Lösungen der Aufgaben

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lösungen der Aufgaben"

Transkript

1 Lösungen der Aufgaben Aufgabe Es gibt 42 mögliche Verschlüsselungen. Aufgabe Ergebnisse sind 0, 4 und 4 1 = 4. Aufgabe Da in Z 9 10 = 1 ist, erhalten wir x = c c m = c c m. Die Zahl x ist nur durch 9 teilbar, wenn x = 0 in Z 9, also nur, wenn c c m durch 9 teilbar ist. Aufgabe Die letzte Karte bleibt immer auf derselben Position liegen, also müssen wir diese nicht betrachten. Wenn wir die Positionen 0, 1,..., 50 als Elemente in Z 51 betrachten, dann landet die Karte von Position i nach einem perfect shuffle auf Position 2 i. Die Zahl, die wir suchen, ist also die kleinste positive ganze Zahl N mit 2 N 1 mod 51. Indem wir aufeinanderfolgende Werte für N ausprobieren erhalten wir N = 8. Alternative: Du kannst die Aufgabe auch lösen, indem du beachtest, dass eine Karte mit dem Wert i in Z 52 durch einen perfect shuffle durch eine Karte des Werts 26 i ersetzt wird. Aufgabe Zuerst wenden wir den euklidischen Algorithmus an: 202 = = = = = = = 2 2 Der größte gemeinsame Teiler von 202 und 142 ist also 2. Mit dem erweiterten euklidischen Algorithmus erhalten wir die folgende Tabelle: 1

2 = = = = = = = = Aus der letzten Zeile können wir ablesen, dass ist. 2 = Aufgabe (1) Nehmen wir an p sei eine Primzahl, die x und yz teilt. Aus dem Lemma von Euklid können wir folgern, dass p auch ein Teiler von y oder z sein muss. x und y haben aber keine gemeinsame Primteiler, x und z ebensowenig. (2) Wenn xy ein Teiler von z ist, dann sind auch x und y Teiler von z. Wir müssen also nur die umgekehrte Richtung zeigen. Seien x und y Teiler von z. Wir betrachten die Primfaktorzerlegungen x = p a 1 m, y = q b 1 1 qn bn. Da x ein Teiler von z ist, sollte der Primfaktor p i mindestens mit einer Potenz a i in der Primfaktorzerlegung von z für jedes i {1,..., m} vorkommen. Analog wird q i mindestens mit einer Potenz b j für jedes j {1,..., n} vorkommen. Da x und y teilerfremd sind, gibt es keinen Primfaktor, der sowohl in der Zerlegung von x als auch in der von y vorkommt. Darum können wir folgern, dass ein Teiler von z ist. xy = p a 1 m q b 1 1 qn bn (3) Es ist klar, dass x ein Teiler von yz ist, wenn x ein Teiler von z ist. Nehmen wir also an, dass x das Produkt von yz teilt, und betrachten die Primfaktorzerlegung x = p a 1 m. Wir erhalten die Primfaktorzerlegung von yz, indem wir die Zerlegungen von y und z miteinander multiplizieren und die Primfaktoren von klein nach groß anordnen. Da x ein Teiler von yz ist muss jeder Faktor p i mindestens mit einer 2

3 Potenz a i in einer Primfaktorzerlegung von yz vorkommen. p i kann aber nicht in der Primfaktorzerlegung von y vorkommen, da x und y teilerfremd sind. Also kommt p i mindestens mit einer Potenz a i in der Primfaktorzerlegung von z für jedes i {1,..., m} vor. Daraus folgt, dass x ein Teiler von z ist. Aufgabe Die natürlichen Teiler von x sind genau die Zahlen der Form p a q b, wobei a und b natürliche Zahlen sind, so dass a 8 und b 13 sind. Alle diese Zahlen sind verschieden, da sie unterschiedliche Primfaktorzerlegungen besitzen. Die Anzahl der Teiler ist also 9 14 = 126. Aufgabe Wir betrachten die Primfaktorzerlegung p a i 1 i n + 1 = p a 1 m. Durch wiederholte Anwendung von Aufgabe 2.5.4(2) sehen wir, dass es ausreicht, wenn wir zeigen, dass p a i i ein Teiler von n! für jedes i {1,..., m} ist. Wenn p a i i n, dann kommt p a i i sicher als Faktor in n! vor. Wir müssen also nur noch den Fall betrachten wenn p a i i = n + 1. Nach Voraussetzung ist n + 1 keine Primzahl und auch nicht das Quadrat einer Primzahl. Daraus können wir schließen, dass a i > 2. Dann sind p i und zwei verschiedene Faktoren von n!, so dass p a i i ein Teiler von n! ist. Aufgabe Das Element 5 ist keine Einheit in Z 35, da ggt(35, 5) = 5. Die anderen Elemente sind Einheiten. Bei der Berechnung des Inversen von 6 sieht man sofort, dass 6 6 = 1 in Z 35 ist, so dass 6 sich selbst als Inverses hat. Das Inverse von 8 erhalten wir, indem wir den erweiterten euklidischen Algorithmus auf 35 und 8 anwenden. So erhalten wir, dass 1 = und damit 13 = 22 das Inverse von 8 ist. Das Inverse von 34 erhalten wir, indem wir 34 = 1 beachten, so dass das Inverse von 34 gleich 34 ist. Aufgabe (1) Wegen der Assoziativität und Kommutativität der Multiplikation in Z m gilt, dass (r s) (r 1 s 1 ) = (r r 1 ) (s s 1 ) = 1. r s ist also eine Einheit mit dem Inversen r 1 s 1. (2) Indem wir beide Seiten der Gleichung mit r 1 multiplizieren, erhalten wir also u = v. r u = r v (r 1 r) u = (r 1 r) v, 3

