Die Gleichstrommaschine. Theorie

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die Gleichstrommaschine. Theorie"

Transkript

1 Die Gleichstrommaschine Theorie

2 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Grundprinzip Kanalisierung des Magnetfeldes durch Polschuhe Kommutator Rotor mit vielen Leiterschleifen Die Gleichstrommaschine Erregerkreis - Erzeugung des Luftspaltfeldes Ankerkreis Ersatzschaltbild Schaltungsmöglichkeiten Fremderregt Nebenschluss Reihenschluss Betrieb der Gleichstrommaschine Anlauf Einstellung der Drehzahl Kennlinien Nebenschluss-Generator Grundsätzliches Nebenschluss-Generator Literaturverzeichnis... 15

3 1 Grundprinzip 3 1 Grundprinzip Für die grundlegenden Überlegungen wird von einer Leiterschleife ausgegangen, die in einem homogenen Magnetfeld gedreht wird (vgl. Abb. 1). Abb. 1: Leiterschleife im homogenen Magnetfeld. Aus dem Induktionsgesetz folgt die Spannung E, die an den Klemmen der Leiterschleife induziert wird. Der von der Schleife umfasste magnetische Fluss Φ m beträgt: φ m = A B cos α (1.1) Bei gleichförmiger Rotation α = Ω t ergibt sich somit für E: dφ d = = Ω =Ω Ω dt dt ( cos( )) sin( ) m E A B t A B t (1.2) Es wird also bei gleichförmiger Drehung an den Klemmen eine Wechselspannung induziert, deren Amplitude proportional zur Kreisfrequenz und zum umfassten magnetischen Fluss ist. Fliesst jetzt in dieser Leiterschleife ein Gleichstrom I, so wirkt auf die ''lange'' Spulenseite die Kraft F = I l B ( ), (1.3) wobei der Längenvektor l in Richtung des Stromes zeigt und dem Betrag nach gleich der Länge des Leiterstückes ist. Weil in Abb. 1 beide Seiten der Spule den gleichen Kraftbeitrag liefern, ergibt sich ein Drehmoment M:

4 4 1 Grundprinzip M = 2 r I l B sinα = I A B sin α (1.4) Es entsteht also bei stromdurchflossener Leiterschleife ein Drehmoment, dessen Amplitude proportional zum Strom in der Schleife und zum Betrag des umfassten magnetischen Flusses A B ist. Folgende drei Schritte führen von der Leiterschleife im homogenen Magnetfeld zur praktischen Gleichstrommaschine: 1.1 Kanalisierung des Magnetfeldes durch Polschuhe In der praktischen Maschine wird das Magnetfeld (bzw. der magnetische Fluss) durch Polschuhe aus Eisen geführt. Es entsteht dann die in Abb. 2 gezeigte Anordnung. Abb. 2: Kanalisierung des Flusses durch Polschuhe. Unter den Polschuhen ist das Feld ungefähr konstant und steht immer senkrecht zur Oberfläche. Der von der Schleife umfasste Fluss ändert sich jetzt bei der Drehung dreieckförmig, wodurch der Verlauf der Spannung in Abhängigkeit von α = Ω t rechteckförmig wird. Auch das Drehmoment wird rechteckförmig, weil das Feld unter den Polschuhen näherungsweise konstant ist (Abb. 3).

5 1 Grundprinzip 5 E α M α Polschuhe Abb. 3: Verlauf von Spannung und Drehmoment ohne Kommutator. 1.2 Kommutator Die Enden der Leiterschleife werden auf unterteilte Schleifringe geführt, die über örtlich feste Bürsten kontaktiert werden (Abb. 4). Die induzierte Spannung wird dadurch gleichgerichtet. Es wird nämlich bei dieser Anordnung automatisch in jedem Nulldurchgang der Spannung die Polarität gewechselt. Ausserdem wird das Drehmoment bei stromdurchflossener Leiterschleife durch Umpolen des zugeführten Stromes gleichgerichtet (Abb. 5). Abb. 4: Prinzip des Kommutators.

6 6 2 Die Gleichstrommaschine Abb. 5: Gleichgerichtete Spannung und gleichgerichtetes Drehmoment. 1.3 Rotor mit vielen Leiterschleifen In den praktischen Maschinen sind auf dem Anker (Rotor) sehr viele Leiterschleifen (Windungen) untergebracht. Sie sind jeweils um wenige Winkeleinheiten versetzt und werden über den Kommutator so kontaktiert, dass die einzelnen Schleifenspannungen gleichgerichtet (vgl. Abb. 5) und in Serie geschaltet werden. Die praktische Realisierung eines solchen Kommutators mit vielen Schleifen ist nicht ganz einfach zu erkennen. Durch die vielen leicht versetzten Schleifen und deren richtige Kommutierung wird nun die Welligkeit von Spannung und Strom so stark reduziert, dass diese als gleichförmige Grössen betrachtet werden können. Der mit der gesamten Ankerwicklung verkettete magnetische Fluss wird als Ankerflussverkettung Ψ bezeichnet. Ψ ist dabei im wesentlichen der mit der Windungszahl multiplizierte magnetische Fluss Φ m, der von einer einzelnen Schleife umfasst wird. 2 Die Gleichstrommaschine 2.1 Erregerkreis - Erzeugung des Luftspaltfeldes Die Erzeugung des Magnetfeldes kann prinzipiell auf zwei verschiedene Arten erfolgen: durch Permanentmagnete oder durch eine Erregerspule im Eisenkreis. Auf jeden Fall gilt für die hier verwendete vereinfachte Betrachtung, dass das im Luftspalt herrschende Magnetfeld unabhängig vom Betriebszustand ist und nur vom Strom in der Erregerspule abhängt, bzw. von den verwendeten Permanentmagneten. Wir wollen im folgenden nur Maschinen betrachten, deren Luftspaltfeld durch eine Erregerspule erzeugt wird.

