15ab 21bc 9b = 3b 5a 7c 3

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "15ab 21bc 9b = 3b 5a 7c 3"

Transkript

1 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle durch zurückmultiplizieren (Distributivgesetz)! x xy = x x y Summe Produkt 4. Ausklammern eines gemeinsamen Faktors aus allen Gliedern zugleich 15ab 1bc 9b = 3b 5a 7c 3 Polynom mit 3 Gliedern Produkt Beispiele 1. xy 3yz y? y x 3z ? x 6b? 3y y y 4x 13b y 3 4. a bn a bm? a bn m 5. x a b a by? a bx y 6. b cz b c? b cz 1 1

2 4.3 Ausklammern eines gemeinsamen Faktors aus Gruppen von zwei oder mehreren Gliedern (Mehrmaliges Ausklammern) = 3x 7a 57a = 7a 3x 5 1a x 6x35a 10 3x7a 57a Merke: Die Anzahl Glieder muss eine gerade Zahl ist! Kontrolle: 7a 3x 5 1ax 35a 6x 10 Beispiele 1. ac bc ad bd? ca b da b a bc d. ab 5b ac 5c? ba 5 ca 5 a 5b c 3. 0ab 4b 5a 1? 4b 5a 1 15a 1 5a 1 4b 1 4. ac cx a x? ca x 1a x a xc bd bn 3cd cn? b 3d n c3d n 3d nb c 6. 5a bx y x y3a b? x y 5a b 3a b x y 5a b 3a b x ya b 7. 15mp 5mq 10mr 3p q r? ab 5m 3p q r 13p q r 3p q r 5m 1

3 4.4 Faktorzerlegung aus der Differenz zweier Quadrate (Binom) a b = a ba b Quadrat Quadrat Basis a Basis b Differenz Produkt Man nimmt die Basen der beiden Quadrate und bildet daraus das Produkt aus Summe und Differenz. Kontrolle: a b a b a ab ab b a b Beispiele c? 10 c10 c. 9a 1? 3a 1 3a m 9n? m 3n m 3n a b? a b a b a b a ba b 5. 4x y 9y? 4x y 3y 4x y 3y 4x 5y 4x y a b a 1? 6. a b a 1 a b a 1 a b a 1 a b a 1 a b 1 b 1 3

4 4.5 Rückbildung zum Quadrat eines Binoms 4x 8x 49 Quadrat doppeltes Produkt Quadrat Basis x der beiden Basen Basis 7 x7 = x 7 Summe Produkt Merke: Die Anzahl Glieder ist drei (Trinome). x 7 x 7 4x 14x x 8x Kontrolle: 4x 49 Beispiele 1. x 10x 5? x 5. n n 1? n1 3. 9x 6x 1? 3x a 60ab 18b? Achtung: Zuerst gemeinsamen Faktor ausklammern! 5a 30ab 9b 5a 3b 4

5 4.6 Rückbildung in zwei ungleiche Binome, wenn der Faktor vor dem Quadrat 1 ist 1x 7x 1 x 3x 4 Quadrat mit Faktor Summe = Produkt = 1 Merke: Die Anzahl Glieder ist 3 (Trinome) und der Faktor vor dem quadratischen Term ist 1! Kontrolle: x 3 x 4 x 4x 3 1 x 7 x x 1 Beispiele 1. x 7x 1? x 3x 4. y 17y 60? y 5y 1 3. x 6x 5? x 1 x 5 4. d 8d 15? d 3d 5 5. a 11a 6? a a x 6x 45? Achtung: Zuerst gemeinsamen Faktor ausklammern! 3 x x 15 3 x 3 x 5 5