4 Aufgabe Wir betrachten die Kongruenzklassen x und y modulo 100. Gegeben ist x = 13 und x y = 52. Da 13 eine Einheit von Z 100 ist, können wir aus Übung 2.7.4(2) schließen, dass y = 4. Aufgabe Die Elemente von {0,..., m 1}, die nicht teilerfremd zu m sind, sind die Vielfachen von p und q. Das sind die Zahlen 0, p, 2p,..., (q 1)p, q, 2q,..., (p q)q. Beachte, dass all diese Zahlen verschieden sind, da eine ganze Zahl, die durch p und q teilbar ist, auch durch das Produkt pq teilbar sein muss (Aufgabe 2.5.4(2)). Unsere Liste enthält also genau 1 + (q 1) + (p 1) = p + q 1 verschiedene Elemente. Indem wir diese Anzahl von m abziehen, sehen wir, dass die Menge E m genau pq p q + 1 = (p 1)(q 1) Elemente enthält. Aufgabe Um die letzte Ziffer von 7 (2n) zu finden, berechnen wir die Restklasse von 7 (2n) modulo 10. Die Euler-Zahl ϕ(10) ist (2 1) (5 1) = 4, so dass 2n 0 mod ϕ(10). Da 7 und 10 teilerfremd sind, können wir Folgerung anwenden, und erhalten 7 (2n) 70 1 mod 10. Um zu zeigen, dass 2 (2n) + 1 mit einer 7 endet, reicht es aus zu beweisen, dass 2 (2n) auf einer 6 endet. Diesmal können wir Folgerung nicht mehr direkt anwenden, da 2 und 10 nicht teilerfremd sind. Statt dessen berechnen wir die Restklasse von 2 (2n) modulo 5. Da ϕ(5) = 4 und ggt(5, 2) = 1 erhalten wir, wie aus der vorherigen Übung 2 (2n) 1 mod 5. Das bedeutet, dass 2 (2n) 1 ein Vielfaches von 5 ist. Die Zahl 2 (2n) kann also nur mit 1 oder 6 enden. Dass sie auf 1 endet ist jedoch unmöglich, da 2 (2n) gerade ist. Die letzten zwei Ziffern von 39 (412011) können wir bestimmen, indem wir modulo 100 rechnen. Wir betrachten erst, dass ϕ(100) = 40. Da 41 1 mod 40 erhalten wir sofort mod 40. Da 39 und 100 teilerfremd sind, dürfen wir Folgerung anwenden. Wir leiten 39 (412011) 39 mod 100 4

5 ab. Die Zahl 39 (412011) endet also mit 39. Aufgabe Das Codewort ist D. Aufgabe Bring it on! Aufgabe Dies folgt direkt aus der Definition der Binärdarstellung. Wenn a = 1 2 n + a n 1 2 n a 0 mit a i {0, 1}, dann ist das Ergebnis unserer Berechnung g 2n g a n 1 2 n 1 g a 0 = g a. Aufgabe Für die Zahl a gilt a Die Anzahl Operationen mit der ersten Methode ist a Durch die Multiplikation mit 10 6 sehen wir, dass die gesamte Berechnung mit der ersten Methode mindestens Sekunden kostet; das ist mehr als Jahre. Mit der zweiten Methode müssen wir 799 binäre Ziffern von a abgehen. Wir nehmen an, dass wir hier 400-mal 0 und 399-mal 1 finden (die erste Ziffer ist immer die 1). Bei einer Null müssen wir eine Operation ausführen, bei einer 1 zwei. Die gesamte Anzahl Operationen ist also = Durch die Multiplikation dieser Zahl mit 10 6 sehen wir, dass die gesamte Berechnung nur 0, Sekunden dauert. Aufgabe Wir machen mehrmals Gebrauch von der folgenden Eigenschaft: Wenn a a mod p 1, dann ist g a = g a. Dies kannst du direkt aus Folgerung ableiten. Nehmen wir an, dass a eine ganze Zahl ist, die teilerfremd zu p 1 ist. Da g ein erzeugendes Element von Z p ist, können wir jedes Element x aus Z p schreiben als als g c mit c {0,..., p 2}. Da a eine Einheit modulo p 1 ist, können wir ein Element b {0,..., p 2} finden, so dass (wähle b so, dass b = a 1 c). Dann ist ab c mod p 1 (g a ) b = g c = x in Z p. g a ist also auch ein erzeugendes Element von Z p. Nehmen wir nun an, dass a eine ganze Zahl ist, so dass g a ein erzeugendes Element von Z p ist. Dann exisitiert eine ganze Zahl b, so dass (g a ) b = g. 5

6 Sei nun c das eindeutige Element in {0,..., p 2}, derart dass Dann ist ab c mod p 1. g = g ab = g c in Z p. Dies ist nur möglich, wenn c = 1 ist, weil g ein erzeugendes Element von Z p Also ist a eine Einheit in Z p 1, mit dem Inversen b. Wir können also feststellen, dass die erzeugenden Elemente von Z p genau die Elemente der Form g a mit a {0,..., p 2} sind, die teilerfremd zu p 1 sind. All diese Potenzen von g sind verschieden, da g ein erzeugendes Element ist. Es gibt also genau ϕ(p 1) erzeugende Elemente von Z p. Aufgabe Sei q = (p 1)/2. Wenn p = 5, dann ist ϕ(p 1) = 2 und ist. ϕ(p 1) p 1 = 1 2. Wenn p 5 ist q 2. Damit sind 2 und q teilerfremd. Aus Voraussetzung folgt dann ϕ(p 1) p 1 = q 1 2q. Die Wahrscheinlichkeit liegt ungefähr bei 1, wenn q groß genug ist. 2 Aufgabe Wenn es so ein d gibt, kann g eindeutig kein erzeugendes Element sein, da g d gleich g p 1 = 1 ist. Nimm nun umgekehrt an, dass g kein erzeugendes Element ist. Dann existieren Elemente i, j {0,..., p 2}, so dass i > j und g i = g j, oder also g i j = 1. Sei d der größte gemeinsame Teiler von i j und p 1. Er ist ein Teiler von p 1, jedoch ungleich p 1, da i j p 2. Wegen des Satzes von Bézout-Bachet können wir ganze Zahlen a und b finden, so dass a(i j) + b(p 1) = d. Daraus folgt g d = (g i j ) a (g p 1 ) b = 1. Aufgabe Für jede ganze Zahl i > 0 gilt ) p 1 e i (x g d = xe (g p 1) ie d = x e, wobei die letzte Gleichung aus der Tatsache g p 1 Fermat folgt. = 1 wegen des kleinen Satzes von 6