7 2 Die Gleichstrommaschine 7 Die Stärke des Magnetfeldes wird durch den magnetischen Fluss, der vom ganzen Anker umfasst wird, die sog. Ankerflussverkettung Ψ ausgedrückt. Weil das Magnetfeld durch Eisenwege geführt wird, welche eine nichtlineare Magnetisierungskurve aufweisen, ist der Zusammenhang zwischen der Flussverkettung Ψ und dem Strom I e, der sie erzeugt, nichtlinear: Ψ= f ( I e ) (2.1) Dieser Zusammenhang wird mittels Feldsimulationsprogrammen berechnet oder experimentell für jede Maschine gemessen. 2.2 Ankerkreis Der Kern der Gleichstrommaschine kann anhand der zwei oben hergeleiteten Grundgesetze ganz einfach modelliert werden: Die induzierte Spannung E, durch den Kommutator gleichgerichtet und wegen der vielen leicht versetzten Ankerwindungen geglättet, wird als Gleichspannungsquelle dargestellt, durch welche ein beliebiger, von der Spannung unabhängiger Strom fliessen kann (ideale Spannungsquelle). Dabei gelten folgende Gesetze: E =Ψ Ω (2.2) M =Ψ I a (2.3) Für die Modellierung des grundsätzlichen Verhaltens der Gleichstrommaschine müssen noch die Wicklungswiderstände und die Wicklungsinduktivitäten berücksichtigt werden. 2.3 Ersatzschaltbild Für die Gleichstrommaschine ergibt sich somit das Ersatzschaltbild gemäss Abb. 6. Werden nur quasistationäre Vorgänge betrachtet, können die Induktivitäten vernachlässigt werden. Die Gleichstrommaschine wird durch die Gleichungen (2.1) bis (2.3) und durch das Ersatzschaltbild vollständig beschrieben!

8 8 3 Schaltungsmöglichkeiten I a I e L a R a R e U a E Ψ Le U e Abb. 6: Vollständiges Ersatzschaltbild der Gleichstrommaschine. 3 Schaltungsmöglichkeiten Entsprechend der Beschaltung der zwei Kreisen der Gleichstrommaschine (Erregerkreis und Ankerkreis) ergeben sich für die Maschine unterschiedliche Charakteristiken. 3.1 Fremderregt Der Erregerkreis wird durch eine eigene, variable Quelle unabhängig gespeist. Abb. 7: Fremderregte Gleichstrommaschine. 3.2 Nebenschluss Über dem Erregerkreis liegt dieselbe Spannung wie über dem Ankerkreis. Wird die Maschine an einem starren Netz betrieben, besteht kein Unterschied zur fremderregten Maschine.

9 4 Betrieb der Gleichstrommaschine 9 I a I e R a R v U a E Ψ R e Abb. 8: Gleichstrommaschine in Nebenschlussschaltung. 3.3 Reihenschluss Bei der Reihenschlussschaltung fliesst durch den Erreger- und den Ankerkreis derselbe Strom. Die Reihenschlussschaltung wird auch Hauptschlussschaltung genannt. I a I e = I a R a U a E Ψ R e Abb. 9: Gleichstrommaschine in Reihenschlussschaltung. 4 Betrieb der Gleichstrommaschine 4.1 Anlauf Es wird hier nur die Problematik des Anlaufs fremderregter Gleichstrommaschinen bzw. von Nebenschluss-Gleichstrommaschinen behandelt. Die entsprechende Schaltung zeigt Abb. 10. Im ersten Moment nach dem Schliessen des Schalters S 1 ist die Spannung E = Ψ Ω = 0, weil Ω noch null ist. Die gesamte Netzspannung liegt über dem Anlass- und Ankerwiderstand

10 10 4 Betrieb der Gleichstrommaschine R A + R a. Der Anlasswiderstand wird so dimensioniert, dass der Strom in der Grössenordnung des Nennstroms begrenzt wird. Damit das beschleunigende Moment möglichst gross ist und somit E möglichst schnell wächst, muss die Erregung und somit Ψ auf das zulässige Maximum gebracht werden. Nach dem Hochlaufen kann R A mittels S 2 überbrückt werden. Abb. 10: Schaltung zum Anlassen der Gleichstrommaschine. 4.2 Einstellung der Drehzahl Aus Abb. 6 folgt die Maschengleichung für den Ankerkreis zu: Ua = Ra Ia + E (4.1) Mit Hilfe der Gleichungen (2.1) - (2.3) folgt für die Drehzahl Ω: U R I U R M Ω= = a a a a a (4.2) Ψ Ψ Ψ Ψ 2 Die Drehzahl lässt sich somit über die Klemmenspannung U a und über die Flussverkettung Ψ(I e ) verändern. Da meistens eine feste Netzspannung zur Verfügung steht, wird die Drehzahl über den Erregerstrom eingestellt. Vergrössern des Erregerstroms bedeutet Verkleinern der Drehzahl und umgekehrt! Geht Ψ gegen 0, so wächst Ω ins Unendliche. In der Praxis heisst das, dass die Erregung nur bis auf ein bestimmtes Minimum reduziert werden darf, weil sonst die Maschine durch zu hohe Drehzahlen zerstört würde!

11 4 Betrieb der Gleichstrommaschine Kennlinien Die Leerlaufkennlinie beschreibt den Zusammenhang Ψ(I e ). Da Ψ nicht direkt gemessen werden kann, muss auf eine andere Grösse zurückgegriffen werden. Bei konstanter Drehzahl ist die induzierte Spannung E proportional zur Flussverkettung Ψ. Im Leerlauf (kein Lastmoment) ist I a = 0 und somit U a = E (siehe Abb. 11). Die Spannung U a kann direkt mit einem Voltmeter gemessen werden. Abb. 11: Schaltung zur Messung der Leerlaufkennlinie. In der Regel wird die Leerlaufkennlinie bei Nenndrehzahl aufgenommen. Da sie aber zur Drehzahl proportional ist, kann sie auf jede Drehzahl umgerechnet werden. Abb. 12 zeigt den typischen Verlauf einer Leerlaufkennlinie. Die Belastungskennlinie M(n) lässt sich nur für die fremderregte Gleichstrommaschine einfach analytisch berechnen, weil bei der Reihenschlussschaltung der nichtlineare Zusammenhang Ψ(I e ) mitberücksichtigt werden müsste. Abb. 12: Beispiel einer Leerlaufkennlinie.

