CMS it ein upleitende Elektomgnet de änge = 13m und mit

Mehr

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze

Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der relativistischen Kraftgesetze Rolnd Meissner Bodestrße 7, D-06122 Hlle, E-Mil: rolndmeissner@gmx.de Die Begrenzung der Beschleunigung und ihre Folgen Die Herleitung der reltivistischen Krftgesetze Abstrct The reltivistic term of Force

Mehr

Physik PHB3/4 (Schwingungen, Wellen, Optik)

Physik PHB3/4 (Schwingungen, Wellen, Optik) _Schwingungen_Fei_Ungedepft_BA.doc - /. Feie, ungedäpfte Schwingung (De honische Oszito) Bewegung eine tägen Msse u eine stbie Ruhege, wobei die ückteibende Kft de ineen Kftgesetz gehocht... Fedepende

Mehr

3. Elektrostatik (Motivation) Nervenzelle

3. Elektrostatik (Motivation) Nervenzelle 3. Elektostatik (Motivation) Nevenzelle 18 Jh.: Neuone wie elektische Leite. ABER: Widestand des Axoplasmas seh hoch 2,5 10 8 Ω (vegleichba Holz) Weiteleitung duch Pozesse senkecht zu Zellmemban Zellmemban

Mehr

8 Integralrechnung. 8.1 Das Riemann-Integral

8 Integralrechnung. 8.1 Das Riemann-Integral 8 Integrlrechnung Der Integrlbegriff ist wie der Ableitungsbegriff motiviert durch die physiklische Beschreibung von Bewegungsbläufen (Geschwindigkeit, Beschleunigung). Er ist u.. uch von Bedeutung bei

Mehr

Kapitel 3 Kräfte und Drehmomente

Kapitel 3 Kräfte und Drehmomente Kapitel 3 Käfte und Dehmomente Käfte Messung und physikalische Bedeutung eine Kaft : Messung von Masse m Messung von Beschleunigung a (Rückgiff auf Längen- und Zeitmessung) Aus de Messung von Masse und

Mehr

Wichtige Begriffe der Vorlesung:

Wichtige Begriffe der Vorlesung: Wichtige Begiffe de Volesung: Abeit, Enegie Stae Köpe: Dehmoment, Dehimpuls Impulsehaltung Enegieehaltung Dehimpulsehaltung Symmetien Mechanische Eigenschaften feste Köpe Enegiesatz de Mechanik Wenn nu

Mehr

Eigenschaften mathematischer Körper

Eigenschaften mathematischer Körper Rettungsing Köpe gnz kl: temtik 4 - Ds Feieneft mit Efolgsnzeige Eigenscften mtemtisce Köpe Eigenscften von Pismen Ein gedes Pism t imme eine und- und eine Deckfläce, die deckungsgleic und pllel zueinnde

Mehr

Lösung V Veröentlicht:

Lösung V Veröentlicht: 1 Bewegung entlang eines hoizontalen Keises (a) Ein Ball de Masse m hängt an einem Seil de Länge L otiet mit eine konstanten Geschwindigkeit v auf einem hoizontalen Keis mit Radius, wie in Abbildung 2

Mehr

Der Tachometer gibt nur den Betrag der Geschwindigkeit an. Da die Fahrrichtung in der Kurvenfahrt jedoch ändert, ist die Bewegung beschleunigt.

Der Tachometer gibt nur den Betrag der Geschwindigkeit an. Da die Fahrrichtung in der Kurvenfahrt jedoch ändert, ist die Bewegung beschleunigt. Physik nwenden und estehen: Lösungen.4 Keisbewegung und ittion 4 Oell üssli Velg A.4 Keisbewegung und ittion Keisbewegung 9 De chomete gibt nu den Betg de eschwindigkeit n. D die hichtung in de Kuenfht

Mehr

Magnetismus EM 48. fh-pw

Magnetismus EM 48. fh-pw Mgnetismus Hll Effekt 9 Hll Effekt (Anwenungen) 5 Dehmoment eine eiteschleife 5 eispiel: Dehmoment eine Spule 5 iot-svt Gesetz 55 Mgnetfel im nneen eine eiteschleife 56 Mgnetfel eines stomfühenen eites

Mehr

7 Arbeit, Energie, Leistung

7 Arbeit, Energie, Leistung Seite on 6 7 Abeit, Enegie, Leitung 7. Abeit 7.. Begiffekläung Abeit wid ie dann eictet, wenn ein Köpe unte de Einflu eine äußeen Kaft läng eine ege ecoben, becleunigt ode efot wid. 7.. Eine kontante Kaft

Mehr

Lösung: a) 1093 1100 b) 1093 1090

Lösung: a) 1093 1100 b) 1093 1090 OvTG Guting, Grundwissen Mthemtik 5. Klsse 1. Ntürliche Zhlen Dezimlsystem Mn nennt die Zhlen, die mn zum Zählen verwendet, 10963 = 1 10000+ 0 1000+ 9 100+ 6 10 + 3 1 ntürliche Zhlen. Der Stellenwert der

Mehr