7 Aufgabe Wir haben x = x ae+b(p 1) = (x e ) a (x p 1 ) b = (x e ) a, wobei die letzte Gleichung aus der Tatsache x p 1 Fermat folgt. = 1 wegen des kleinen Satzes von Aufgabe Weil wir n = pq und ϕ(n) = (p 1)(q 1) kennen, können wir auch p + q = pq (p 1)(q 1) + 1 bestimmen. Die Primzahlen p und q sind dann die Lösungen der quadratischen Gleichung x 2 (p + q)x + pq = 0. Aufgabe Da x Z n, ist x teilerfremd zu n. Da y d = x de und de 1 mod n folgt direkt aus der Kongruenz von Euler, dass y d = x. 7

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe.

ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. ggt mit Euklid Satz: Um ggt(k, l) mit dem Euklidischen Algorithmus zu berechnen, braucht man höchstens log Φ k < 3 2 log 2 k rekursive Aufrufe. Das heißt, um den ggt von zwei 1000-Bit-Zahlen zu ermitteln,

Mehr

Ganzzahlige Division mit Rest

Ganzzahlige Division mit Rest Modulare Arithmetik Slide 1 Ganzzahlige Division mit Rest Für a,b Æ mit a b gibt es stets eine Zerlegung von a der Form a = q b+r mit 0 r b 1. Hierbei gilt q = a b (salopp formuliert: b passt q-mal in

Mehr

Grundlagen der Arithmetik und Zahlentheorie

Grundlagen der Arithmetik und Zahlentheorie Grundlagen der Arithmetik und Zahlentheorie 1.0 Teilbarkeit In diesem Abschnitt werden wir einerseits die ganzen Zahlen an sich studieren und dabei besonders wichtige Zahlen, die Primzahlen, entsprechend

Mehr

Erweiterter Euklidischer Algorithmus

Erweiterter Euklidischer Algorithmus Erweiterter Euklidischer Algorithmus Algorithmus ERWEITERTER EUKLIDISCHER ALG. (EEA) EINGABE: a, b N 1 If (b = 0) then return (a, 1, 0); 2 (d, x, y) EEA(b, a mod b); 3 (d, x, y) (d, y, x a b y); AUSGABE:

Mehr

Der chinesische Restsatz mit Anwendung

Der chinesische Restsatz mit Anwendung Der chinesische Restsatz mit Anwendung Nike Garath n.garath@gmx.de Martrikelnummer: 423072 Seminar: Verschlüsslungs- und Codierungstheorie Dozent: Dr. Thomas Timmermann Sommersemester 2017 Inhaltsverzeichnis

Mehr

5 Grundlagen der Zahlentheorie

5 Grundlagen der Zahlentheorie 5 Grundlagen der Zahlentheorie 1 Primfaktorzerlegung Seienm, n N + := {k N k > 0} Man schreibt n n, gesprochen m teilt n oder m ist ein Teiler von n, wenn es eine positive natürliche Zahl k gibt mit mk

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik UNIVERSITÄT ULM Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 100

Mehr

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie

9. Primitivwurzeln. O. Forster: Einführung in die Zahlentheorie 9. Primitivwurzeln 9.1. Satz. Sei G eine zyklische Gruppe der Ordnung m und g G ein erzeugendes Element. Das Element a := g k, k Z, ist genau dann ein erzeugendes Element von G, wenn k zu m teilerfremd

Mehr

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom

Diskrete Mathematik. Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Diskrete Mathematik Christina Kohl Georg Moser Oleksandra Panasiuk Christian Sternagel Vincent van Oostrom Institut für Informatik @ UIBK Sommersemester 2017 Zusammenfassung Zusammenfassung der letzten

Mehr

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck

Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Musterlösung zur Probeklausur zur Angewandten Diskreten Mathematik Dr. Hartmut Lanzinger, Hans- Peter Reck Gesamtpunktzahl: 114 Punkte, 100 Punkte= 100 %, keine Abgabe 1. Es seien m = 1155 und n = 1280.

Mehr

Diskrete Mathematik Kongruenzen

Diskrete Mathematik Kongruenzen Diskrete Mathematik Kongruenzen 31. Mai 2006 1 Inhaltsverzeichnis 1. Einleitung 2. Prime Restklassen 3. Die Sätze von Euler und Fermat 4. Lineare Kongruenzen 5. Systeme 2 Einleitung 3 Fragestellung Wie

Mehr

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz

RSA-Verfahren Schnelle Ver- / Entschlüsselung Zusammenhang mit dem Faktorisierungsproblem. RSA-Verfahren. Herwig Stütz 2007-11-23 Überblick 1 2 Schnelle modulare Exponentiation Chinesischer Restsatz 3 Allgemeines Public-Key Methode Rivest, Shamir und Adleman 1977 Sicherheit des Verfahrens beruht auf Schwierigkeit der Primfaktorenzerlegung

Mehr

3. Diskrete Mathematik

3. Diskrete Mathematik Diophantos von Alexandria um 250 Georg Cantor 1845-1918 Pythagoras um 570 v. Chr Pierre de Fermat 1607/8-1665 Seite 1 Inhalt der Vorlesung Teil 3: Diskrete Mathematik 3.1 Zahlentheorie: Abzählbarkeit,

Mehr

WIEDERHOLUNG (BIS ZU BLATT 7)

WIEDERHOLUNG (BIS ZU BLATT 7) Universität Bielefeld SS 2016 WIEDERHOLUNG (BIS ZU BLATT 7) JULIA SAUTER Wir wiederholen, welche Aufgabentypen bis zu diesem Zeitpunkt behandelt worden sind. Auf der nächsten Seite können Sie sich selber

Mehr

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e

mit ganzen Zahlen 1.4 Berechnen Sie: a b c d e 1 Rechnen mit ganzen Zahlen Führen Sie die nachfolgenden Berechnungen aus: 1.1 a. 873 112 1718 157 3461 + b. 1578 9553 7218 212 4139 + 1.3 Berechnen Sie: a. 34 89 b. 67 46 c. 61 93 d. 55 11 e. 78 38 1.2

Mehr

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein.

Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Klausur zur Vorlesung Zahlentheorie 21. Juli 2010 12 Uhr 15 14 Uhr 00 Ruhr-Universität Bochum PD. Dr. Claus Mokler Bitte tragen Sie zuerst in Druckschrift Ihren Namen und Ihre Matrikelnummer ein. Name,

Mehr

Kapitel 6: Das quadratische Reziprozitätsgesetz

Kapitel 6: Das quadratische Reziprozitätsgesetz Kapitel 6: Das quadratische Reziprozitätsgesetz Ziel dieses Kapitels: die Untersuchung der Lösbarkeit der Kongruenzgleichung X also die Frage, ob die ganze Zahl Z eine Quadratwurzel modulo P besitzt. Im

Mehr

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion

Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Restklassen Teilbarkeit in Z Kleiner Satz von Fermat Satz von Euler Eulersche ϕ-funktion Äquivalenzrelation Nehmen wir die Menge A = {,,,,,,,,}, z.b. nummerierte Personen. Unter Berücksichtigung

Mehr

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n)

Prof. Dr. H. Brenner Osnabrück SS Zahlentheorie. Vorlesung 4. Die Restklassenringe Z/(n) Prof. Dr. H. Brenner Osnabrück SS 2008 Zahlentheorie Vorlesung 4 Die Restklassenringe Z/(n) Satz 4.1. (Einheiten modulo n) Genau dann ist a Z eine Einheit modulo n (d.h. a repräsentiert eine Einheit in

Mehr

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg

Mathematisches Institut II Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg 1 Mathematisches Institut II 06.07.004 Universität Karlsruhe Priv.-Doz. Dr. N. Grinberg SS 05 Schnupperkurs: Ausgewählte Methoden zur Aufgabenlösung Vorlesung 5: Elementare Zahlentheorie: Teilbarkeit Primfaktorzerlegung

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 10.01.2014 Alexander Lytchak 1 / 9 Erinnerung: Zwei ganz wichtige Gruppen Für jede Gruppe (G, ) und jedes Element g

Mehr

WS 2016/17 Torsten Schreiber

WS 2016/17 Torsten Schreiber 104 Diese Fragen sollten Sie ohne Skript beantworten können: Was bedeutet die Rechtseindeutigkeit einer Relation? Was weiß man von einer surjektiven Funktion? Wann ist eine Funktion total / partiell? Welche

Mehr

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler

kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 5 kgv-berechnung Invertieren modulo m Simultane Kongruenzen Restklassenringe Modulare Arithmetik Euler sche Funktion Sätze von Fermat und Euler Modulare Arithmetik Slide 6 kgv-berechnung

Mehr

Lineare Algebra I 5. Tutorium Die Restklassenringe /n

Lineare Algebra I 5. Tutorium Die Restklassenringe /n Lineare Algebra I 5. Tutorium Die Restklassenringe /n Fachbereich Mathematik WS 2010/2011 Prof. Dr. Kollross 19. November 2010 Dr. Le Roux Dipl.-Math. Susanne Kürsten Aufgaben In diesem Tutrorium soll

Mehr

2011W. Vorlesung im 2011W Institut für Algebra Johannes Kepler Universität Linz

2011W. Vorlesung im 2011W  Institut für Algebra Johannes Kepler Universität Linz und Was ist? Mathematik und Institut für Algebra Johannes Kepler Universität Linz Vorlesung im http://www.algebra.uni-linz.ac.at/students/win/ml und Was ist? Inhalt Was ist? und Was ist? Das ist doch logisch!

Mehr

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung

3.5 Kryptographie - eine Anwendung der Kongruenzrechnung 1 3.5 Kryptographie - eine Anwendung der Kongruenzrechnung Das Wort Kryptographie leitet sich aus der griechischen Sprache ab, nämlich aus den beiden Worten κρυπτ oς(kryptos)=versteckt, geheim und γραϕɛιν(grafein)=schreiben.

Mehr

n ϕ n

n ϕ n 1 3. Teiler und teilerfremde Zahlen Euler (1707-1783, Gymnasium und Universität in Basel, Professor für Physik und Mathematik in Petersburg und Berlin) war nicht nur einer der produktivsten Mathematiker

Mehr

1 Zahlentheorie. 1.1 Kongruenzen

1 Zahlentheorie. 1.1 Kongruenzen 3 Zahlentheorie. Kongruenzen Der letzte Abschnitt zeigte, daß es sinnvoll ist, mit großen Zahlen möglichst einfach rechnen zu können. Oft kommt es nicht darauf, an eine Zahl im Detail zu kennen, sondern

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 ***

Übungen zum Vorkurs Mathematik für Studienanfänger 2009 *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2009 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

$Id: ring.tex,v /05/03 15:13:26 hk Exp $

$Id: ring.tex,v /05/03 15:13:26 hk Exp $ $Id: ring.tex,v 1.13 2012/05/03 15:13:26 hk Exp $ 3 Ringe 3.1 Der Ring Z m In der letzten Sitzung hatten wir die sogenannten Ringe eingeführt, dies waren Mengen A versehen mit einer Addition + und einer

Mehr

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler

Kapitel 3: Die Sätze von Euler, Fermat und Wilson. 8 Der Satz von Euler Kapitel 3: Die Sätze von Euler, Fermat und Wilson In diesem Kapitel wollen wir nun die eulersche -Funktion verwenden, um einen berühmten Satz von Euler zu formulieren, aus dem wir dann mehrere interessante