12 12 5 Nebenschluss-Generator 5 Nebenschluss-Generator 5.1 Grundsätzliches Bei der Verwendung der Gleichstrommaschine als Generator an einem nicht festen Netz (Inselnetz) spielt es eine Rolle, ob die Gleichstrommaschine fremderregt wird oder ob sie in Nebenschlussschaltung betrieben wird. Ist die Netzspannung fix, besteht kein prinzipieller Unterschied zwischen den beiden Schaltungsarten. Die Maschine arbeitet als Generator, wenn die induzierte Spannung E grösser als die Netzspannung U a wird (vgl. Abb. 6). Dann ist I a negativ, d.h. er fliesst ins Netz hinaus. Um die induzierte Spannung zu vergrössern, muss entweder bei fester Drehzahl die Erregung vergrössert, oder bei konstanter Erregung die Drehzahl erhöht werden. 5.2 Nebenschluss-Generator Bei der Schaltung der Gleichstrommaschine als Nebenschluss-Generator liegt die Spezialität darin, dass die Erregung von der eigenen induzierten Spannung gespeist wird (vgl. Abb. 13). I = 0 I a I e R a R v U a E Ψ R e Abb. 13: Ersatzschaltung des Nebenschluss-Generators ohne Last. Der Nebenschluss-Generator kann sich nur selbst erregen, wenn in den Eisenteilen noch eine Remanenzmagnetisierung vorhanden ist, so dass eine kleine Spannung induziert wird, welche die Erregung vergrössern kann, bis ein stabiler Betriebspunkt erreicht wird. Die Bestimmung dieses Arbeitspunktes A 0 ohne Belastung (Leerlauf) kann einfach grafisch mit Hilfe der Leerlaufkennlinie vorgenommen werden (vgl. Abb. 14).

13 5 Nebenschluss-Generator 13 U a = E A 0 E(I e ) (R e + R v ) I e I e Abb. 14: Bestimmung des Arbeitspunktes. Denn unter Vernachlässigung von R a ist der Arbeitspunkt A 0 der Schnittpunkt der Geraden ( ) U = R + R I (5.1) a e v e mit der Kurve: a ( ) U = E = Ψ Ω = f I Ω (5.2) e Bei Belastung tritt als zusätzliche Unbekannte noch der Laststrom I a auf. Die entsprechende Ersatzschaltung zeigt Abb. 15. Bei Nennlast beträgt der Erregerstrom übrigens typischerweise nur 1 2 % des Laststroms. Abb. 15: Ersatzschaltbild des Nebenschluss-Generators mit Belastung. Durch Variation des Lastwiderstandes R L lässt sich der Strom I a und durch Variation des Erregervorwiderstandes R v der Erregerstrom I e einstellen. Mit den Grundgleichungen (2.1) - (2.3) und den Kirchhoff'schen Gesetzen folgen drei Gleichungen für die Unbekannten I e, I a, U a :

14 14 5 Nebenschluss-Generator ( ) U = R + R I (5.3) a v e e ( ) U = E I R I (5.4) a e a a ( ) R R + R U = I = R I R I L v e a a p a L a RL + Rv + Re mit R = R // ( R + R ) p L v e (5.5) Weil die Beziehung E = Ψ(I e ) Ω analytisch nicht bekannt ist, lässt sich dieses Gleichungssystem nur grafisch lösen. Für praktische Zwecke ist vor allem der Verlauf der sogenannten Belastungskennlinie U a (I a ) interessant. Zur grafischen Lösung betrachten wir die Abb. 16, in der die Gleichungen (5.3) und (5.4) für zwei verschiedene I a grafisch aufgezeichnet sind. Abb. 16: Bestimmung des Arbeitspunktes unter Last. Werden die Schnittpunkte der Geraden (5.3) mit der Kurve (5.4) in die I a / U-Ebene übertragen, resultiert der in Abb. 17 gezeigte Verlauf von U a (I a ). Abb. 17: Belastungskennlinie des Nebenschluss-Generators.

15 Literaturverzeichnis 15 Literaturverzeichnis [1] Müller, G.; Ponick, B. Grundlagen elektrischer Maschinen Wiley VCH Verlag, 9. Auflage, ISBN: [2] Müller, G. Theorie elektrischer Maschinen VCH Verlag, 4. Auflage, ISBN: [3] Kremser, A. Elektrische Maschinen und Antriebe Teubner Verlag, 3. Auflage, ISBN: [4] Fischer, R. Elektrische Maschinen Hanser Fachbuchverlag, 13. Auflage, ISBN: [5] Bödefeld, T.; Sequenz, H. Elektrische Maschinen Springer Verlag, 8. Auflage, ISBN: [6] Taegen, F. Einführung in die Theorie der elektrischen Maschinen, Teil 1. Vieweg Verlag, ISBN:

Fachpraktikum Elektrische Maschinen Versuch 1: Gleichstrommaschine

Fachpraktikum Elektrische Maschinen Versuch 1: Gleichstrommaschine Fachpraktikum Elektrische Maschinen Versuch 1: Gleichstrommaschine Theorie Inhaltsverzeichnis Inhaltsverzeichnis... 2 1 Grundprinzip... 3 1.1 Kanalisierung des Magnetfeldes durch Polschuhe... 4 1.2 Kommutator...

Mehr

Fachpraktikum Hochdynamische Antriebssysteme. Theoretische Grundlagen Gleichstrommaschine

Fachpraktikum Hochdynamische Antriebssysteme. Theoretische Grundlagen Gleichstrommaschine Fachpraktikum Hochdynamische ntriebssysteme Gleichstrommaschine Christof Zwyssig Franz Zürcher Philipp Karutz HS 2008 Gleichstrommaschine Die hier aufgeführten theoretischen Betrachtungen dienen dem Grundverständnis

Mehr

Fachhochschule Bielefeld Praktikum Versuch 1. Prof. Dr.-Ing. Hofer EM 1 GM FB Ingenieurwissenschaften Elektrische Maschinen. Gleichstrommaschine

Fachhochschule Bielefeld Praktikum Versuch 1. Prof. Dr.-Ing. Hofer EM 1 GM FB Ingenieurwissenschaften Elektrische Maschinen. Gleichstrommaschine Trafo Fachhochschule Bielefeld Praktikum Versuch 1 Gleichstrommaschine Versuchsaufgabe: Die hier zu untersuchende fremderregte Gleichstrommaschine (GM) wird im Verbund mit einer Drehstromasynchronmaschine

Mehr

Übung Grundlagen der Elektrotechnik B

Übung Grundlagen der Elektrotechnik B Übung Grundlagen der Elektrotechnik B Aufgabe 1: Rotierende Leiterschleife Betrachtet wird die im folgenden Bild dargestellte, in einem homogenen Magnetfeld rotierende Leiterschleife. Es seien folgende

Mehr

Versuchsprotokoll zum Versuch Nr. 2 Messungen am Generator

Versuchsprotokoll zum Versuch Nr. 2 Messungen am Generator Ein Generator ist das Gegenstück zum Motor. Mit ihm ist es möglich mech. Energie in elektrische umzuwandeln. Beim Generator dreht sich in einem Magnetfeld eine Leiterschleife (Spule), wodurch ein Strom

Mehr

Die Gleichstrommaschine. Versuch GM

Die Gleichstrommaschine. Versuch GM Die Gleichstrommaschine Versuch G 2 Inhaltsverzeichnis Inhaltsverzeichnis 1 Ziele des Praktikums... 2 2 Beschreibung der Praktikumsmaschinen... 3 3 Vorbereitende Aufgaben... 5 3.1 Anlauf und Leerlaufkennlinie...

Mehr

Friedrich-Alexander Universität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 19. September 2005

Friedrich-Alexander Universität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 19. September 2005 Lehrstuhl für Elektromagnetische Felder Prof Dr-Ing T Dürbaum Friedrich-Alexander niversität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 9 September 2005 Bearbeitungszeit:

Mehr

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]

3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] 3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche

Mehr

Theoretische Grundlagen

Theoretische Grundlagen Theoretische Grundlagen m eistungsbereich oberhalb 0,75 kw ("integral horsepower") sind etwa 7% der gefertigten elektrischen Maschinen Gleichstrommaschinen. Haupteinsatzgebiete sind Hüttenund Walzwerke,

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 23. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 23. 06.

Mehr

Elektrische Antriebe Grundlagen und Anwendungen. Übung 1. Elektromagnetismus, Aufbau und Funktionsprinzip der Gleichstrommaschine

Elektrische Antriebe Grundlagen und Anwendungen. Übung 1. Elektromagnetismus, Aufbau und Funktionsprinzip der Gleichstrommaschine Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Fakultät für Elektrotechnik und Informationstechnik Technische Universität München Elektrische Antriebe Grundlagen und Anwendungen Übung

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Leistungselektronik und Antriebstechnik Laborberichte. Christian Burri Tobias Plüss Pascal Schwarz

Leistungselektronik und Antriebstechnik Laborberichte. Christian Burri Tobias Plüss Pascal Schwarz Leistungselektronik und Antriebstechnik Laborberichte Christian Burri Tobias Plüss Pascal Schwarz 26. April 2013 Inhaltsverzeichnis 1 Asynchronmaschine am Netz 3 1.1 Versuchsaufbau......................................

Mehr

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom

Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen

Mehr

Schnittbild einer zweipoligen elektrisch erregten Gleichstrommaschine. Rotor der Gleichstrommaschine und eine Windung des Rotors

Schnittbild einer zweipoligen elektrisch erregten Gleichstrommaschine. Rotor der Gleichstrommaschine und eine Windung des Rotors Universität Stuttgart Institut für Leistungselektronik und Elektrische Antriebe Abt. Elektrische Energiewandlung Prof. Dr.-Ing. N. Parspour Inhalt 5 Elektrische Maschinen... 1 5.1 Gleichstrommaschinen...

Mehr

Elektrische Antriebe Grundlagen und Anwendungen. Übung 2. Stationäres Betriebsverhalten der fremderregten Gleichstrommaschine

Elektrische Antriebe Grundlagen und Anwendungen. Übung 2. Stationäres Betriebsverhalten der fremderregten Gleichstrommaschine Lehrstuhl für Elektrische Antriebssysteme und Leistungselektronik Fakultät für Elektrotechnik und Informationstechnik Technische Universität München Elektrische Antriebe Grundlagen und Anwendungen Übung

Mehr

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 )

Induktionsbeispiele. Rotierende Leiterschleife: Spule mit Induktionsschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) Induktionsbeispiele Rotierende eiterschleife: Bei konstanter Winkelgeschw. ω: Φ m = AB cos φ = AB cos(ωt + φ 0 ) A φ B ω Induktionsspannung: U ind = dφ m = AB [ ω sin(ωt + φ 0 )] = ABω sin(ωt + φ 0 ) (Wechselspannung)

Mehr

Grundlagen der Elektrotechnik B

Grundlagen der Elektrotechnik B Prof. Dr. Ing. Joachim Böcker Grundlagen der Elektrotechnik B 26.07.202 Name: Matrikelnummer: Vorname: Studiengang: Fachprüfung Leistungsnachweis Aufgabe: (Punkte) () 2 (7) 3 (4) 4 (2) 5 (3) Punkte Klausur

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 26. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 26. 06.

Mehr

Praktikum II TR: Transformator

Praktikum II TR: Transformator Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 30. März 2004 Made with L A TEX and Gnuplot Praktikum

Mehr

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007

TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007 TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste

Mehr

Gleichstrommaschinen. Auf dem Anker sind viele in Reihe geschalten Spulen, dadurch sinkt die Welligkeit der Gleichspannung.