Mehr

7 Der kleine Satz von Fermat

7 Der kleine Satz von Fermat 7 Der kleine Satz von Fermat Polynomkongruenz modulo p. Sei p eine Primzahl, n 0 und c 0,..., c n Z. Wir betrachten die Kongruenz ( ) c 0 + c 1 X +... + c n 1 X n 1 + c n X n 0 mod p d.h.: Wir suchen alle

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2010 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit

Zahlentheorie I - Tipps & Lösungen. Aktualisiert: 15. Oktober 2016 vers Teilbarkeit Schweizer Mathematik-Olympiade smo osm Zahlentheorie I - Tipps & Lösungen Aktualisiert: 15. Oktober 2016 vers. 1.2.0 1 Teilbarkeit Einstieg 1.1 Zeige, dass 900 ein Teiler von 10! ist. Tipp: Schreibe 900

Mehr

Der kleine Satz von Fermat

Der kleine Satz von Fermat Der kleine Satz von Fermat Luisa-Marie Hartmann 5. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 2 Hauptteil 4 2.1 Prime Restklassengruppen............................ 4 2.2 Ordnung von Gruppenelementen........................

Mehr

Folien der 15. Vorlesungswoche

Folien der 15. Vorlesungswoche Folien der 15. Vorlesungswoche Mathematische Analyse von RSA I (1) Wir wählen zwei große Primzahlen p und q (p q) und setzen n = p q. Wir arbeiten von nun an in Z n und berücksichtigen, dass wie später

Mehr

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte)

Einführung in Algebra und Zahlentheorie Lösungsvorschläge zur Klausur vom Aufgabe 1 (6 Punkte) Aufgabe 1 (6 Punkte) Einführung in Algebra und Zahlentheorie svorschläge zur Klausur vom 23.09.2016 a) Bestimmen Sie das multiplikativ inverse Element zu 22 in Z/61Z. b) Finden Sie ein x Z mit folgenden

Mehr

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren

Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Proseminar Datensicherheit & Versicherungsmathematik RSA-Verfahren Herwig Stütz 2007-11-23 1 Inhaltsverzeichnis 1 Einführung 2 2 Das RSA-Verfahren 2 2.1 Schlüsselerzeugung.................................

Mehr

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3

1 Vorbereitung: Potenzen 2. 2 Einstieg und typische Probleme 3 Das vorliegende Skript beschäftigt sich mit dem Thema Rechnen mit Kongruenzen. Das Skript entsteht entlang einer Unterrichtsreihe in der Mathematischen Schülergesellschaft (MSG) im Jahr 2013. Die vorliegende

Mehr

2.4. Kongruenzklassen

2.4. Kongruenzklassen DEFINITION 2.4.1. kongruent modulo 2.4. Kongruenzklassen Wikipedia:1707 wurde Euler als der älteste Sohn des Pfarrers Paul Euler geboren. Er besuchte das Gymnasium in Basel und nahm gleichzeitig Privatunterricht

Mehr

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B

Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. B 90 Wiederholung Diese Fragen sollten Sie ohne Skript beantworten können: Wo liegt der Unterschied zwischen dem 1. und 2. Binom? Wie nutzt man das 1./2. Binom zum Kopfrechnen? Für was kann man das 3. Binom

Mehr

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n).

χ a : N + {0, 1, 1} {( a χ a (n) = χ a (n ). ψ(mn) < ψ(m)ψ(n). September 007, Zahlentheorie 1 a) Formulieren Sie das quadratische Reziprozitätsgesetz einschließlich der Definitionen der Legendre- und Jacobi-Symbole. b) Für a Z \ {0} definieren wir durch χ a (n) =

Mehr

1.2 Eigenschaften der ganzen Zahlen

1.2 Eigenschaften der ganzen Zahlen Lineare Algebra I WS 2015/16 c Rudolf Scharlau 13 1.2 Eigenschaften der ganzen Zahlen Dieser Abschnitt handelt von den gewöhlichen ganzen Zahlen Z und ihren Verknüpfungen plus und mal. Man kann die natürlichen

Mehr

El. Zahlentheorie I: Der kleine Satz von Fermat

El. Zahlentheorie I: Der kleine Satz von Fermat Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Vorlesung 7. Tilman Bauer. 25. September 2007

Vorlesung 7. Tilman Bauer. 25. September 2007 Vorlesung 7 Universität Münster 25. September 2007 El. In Vorlesung 4 haben wir Modulo-Arithmetik behandelt. Definition Sei n N 1. Auf Z ist eine Äquivalenzrelation Kongruenz modulo n definiert durch x

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** M. Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2004 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen IN 0 := IN {0}{0, 1, 2, 3, 4,...} Z := {..., 2,

Mehr

Zahlentheorie. Lisa Sauermann. März 2013

Zahlentheorie. Lisa Sauermann. März 2013 Zahlentheorie Lisa Sauermann März 2013 Hier sollen einige grundlegende Lösungsmethoden für Zahlentheorieaufgaben bei Olympiaden und anderen Wettbewerben vermittelt werden. Der Chinesische Restsatz Satz

Mehr

Probabilistische Primzahltests

Probabilistische Primzahltests 23.01.2006 Motivation und Überblick Grundsätzliches Vorgehen Motivation und Überblick Als Primzahltest bezeichnet man ein mathematisches Verfahren, mit dem ermittelt wird, ob eine gegebene Zahl eine Primzahl

Mehr

Ältere Aufgaben (bis 1998)

Ältere Aufgaben (bis 1998) Ältere Aufgaben (bis 1998) Es waren in den 4 Stunden jeweils nur 2 Aufgaben zu bearbeiten, die einzelnen Aufgaben waren umfangreicher. September 1998, Aufgabe 1 Sei p eine ungerade Primzahl. a) Beweise:

Mehr

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl Westfälische Wilhelms-Universität Münster Mathematik Sommersemester 2017 Seminar: Verschlüsselungs- und Codierungstheorie Leitung: Thomas Timmermann 1.Vortrag: Rechnen mit Restklassen/modulo einer Zahl