Gleichstrommaschinen. Auf dem Anker sind viele in Reihe geschalten Spulen, dadurch sinkt die Welligkeit der Gleichspannung. Matura Komplementärfragen Gleichstrommaschinen Allgemeines zu Spannungserzeugung im Magnetfeld: Die Ankerwicklung wird im Magnetfeld der feststehenden Aussenpole gedreht und dadurch wird eine Spannung

Mehr

Elektrotechnik für Maschinenbauer. Grundlagen der Elektrotechnik für Maschinenbauer Konsultation 12: Elektrische Maschinen

Elektrotechnik für Maschinenbauer. Grundlagen der Elektrotechnik für Maschinenbauer Konsultation 12: Elektrische Maschinen Grundlagen der Konsultation 12: Elektrische aschinen 1. Einleitung Bei den elektrischen aschinen unterscheidet man Transformatoren, Gleichstrommaschinen, Asynchronmaschinen und Synchronmaschinen. Daneben

Mehr

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2

IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2 IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2

Mehr

6.5 GSM: Betriebsverhalten Seite 1. In Bild ist die Prinzipschaltung eines Gleichstrommotors im stationären Zustand angegeben.

6.5 GSM: Betriebsverhalten Seite 1. In Bild ist die Prinzipschaltung eines Gleichstrommotors im stationären Zustand angegeben. 6.5 GSM: Betriebsverhalten Seite 1 Maschinenkonstante In Bild 6.5-1 ist die Prinzipschaltung eines Gleichstrommotors im stationären Zustand angegeben. Bild 6.5-1: Prinzipschaltung eines Gleichstrommotors

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente

Mehr

Zusammenfassung elektrische Maschinen Gleichstrommaschine

Zusammenfassung elektrische Maschinen Gleichstrommaschine Gleichstrommaschine i F F F F U = R I + Ui U F = RF IF Gleichstrommaschine Induzierte Spannung: Ursache: Änderung des magnetischen Flusses in der Leiterschleife Ui = c φf Erzeugung des magnetischen Flusses:

Mehr

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:

Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen: Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten

Mehr

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009

Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung

Physik-Department. Ferienkurs zur Experimentalphysik 2 - Musterlösung Physik-Department Ferienkurs zur Experimentalphysik 2 - Musterlösung Daniel Jost 27/08/13 Technische Universität München Aufgaben zur Magnetostatik Aufgabe 1 Bestimmen Sie das Magnetfeld eines unendlichen

Mehr

Übungen zu Experimentalphysik 2

Übungen zu Experimentalphysik 2 Physik Department, Technische Universität München, PD Dr. W. Schindler Übungen zu Experimentalphysik 2 SS 13 - Lösungen zu Übungsblatt 4 1 Schiefe Ebene im Magnetfeld In einem vertikalen, homogenen Magnetfeld

Mehr

5 Zeitabhängige Felder

5 Zeitabhängige Felder Carl Hanser Verlag München 5 Zeitabhängige Felder Aufgabe 5.13 Die spannungsabhängige Kapazität eines Kondensators kann für den Bereich 0... 60 V durch folgende Gleichung angenähert werden: Geben Sie allgemein

Mehr

15.Magnetostatik, 16. Induktionsgesetz

15.Magnetostatik, 16. Induktionsgesetz Ablenkung von Teilchenstrahlen im Magnetfeld (Zyklotron u.a.): -> im Magnetfeld B werden geladene Teilchen auf einer Kreisbahn abgelenkt, wenn B senkrecht zu Geschwindigkeit v Kräftegleichgewicht: 2 v

Mehr

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld

Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld 37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld

Mehr

Grundkurs Physik (2ph2) Klausur

Grundkurs Physik (2ph2) Klausur 1. Ernest O. Lawrence entwickelte in den Jahren 1929-1931 den ersten ringförmigen Teilchenbeschleuniger, das Zyklotron. Dieses Zyklotron konnte Protonen auf eine kinetische Energie von 80 kev beschleunigen.

Mehr

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I

Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,

Mehr

Versuchsprotokoll zum Versuch Nr. 1

Versuchsprotokoll zum Versuch Nr. 1 Durch den Motor ist es möglich, elektrische Energie in mechanische Energie umzuwandeln. Wird eine Leiterschleife in einem Magnetfeld drehbar gelagert und schickt man einen Strom durch die Leiterschleife,

Mehr

Induktion. Bewegte Leiter

Induktion. Bewegte Leiter Induktion Bewegte Leiter durch die Kraft werden Ladungsträger bewegt auf bewegte Ladungsträger wirkt im Magnetfeld eine Kraft = Lorentzkraft Verschiebung der Ladungsträger ruft elektrisches Feld hervor

Mehr

Magnetfeld in Leitern

Magnetfeld in Leitern 08-1 Magnetfeld in Leitern Vorbereitung: Maxwell-Gleichungen, magnetischer Fluss, Induktion, Stromdichte, Drehmoment, Helmholtz- Spule. Potentiometer für Leiterschleifenstrom max 5 A Stufentrafo für Leiterschleife

Mehr

Technische Universität Clausthal

Technische Universität Clausthal Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.

Mehr

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als

Magnetische Induktion Φ = Der magnetische Fluss Φ durch eine Fläche A ist definiert als E8 Magnetische Induktion Die Induktionsspannung wird in Abhängigkeit von Magnetfeldgrößen und Induktionsspulenarten untersucht und die Messergebnisse mit den theoretischen Voraussagen verglichen.. heoretische

Mehr

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti,

Übungsblatt 07. PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, Übungsblatt 07 PHYS3100 Grundkurs IIIb (Physik, Wirtschaftsphysik, Physik Lehramt) Othmar Marti, (othmar.marti@physik.uni-ulm.de) 7.. 005 oder 14.. 005 1 Aufgaben 1. Wir berechnen Elektromotoren. Nehmen

Mehr

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen

Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises

Mehr

Datum: Ersatzschaltung und Gleichungen eines fremderregten Gleichstrommotors ( 1) ( 2) ( 3) ( 4) U F. i 2 A V

Datum: Ersatzschaltung und Gleichungen eines fremderregten Gleichstrommotors ( 1) ( 2) ( 3) ( 4) U F. i 2 A V Labor Elektrische aschinen (E) Fahrzeugtechnik Fachbereich echatronik und Elektrotechnik Labor Elektrische ntriebstechnik ersuch E- 2FZ: Gleichstrommotor Datum: Semester: Gruppe: Protokoll: ortestat: Bericht:

Mehr

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:

Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator

Mehr

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten

Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten 2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit

Mehr

Elektrizitätslehre und Magnetismus

Elektrizitätslehre und Magnetismus Elektrizitätslehre und Magnetismus Othmar Marti 19. 06. 2008 Institut für Experimentelle Physik Physik, Wirtschaftsphysik und Lehramt Physik Seite 2 Physik Klassische und Relativistische Mechanik 19. 06.

Mehr

Automatisierungstechnik 1

Automatisierungstechnik 1 Automatisierungstechnik Hinweise zum Laborversuch Motor-Generator. Modellierung U a R Last Gleichstrommotor Gleichstromgenerator R L R L M M G G I U a U em = U eg = U G R Last Abbildung : Motor-Generator

Mehr

Vorlesung 5: Magnetische Induktion

Vorlesung 5: Magnetische Induktion Vorlesung 5: Magnetische Induktion, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2016/17 Magnetische Induktion Bisher:

Mehr

O. Sternal, V. Hankele. 4. Magnetismus

O. Sternal, V. Hankele. 4. Magnetismus 4. Magnetismus Magnetfelder N S Rotationsachse Eigenschaften von Magneten und Magnetfeldern Ein Magnet hat Nord- und Südpol Ungleichnamige Pole ziehen sich an, gleichnamige Pole stoßen sich ab. Es gibt

Mehr

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung

Physikalisches Praktikum. Grundstromkreis, Widerstandsmessung Grundstromkreis, Widerstandsmessung Stichworte zur Vorbereitung Informieren Sie sich zu den folgenden Begriffen: Widerstand, spezifischer Widerstand, OHMsches Gesetz, KIRCHHOFFsche Regeln, Reihenund Parallelschaltung,

Mehr

Versuch Gleichstrommaschine (GM)

Versuch Gleichstrommaschine (GM) Laborpraktikum Versuch Gleichstrommaschine (GM) SS 2012 SS 2012 Seite 1 Datum: 10-04-2012 SS 2012 Seite 2 Inhaltsverzeichnis Inhaltsverzeichnis... 3 Abbildungsverzeichnis... 4 Tabellenverzeichnis... 4

Mehr

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters

4.7 Magnetfelder von Strömen Magnetfeld eines geraden Leiters 4.7 Magnetfelder von Strömen Aus den vorherigen Kapiteln ist bekannt, dass auf stromdurchflossene Leiter im Magnetfeld eine Kraft wirkt. Die betrachteten magnetischen Felder waren bisher homogene Felder

Mehr

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment:

4.10 Induktion. [23] Michael Faraday. Gedankenexperiment: 4.10 Induktion Die elektromagnetische Induktion wurde im Jahre 1831 vom englischen Physiker Michael Faraday entdeckt, bei dem Bemühen die Funktions-weise eines Elektromagneten ( Strom erzeugt Magnetfeld

Mehr

Magnetisch gekoppelte Kreise Teil 1

Magnetisch gekoppelte Kreise Teil 1 Magnetisch gekoppelte Kreise Teil 1 Mitteilungen aus dem Institut für Umwelttechnik Nonnweiler - Saar Dr. Schau DL3LH Transformatoren bei Hochfrequenz Teil 1 Vorwort Wicklungs-Transformatoren bei Hochfrequenz

Mehr

Drehstromasynchronmaschine

Drehstromasynchronmaschine Trafo Fachhochschule Bielefeld Praktikum Versuch 3 Drehstromasynchronmaschine Versuchsaufgabe: Die zu untersuchende Drehstromasynchronmaschine (DAM) wird im Verbund mit einer fremderregten Gleichstrommaschine

Mehr

6.4.8 Induktion von Helmholtzspulen ******

6.4.8 Induktion von Helmholtzspulen ****** V648 6.4.8 ****** Motivation Das Induktionsgesetz von Faraday wird mit einer ruhenden Leiterschleife im zeitabhängigen B-Feld und mit einer bewegten Leiterschleife im stationären B-Feld untersucht. 2 Experiment

Mehr

Theorie elektrischer Maschinen

Theorie elektrischer Maschinen Cermar Müller und Bernd Ponick Theorie elektrischer Maschinen 6., völlig neu bearbeitete Auflage WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Inhaltsverzeichnis Vorwort zur 6. Auflage Vorwort zur 1. Auflage

Mehr

Übungsblatt 06 Grundkurs IIIb für Physiker

Übungsblatt 06 Grundkurs IIIb für Physiker Übungsblatt 06 Grundkurs IIIb für Physiker Othmar Marti, (othmar.marti@physik.uni-ulm.de) 20. 1. 2003 oder 27. 1. 2003 1 Aufgaben für die Übungsstunden Quellenfreiheit 1, Hall-Effekt 2, Lorentztransformation

Mehr

Ersatzschaltbild und Zeigerdiagramm

Ersatzschaltbild und Zeigerdiagramm 8. Betriebsverhalten des Einphasentransformators Seite Ersatzschaltbild und Zeigerdiagramm Jeder Transformator besteht grundsätzlich aus zwei magnetisch gekoppelten Stromkreisen. Bild 8.-: Aufbau und Flusslinien

Mehr

Laboratorium für Grundlagen Elektrotechnik

Laboratorium für Grundlagen Elektrotechnik niversity of Applied Sciences Cologne Fakultät 07: nformations-, Medien- & Elektrotechnik nstitut für Elektrische Energietechnik Laboratorium für Grundlagen Elektrotechnik Versuch 1 1.1 Aufnahme von Widerstandskennlinien

Mehr

PS II - Verständnistest

PS II - Verständnistest Grundlagen der Elektrotechnik PS II - Verständnistest 01.03.2011 Name, Vorname Matr. Nr. Aufgabe 1 2 3 4 5 6 7 Punkte 4 2 2 5 3 4 4 erreicht Aufgabe 8 9 10 11 Summe Punkte 3 3 3 2 35 erreicht Hinweise:

Mehr

Bachelorprüfung in. Grundlagen der Elektrotechnik

Bachelorprüfung in. Grundlagen der Elektrotechnik Bachelorprüfung in Grundlagen der Elektrotechnik für Wirtschaftsingenieure und Materialwissenschaftler Montag, 24.03.2015 Nachname: Vorname: Matrikelnr.: Studiengang: Bearbeitungszeit: 90 Minuten Aufg.-Nr.