Mehr

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen

Seminararbeit zur Zahlentheorie. Die Gaußschen Zahlen Universität Paderborn WS 2007/2008 Warburger Str. 100 33098 Paderborn Seminararbeit zur Zahlentheorie Die Gaußschen Zahlen Tatjana Linkin, Svetlana Krez 20. November 2007 INHALTSVERZEICHNIS 1 Inhaltsverzeichnis

Mehr

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage

Das Quadratische Reziprozitätsgesetz. Stefanie Beule Sebastian Schrage Das Quadratische Rezirozitätsgesetz Stefanie Beule Sebastian Schrage 06. November 007 Inhaltsverzeichnis 3 Das Quadratische Rezirozitätsgesetz Notation.............................................. A Das

Mehr

Vorlesung Mathematik 2 für Informatik

Vorlesung Mathematik 2 für Informatik Vorlesung Mathematik 2 für Informatik Inhalt: Modulare Arithmetik Lineare Algebra Vektoren und Matrizen Lineare Gleichungssysteme Vektorräume, lineare Abbildungen Orthogonalität Eigenwerte und Eigenvektoren

Mehr

6.2. Ringe und Körper

6.2. Ringe und Körper 62 RINGE UND K ÖRPER 62 Ringe und Körper Wir betrachten nun Mengen (endlich oder unendlich) mit zwei Operationen Diese werden meist als Addition und Multiplikation geschrieben Meist ist dabei die additiv

Mehr

Seminar zum Thema Kryptographie

Seminar zum Thema Kryptographie Seminar zum Thema Kryptographie Michael Hampton 11. Mai 2017 Inhaltsverzeichnis 1 Einleitung 3 1.1 Konventionen.................................. 3 1.2 Wiederholung.................................. 3

Mehr

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st

Primzahlen. Herbert Koch Mathematisches Institut Universität Bonn Die Primfaktorzerlegung. a = st Primzahlen Herbert Koch Mathematisches Institut Universität Bonn 12.08.2010 1 Die Primfaktorzerlegung Wir kennen die natürlichen Zahlen N = 1, 2,..., die ganzen Zahlen Z, die rationalen Zahlen (Brüche

Mehr

Liften von Lösungen modulo 2

Liften von Lösungen modulo 2 Liften von Lösungen modulo 2 Übung: An welcher Stelle im vorigen Beweis benötigen wir p 2? Geben Sie ein Gegenbeispiel für voriges Lemma für p = 2, r = 3. Modifizieren Sie den Beweis, um das folgende Lemma

Mehr

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n

Die Ringe Z n. Invertierbare Elemente ( Einheiten ) für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: n : Z n Z n Z n : (a, b) (a b) mod n Definitionen Die Ringe Z n für n > 0 wird auf Z n = {0, 1, 2,..., n 1} definiert: Beispiel n = 15 + n : Z n Z n Z n : (a, b) (a + b) mod n n : Z n Z n Z n : (a, b) (a b) mod n 9 + 15 11 = 5 9 15 11 = 9

Mehr

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung

Äquivalenzrelation. Tischler-Problem. Euklidischer Algorithmus. Erweiterter euklidischer Algorithmus. Lineare diophantische Gleichung Äquivalenzrelation Tischler-Problem Euklidischer Algorithmus Erweiterter euklidischer Algorithmus Lineare diophantische Gleichung Rechnen mit Resten Restklassen Teilbarkeit in Z Beispiel einer Kongruenzgleichung

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Bsp. Euklidischer Algorithmus

Bsp. Euklidischer Algorithmus Bsp. Euklidischer Algorithmus Bsp: Berechne ggt(93, 42) mittels EUKLID. 93 2 42 = 9 42 4 9 = 6 9 1 6 = 3 6 2 3 = 0 D.h. ggt(93, 42) = 3. Durch Rücksubstitution erhalten wir die Bézout-Koeffizienten x,

Mehr

3: Zahlentheorie / Primzahlen

3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 96 3: Zahlentheorie / Primzahlen 3: Zahlentheorie / Primzahlen Stefan Lucks Diskrete Strukturen (WS 2009/10) 97 Definition 37 (Teiler, Vielfache, Primzahlen,

Mehr

1 Modulare Arithmetik

1 Modulare Arithmetik $Id: modul.tex,v 1.10 2012/04/12 12:24:19 hk Exp $ 1 Modulare Arithmetik 1.2 Euklidischer Algorithmus Am Ende der letzten Sitzung hatten wir den größten gemeinsamen Teiler zweier ganzer Zahlen a und b

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Mathematik I für Informatiker Zahlen p. 1 Kanonische Primfaktorzerlegung Jede natürliche Zahl n kann auf eindeutige Weise in der Form n = p α 1 1 pα 2 2... pα k k geschrieben werden, wobei k N 0, α i N

Mehr

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche.

Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc. Über die Darstellung von rationalen Zahlen als Dezimalbrüche. 1 Prof. S. Krauter Dezimalbruchdarstellung rationaler Zahlen DezDarst.doc Über die Darstellung von rationalen Zahlen als Dezimalbrüche. Anmerkung: Die Beschränkung auf die Dezimaldarstellung ist unnötig.