Mehr

2 Grundlagen. 2.2 Gegenüberstellung Induktivität und Kapazität. 2.1 Gegenüberstellung der Grössen Translation > Rotation

2 Grundlagen. 2.2 Gegenüberstellung Induktivität und Kapazität. 2.1 Gegenüberstellung der Grössen Translation > Rotation 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis... 1 2 Grundlagen... 3 2.1 Gegenüberstellung der Grössen Translation > Rotation... 3 2.2 Gegenüberstellung Induktivität und Kapazität... 4 2.3 Zentrifugalkraft...

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007.

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007. VL #29 am 19.06.2007. Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #29 am 19.06.2007 Vladimir Dyakonov Induktionsspannung Bewegung der Leiterschleife im homogenen

Mehr

Repetitionen Magnetismus

Repetitionen Magnetismus TECHNOLOGISCHE GRUNDLAGEN MAGNETISMUS Kapitel Repetitionen Magnetismus Θ = Θ l m = H I I N H µ µ = 0 r N B B = Φ A M agn. Fluss Φ Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1,

Mehr

Entwicklung des Kommutatorankers

Entwicklung des Kommutatorankers 6.2 GSM: Kommutatorwicklungen Seite 1 Entwicklung des Kommutatorankers Die Wicklung des Ankers der gedachten Gleichstrommaschine besteht aus nur einer Spule (Durchmesserspule). Die Ankerspule dreht sich

Mehr

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte)

Klassische Theoretische Physik III WS 2014/ Elektromagnetische Induktion: (3+3+4=10 Punkte) Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik III WS 014/015 Prof Dr A Shnirman Blatt 8 Dr B Narozhny Lösungen 1 Elektromagnetische Induktion:

Mehr

1. Einführung. Abb.1: Der Unipolargenerator

1. Einführung. Abb.1: Der Unipolargenerator Der 1. inführung Beim lektromotor wird die elektromagnetische Induktion dazu verwendet, elektrische nergie in mechanische umzusetzen. Der enerator erzeugt in Umkehrung dieses organges aus mechanischer

Mehr

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben. Wechsel- und Drehstrom - KOMPAKT 1. Spannungserzeugung durch Induktion Das magnetische Feld Der Verlauf der magnetischen Kraftwirkung um einen Magneten wird mit Hilfe von magnetischen Feldlinien beschrieben.

Mehr

Elektrische und Aktoren

Elektrische und Aktoren Elektrische und Aktoren Eine Einfuhrung von Prof. Wolfgang Gerke Oldenbourg Verlag 1 Einleitung 1 2 Einteilung und Aufbau von Aktoren 5 2.1 Einteilung der Aktoren 5 2.2 Aufbau von Aktoren 8 3 Arbeit, Energie,

Mehr

Studiengruppe: Eingegangen am: Protokollführer: Stationäres und dynamisches Verhalten eines Gleichstromantriebes

Studiengruppe: Eingegangen am: Protokollführer: Stationäres und dynamisches Verhalten eines Gleichstromantriebes Studiengruppe: Eingegangen am: Protokollführer: Übungstag: Weitere Teilnehmer: Professor: LEP3.2 Stationäres und dynamisches Verhalten eines Gleichstromantriebes 03/2009 1 Einleitung Ziel dieses Versuches

Mehr

Gleichstrommotor. Betreuer: Simon Schneider Jan Maximilian Rybski

Gleichstrommotor. Betreuer: Simon Schneider Jan Maximilian Rybski Gleichstrommotor Betreuer: Simon Schneider Inhaltsverzeichnis - Aufbau der Gleichstrommotor - Prinzip, Aufbau und Funktion - Drehzahlsteuereingriffe - Betriebskennlinien - Steuerung -Aufbau der Schrittmotor

Mehr

Fachpraktikum Elektrische Maschinen. Versuch 1: Gleichstrommaschine

Fachpraktikum Elektrische Maschinen. Versuch 1: Gleichstrommaschine Fachpraktikum Elektrische Maschinen Versuch 1: Gleichstrommaschine Basierend auf den Unterlagen von LD Didactic Entwickelt von Daniel Steinert Am Institut von Prof. J. W. Kolar April 2014 Bitte lesen Sie

Mehr

Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten

Diplomvorprüfung WS 2010/11 Fach: Grundlagen der Elektrotechnik, Dauer: 90 Minuten Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A eigene Aufzeichnungen Matr.-Nr.: Hörsaal: Diplomvorprüfung WS 2010/11 Fach: Grundlagen

Mehr

Wir demonstrieren die Spannungserzeugung in einer Leiterschleife bei Änderung der vom Magnetfeld durchsetzten Fläche:

Wir demonstrieren die Spannungserzeugung in einer Leiterschleife bei Änderung der vom Magnetfeld durchsetzten Fläche: 4.2: Versuche zum Faraday'schen Induktionsgesetz Wir demonstrieren die Spannungserzeugung in einer Leiterschleife bei Änderung der vom Magnetfeld durchsetzten Fläche: a) Veränderliche Fläche der Leiterschleife

Mehr

Grundlagen. der. Elektrotechnik

Grundlagen. der. Elektrotechnik Skriptum zu den Grundlagen der Elektrotechnik von Prof. Dr. rer. nat. Hartmann Bearbeitet von: Stand: 02.10.2002 Thorsten Parketny i Inhaltsverzeichnis 1. Grundbegriffe und Werkzeuge...1 1.1. Elektrische

Mehr

14 Elektrische Messtechnik

14 Elektrische Messtechnik für Maschinenbau und Mechatronik Carl Hanser Verlag München 14 Elektrische Messtechnik Aufgabe 14.1 Der Strom einer linearen Quelle wird mit einem Amperemeter gemessen, das in jedem Messbereich bei Vollausschlag