Mehr

Übungen zu Zahlentheorie für TM, SS 2013

Übungen zu Zahlentheorie für TM, SS 2013 Übungen zu Zahlentheorie für TM, SS 2013 zusammengestellt von Johannes Morgenbesser Übungsmodus: Ausarbeitung von 10 der Beisiele 1 38, 5 der Beisiele A O und 15 der Beisiele i xxxi. 1. Zeigen Sie, dass

Mehr

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch:

7. Kongruenzrechnung Definition: Proposition: Korollar: Beispiel: b ( a kongruent b modulo n ) auf Z, definiert durch: 7. Kongruenzrechnung 7. 1. Definition: Für n N sei die Relation: n a n b ( a kongruent b modulo n ) auf Z, definiert durch: a n b : n ( a b) a b ( mod n) Dies ist eine Äquivalenzrelation auf Z. Die Menge

Mehr

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen

Kapitel 2. Kapitel 2 Natürliche und ganze Zahlen Natürliche und ganze Zahlen Inhalt 2.1 2.1 Teiler 12 12 60 60 2.2 2.2 Primzahlen 2, 2, 3, 3, 5, 5, 7, 7, 11, 11, 13, 13,...... 2.3 2.3 Zahldarstellungen 17 17 = (1 (10 0 0 1) 1) 2 2 2.4 2.4 Teilbarkeitsregeln

Mehr

Kongruenz ist Äquivalenzrelation

Kongruenz ist Äquivalenzrelation Kongruenz ist Äquivalenzrelation Lemma Kongruenz ist Äquivalenzrelation Die Kongruenz modulo n ist eine Äquivalenzrelation auf Z. D.h. für alle a, b, c Z gilt 1 Reflexivität: a a mod n 2 Symmetrie: a b

Mehr

Aufgabe der Kryptografie

Aufgabe der Kryptografie Aufgabe der Kryptografie Eve möchte die Unterhaltung mithören und/oder ausgetauschte Informationen ändern. Alice & Bob kommunzieren über einen unsicheren Kanal. Alice & Bob nutzen Verschlüsselung und digitale

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Ulrich Rabenstein 18.06.2013 Ulrich Rabenstein Zahlentheorie, Arithmetik und Algebra I 18.06.2013 1 / 34 1 Modulare Arithmetik 2 Teiler 3 Primzahlen Ulrich Rabenstein

Mehr

Beispiel: Primelemente in den Gaußschen Zahlen

Beispiel: Primelemente in den Gaußschen Zahlen Beispiel: Primelemente in den Gaußschen Zahlen Satz Primelemente in Z[i] Für die Primelemente π Z[i] gilt bis auf Assoziiertheit 1 N(π) = p für ein p P oder 2 π = p für ein p P mit p x 2 + y 2 für (x,

Mehr

Zahlentheorie, Arithmetik und Algebra I

Zahlentheorie, Arithmetik und Algebra I Zahlentheorie, Arithmetik und Algebra I Viktoria Ronge 04.06.2014 Viktoria Ronge Zahlentheorie, Arithmetik und Algebra I 04.06.2014 1 / 63 Übersicht 1 Modulare Arithmetik 2 Primzahlen 3 Verschiedene Teiler

Mehr

Übungsblatt 5: Primfaktorzerlegung in Polynomringen

Übungsblatt 5: Primfaktorzerlegung in Polynomringen Übungsblatt 5: Primfaktorzerlegung in Polynomringen Wer vieles bringt, wird manchem etwas bringen. Johann Wolfgang von Goethe, Faust I 1. INHALT UND GGT S 1.1. ( Punkte) Man bestimme den Inhalt von P =

Mehr

Probeklausur - eine Lösung

Probeklausur - eine Lösung Probeklausur - eine Lösung Aufgabe 1 Sei p eine Primzahl, n N, q = p n und F q der Körper mit q Elementen. Sei G = GL 2 (F q ). a) Bestimmen Sie #G. 1 x b) Zeigen Sie, dass P = { : x F 1 q } eine p-sylowgruppe

Mehr

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2.

Zahlentheorie I. smo osm. Thomas Huber. Inhaltsverzeichnis. Aktualisiert: 1. August 2016 vers Teilbarkeit 2. Schweizer Mathematik-Olympiade smo osm Zahlentheorie I Thomas Huber Aktualisiert: 1. August 2016 vers. 1.0.0 Inhaltsverzeichnis 1 Teilbarkeit 2 2 ggt und kgv 3 3 Abschätzungen 6 1 Teilbarkeit Im Folgenden

Mehr

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. ***

Übungen zum Vorkurs Mathematik für Studienanfänger Ein leeres Produkt ist gleich 1, eine leere Summe 0. *** Universität Bonn Mathematisches Institut Dr. Michael Welter Übungen zum Vorkurs Mathematik für Studienanfänger 2013 Einige Zeichen und Konventionen: IN := {1, 2, 3, 4,...} Die Menge der natürlichen Zahlen

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Springer-Lehrbuch Grundwissen Mathematik Ein Vorkurs für Fachhochschule und Universität Bearbeitet von Jan van de Craats, Rob Bosch, Petra de Jong, Theo de Jong 1st Edition. 2010. Taschenbuch. x, 326 S.

Mehr

Lösung zur Klausur zu Krypographie Sommersemester 2005

Lösung zur Klausur zu Krypographie Sommersemester 2005 Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2

Mehr

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus,

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus, Modulare Quadratwurzeln beim Fiat-Shamir-Verfahren zur Authentikation (zu Grundkurs Codierung, 3. Auflage 2006, Vieweg Verlag, ISBN 3-528-25399-1, Unterkapitel 5.10, Seiten 303 ff) update vom 20.03.1996

Mehr

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus,

Dr. Ing. Wilfried Dankmeier Eppstein im Taunus, Modulare Quadratwurzeln beim Fiat-Shamir-Verfahren zur Authentikation (zu Grundkurs Codierung, 3. Auflage 2006, Vieweg Verlag, ISBN 3-528-25399-1, Unterkapitel 5.10, Seiten 303 ff) update vom 20.03.1996

Mehr

Aktualisiert: 18. Juni 2016 vers

Aktualisiert: 18. Juni 2016 vers Schweizer Mathematik-Olympiade smo osm Zahlentheorie II - Lösungen Aktualisiert: 18. Juni 2016 vers. 2.0.10 Kongruenzen I 1. Ist m > 1 und a eine ganze Zahl, dann ist genau einer der Zahlen durch m teilbar.

Mehr

Euklidische Algorithmus, Restklassenringe (Z m,, )

Euklidische Algorithmus, Restklassenringe (Z m,, ) Euklidische Algorithmus, Restklassenringe (Z m,, ) Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 14 Gröÿter gemeinsamer Teiler Denition 1. [Teiler] Eine Zahl m N ist Teiler von n Z, wenn der

Mehr

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16

11. Übung zur Vorlesung. Zahlentheorie. im Wintersemester 2015/16 11. Übung zur Vorlesung Aufgabe 41. Zeige, dass das Polynom (X 2 13)(X 2 17)(X 2 13 17) Z[X] modulo jeder natürlichen Zahl n N eine Nullstelle hat, aber keine Nullstelle in Z besitzt. Aufgabe 42. Sei p

Mehr

Grundkurs Mathematik I

Grundkurs Mathematik I Prof. Dr. H. Brenner Osnabrück WS 2016/2017 Grundkurs Mathematik I Vorlesung 21 Ein guter Schüler lernt auch bei einem schlechten Lehrer... Kleinstes gemeinsames Vielfaches und größter gemeinsamer Teiler

Mehr

1 Der Ring der ganzen Zahlen

1 Der Ring der ganzen Zahlen 1 Der Ring der ganzen Zahlen Letztendlich wird die Addition und Multiplikation in endlichen Körpern auf die Addition und Multiplikation von ganzen Zahlen zurückgeführt. Deswegen müssen wir die an sich

Mehr

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Zahlentheorie für den Landeswettbewerb für Anfängerinnen und Anfänger der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Dezimaldarstellung 1 2 Teilbarkeit

Mehr

Kapitel 3 Elementare Zahletheorie

Kapitel 3 Elementare Zahletheorie Kapitel 3 Elementare Zahletheorie 89 Kapitel 3.1 Ganze Zahlen, Gruppen und Ringe 90 Die ganzen Zahlen Menge der ganzen Zahlen Z={..., 3, 2, 1,0,1,2,3,...} Es gibt zwei Operationen Addition: Z Z Z, (a,b)

Mehr

Folien der 13. Vorlesungswoche

Folien der 13. Vorlesungswoche Folien der 13. Vorlesungswoche Determinantenformel für die inverse Matrix Definition. Für eine n n-matrix A heißt die zu A adjungierte Matrix. A ad = (α ik ) mit α ik = ( 1) i+k A ki Satz. Für jede n n-matrix

Mehr

Bericht vom 1. Leipziger Seminar am 5. November 2005

Bericht vom 1. Leipziger Seminar am 5. November 2005 Bericht vom 1. Leipziger Seminar am 5. November 2005 Der Eulersche Satz und die Eulersche Phi-Funktion Wir wollen einen berühmten Satz der Zahlentheorie behandeln, den Eulerschen Satz. Dazu müssen wir

Mehr

Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum:

Der Zwei-Quadrate-Satz von Fermat. Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: Der Zwei-Quadrate-Satz von Fermat Hauptseminar: Eine Einladung in die Mathematik Leitung: Prof. Dr. Lukacova Referent: Julia Breit Datum: 09.11.2015 GLIEDERUNG Einleitung Der Zwei-Quadrate-Satz Vorwissen

Mehr

Lenstras Algorithmus für Faktorisierung

Lenstras Algorithmus für Faktorisierung Lenstras Algorithmus für Faktorisierung Bertil Nestorius 9 März 2010 1 Motivation Die schnelle Faktorisierung von Zahlen ist heutzutage ein sehr wichtigen Thema, zb gibt es in der Kryptographie viele weit

Mehr

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom

BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom Prof. Dr. Norbert Blum Elena Trunz Informatik V BA-INF 011 Logik und Diskrete Strukturen WS 2013/14 Mögliche Klausuraufgaben Stand vom 5.2.2014 Bitte beachten Sie, dass die tatsächlichen Klausuraufgaben

Mehr

Kanonische Primfaktorzerlegung

Kanonische Primfaktorzerlegung Kanonische Primfaktorzerlegung Jede natürliche Zahl Form kann auf eindeutige Weise in der geschrieben werden, wobei, für und Primzahlen sind. Dies ist die kanonische Primfaktorzerlegung von. Mathematik

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

Diskrete Strukturen Vorlesungen 13 und 14

Diskrete Strukturen Vorlesungen 13 und 14 Sebastian Thomas RWTH Aachen, WS 2016/17 01.12.2016 07.12.2016 Diskrete Strukturen Vorlesungen 13 und 14 11 Kongruenzen und Restklassenringe In diesem Abschnitt wollen wir eine ganze Serie von neuen Ringen

Mehr

Praktisch modulo n rechnen

Praktisch modulo n rechnen Mathematik I für Informatiker Das Lemma von Euler-Fermat p. 1 Praktisch modulo n rechnen Addition und Multiplikation modulo n sind auch dann algorithmisch kein großes Problem, wenn mit großen Zahlen gerechnet

Mehr

Modul Diskrete Mathematik WiSe 2011/12

Modul Diskrete Mathematik WiSe 2011/12 1 Modul Diskrete Mathematik WiSe 2011/12 Ergänzungsskript zum Kapitel 4.2. Hinweis: Dieses Manuskript ist nur verständlich und von Nutzen für Personen, die regelmäßig und aktiv die zugehörige Vorlesung

Mehr

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18

Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 Mathematik I für Studierende der Informatik und Wirtschaftsinformatik (Diskrete Mathematik) im Wintersemester 2017/18 9. November 2017 1/34 Beispiel 3.6 Wir können die rationalen Zahlen wie folgt konstruieren:

Mehr

Bemerkung: der goldene Schnitt ϕ ist die positive Lösung der Gleichung: x 2 = 1 + x

Bemerkung: der goldene Schnitt ϕ ist die positive Lösung der Gleichung: x 2 = 1 + x Rekursive Definition der Fibonacci-Zahlen Erste Werte f 0 = 0, f 1 = 1, f n = f n 1 + f n 2 (n 2) n 0 1 2 3 4 5 6 7 8 9 10... 25... f n 0 1 1 2 3 5 8 13 21 34 55... 75025... Exakte Formel (de Moivre, 1718)

Mehr