Mehr

Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3

Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3 TU Berlin, Fak. IV, Institut für Energie-und Automatisierungstechnik Seite 1 von 11 Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3 Die Klausur besteht aus 4 Aufgaben. Pro richtig

Mehr

c - Maschinenkonstante φ - Erregerfluß

c - Maschinenkonstante φ - Erregerfluß Fachhochschule Jena Fachbereich Elektrotechnik Prof. Dr. Dittrich Elektrische Antriebe Versuch 1 - Grundlagen / ET, FT, MB: Gleichstrom Kommutatormaschine 1. Versuchsziel Kennenlernen der Belastungscharakteristik

Mehr

Elektrische Maschinen

Elektrische Maschinen Eckhard Spring Elektrische Maschinen Eine Einführung 2., durchgesehenfe'auflage Mit 229 Abbildungen fyj. Springer Die elektrischen Maschinen Eine Kurzgeschichte der elektrischen Energietechnik 1 1 Gleichstrommaschine

Mehr

Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3

Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3 TU Berlin, Fak. IV, Institut für Energie- und Automatisierungstechnik Seite 1 von 12 Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3 Die Klausur besteht aus 4 Aufgaben. Pro richtig

Mehr

Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators

Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators Grundpraktikum der Physik Versuch Nr. 25 TRANSFORMATOR Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators 1 1. Einführung Für den Transport elektrischer Energie über weite Entfernungen

Mehr

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld

Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld (2013-06-07) P3.4.3.1 Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld

Mehr

Elektromagnetische Schwingkreise

Elektromagnetische Schwingkreise Grundpraktikum der Physik Versuch Nr. 28 Elektromagnetische Schwingkreise Versuchsziel: Bestimmung der Kenngrößen der Elemente im Schwingkreis 1 1. Einführung Ein elektromagnetischer Schwingkreis entsteht

Mehr

Grundgebiete der Elektrotechnik 1 Elektrische Netze bei Gleichstrom, elektrische und magnetische Felder

Grundgebiete der Elektrotechnik 1 Elektrische Netze bei Gleichstrom, elektrische und magnetische Felder Grundgebiete der Elektrotechnik 1 Elektrische Netze bei Gleichstrom, elektrische und magnetische Felder von Prof. Dr.-Ing. Horst Clausert, TH Darmstadt Prof. Dr.-Ing. Günther Wiesemann, FH Braunschweig/Wolfenbüttel

Mehr

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz

Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Ferienkurs Elektrodynamik - Drehmomente, Maxwellgleichungen, Stetigkeiten, Ohm, Induktion, Lenz Stephan Huber 19. August 2009 1 Nachtrag zum Drehmoment 1.1 Magnetischer Dipol Ein magnetischer Dipol erfährt

Mehr

Übung 4.1: Dynamische Systeme

Übung 4.1: Dynamische Systeme Übung 4.1: Dynamische Systeme c M. Schlup, 18. Mai 16 Aufgabe 1 RC-Schaltung Zur Zeitpunkt t = wird der Schalter in der Schaltung nach Abb. 1 geschlossen. Vor dem Schliessen des Schalters, betrage die

Mehr

Laborübung, Diode. U Ri U F

Laborübung, Diode. U Ri U F 8. März 2017 Elektronik 1 Martin Weisenhorn Laborübung, Diode 1 Diodenkennlinie dynamisch messen Die Kennlinie der Diode kann auch direkt am Oszilloskop dargestellt werden. Das Oszilloskop bietet nämlich

Mehr

GRUNDLAGEN DER ELEKTROTECHNIK

GRUNDLAGEN DER ELEKTROTECHNIK GRUNDLAGEN DER ELEKTROTECHNIK Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand X C eines Kondensators

Mehr

Protokoll zum Anfängerpraktikum

Protokoll zum Anfängerpraktikum Protokoll zum Anfängerpraktikum Messung von Magnetfeldern Gruppe 2, Team 5 Sebastian Korff Frerich Max 8.6.6 Inhaltsverzeichnis 1. Einleitung -3-1.1 Allgemeines -3-1.2 IOT-SAVART Gesetz -4-1.3 Messung

Mehr

Elektrotechnik für Maschinenbauer. Grundlagen der Elektrotechnik für Maschinenbauer Konsultation 12: Elektrische Maschinen

Elektrotechnik für Maschinenbauer. Grundlagen der Elektrotechnik für Maschinenbauer Konsultation 12: Elektrische Maschinen Elektrotechnik für aschinenbauer Grundlagen der Elektrotechnik für aschinenbauer Konsultation 12: Elektrische aschinen 1. Einleitung Bei den elektrischen aschinen unterscheidet man Transformatoren, Gleichstrommaschinen,

Mehr

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2

Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat

Mehr

18. Magnetismus in Materie

18. Magnetismus in Materie 18. Magnetismus in Materie Wir haben den elektrischen Strom als Quelle für Magnetfelder kennen gelernt. Auch das magnetische Verhalten von Materie wird durch elektrische Ströme bestimmt. Die Bewegung der

Mehr

Prüfung SS 2013 Grundlagen der Elektrotechnik Dauer: 90 Minuten

Prüfung SS 2013 Grundlagen der Elektrotechnik Dauer: 90 Minuten Prüfung GET Seite 1 von 11 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei DIN-A4-Blatt eigene Formelsammlung Prüfung SS 2013 Grundlagen der Elektrotechnik Dauer: 90 Minuten Matr.-Nr.:

Mehr

1 Allgemeine Grundlagen

1 Allgemeine Grundlagen 1 Allgemeine Grundlagen 1.1 Gleichstromkreis 1.1.1 Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j = di da di da Stromelement 1.1.2 Die

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3

Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3 TU Berlin, Fak. IV, Institut für Energie-und Automatisierungstechnik Seite 1 von 11 Klausur Elektrische Energiesysteme / Grundlagen der Elektrotechnik 3 Die Klausur besteht aus 5 Aufgaben. Pro richtig

Mehr

Administratives BSL PB

Administratives BSL PB Administratives Die folgenden Seiten sind ausschliesslich als Ergänzung zum Unterricht für die Schüler der BSL gedacht (intern) und dürfen weder teilweise noch vollständig kopiert oder verbreitet werden.

Mehr