6 4.7 Rückbildung in zwei ungleiche Binome, wenn der Faktor vor dem Quadrat 1 ist Wenn der Faktor vor dem Quadrat ungleich 1 ist, können geeignete Trinome mit geschicktem Probieren erraten werden. Systematisch können solche Trinome mit Hilfe der quadratischen Gleichung faktorisiert werden. Das Lösen von quadratischen Gleichungen wird in einem späteren Kapitel vorgestellt. 10x 19x 6 x 35x x 5x 3 5x 3 1x 5 x 4x Summe 19x Achtung: Reihenfolge beachten Grundlegendes Vorgehen: 1. Bestimmen Sie alle Möglichkeiten, wie Sie zwei ganzzahlige Zahlen multiplizieren können um den quadrierten Term zu erhalten (10x ).. Bestimmen Sie alle Möglichkeiten, wie Sie zwei Zahlen ganzzahlige multiplizieren können um den konstanten Term zu erhalten (6). 3. Bestimmen Sie die Summe des mittleren Terms analog dem obigen Schema. Falls die Summe mit dem mittleren Term übereinstimmt, haben Sie die korrekten Faktoren gefunden. Falls nicht probieren Sie eine neue Kombination aus. Achtung: x 5x mit 3 liefert ein anderes Ergebnis als x 5x mit 3. Dies müssen Sie beim Ausprobieren einer neuen Kombination berücksichtigen. Hier der Beweis: x 3 5x x 5x 3 10x 19x 6 10x 16x 6 4. Ordnen Sie Ihre Auswahl als Binome analog dem obigen Schema an und machen Sie die Kontrolle durch Zurückmultiplizieren. Beispiele 1. 18a 39a 0? 3a 46a 5. 1x 44x 40? 4 3x 11x x 5 x 3. 5u 15u 10? 5 u 3u 5 u u 1 6

7 4.8 Rückbildung von Summen und Differenzen a. gleichhoher ungerader Potenzen Differenz: 3 3 a b a ba ab b a b a ba a b a b ab b a b a ba a b a b a b a b ab b usw. Summe: 3 3 a b a ba ab b a b a ba a b a b ab b a b a ba a b a b a b a b ab b usw. b. gleichhoher gerader Potenzen Differenz: kann zerlegt werden nach Regel «Differenz zweier Quadrate» a b a ba b 4 4 a b a b a b a ba ba b usw. oder nach der Regel unter Punkt a) (siehe oben) a b a ba b a b a ba a b ab b a b a ba a b a b a b ab b Summe: a a b b 4 4 usw. kann nicht faktorisiert werden! 7

8 Beispiele: 3 1. x 1? 3 3 x 1 x 1 x x 1 x 1 x x a b ab a b a b 5. a 3? a a a a 4a 8a 16 a a a 4a 8a a b a b a a b a b ab b x 7y? 8x 7y x 3y 4x 6xy 9y x 3y 4x 6xy 9y 3 a 3 a b a ab b b 3 3 8

9 4.9 Faktorzerlegung, Übersicht über die verschiedenen Vorgehensweisen 15ab 1. Ausklammern eines gemeinsamen Faktors aus allen Gliedern. 6ac 3ad 3a 5b c d Summe Produkt. Ausklammern eines gemeinsamen Faktors aus Gruppen von 1ax 6x 35a 10 3x 7a 5 7a 7a 3x 5 zwei oder mehreren Gliedern (mehrmaliges Ausklammern). 3x7a 57a 3. Differenz zweier Quadrate (Binom). Typ: a b a Quadrat b Quadrat a b a b 4. Rückbildung zum Quadrat eines Binoms. 4x 8x 49 x 7 Quadrat doppeltes Produkt Quadrat Typen: a ab b bzw. a ab b Basis x der beiden Basen Basis 7 x7 5. Rückbildung in zwei ungleiche Binome, wenn der Faktor vor 1x 7x 1 x 3 x 4 dem Quadrat 1 ist. Quadrat Summe Produkt mit Faktor Rückbildung in zwei ungleiche Binome, wenn der Faktor vor dem Quadrat 1 ist. 7. Rückbildung von Summen und Differenzen gleichhoher ungerader Potenzen. 10x 19x 6 x 3 5x Quadrat Summe Produkt mit Faktor 1 5x3x a b a ba ab b a b a ba a b a b ab b a b a ba a b a b a b a b ab b usw. 3 3 a b a ba ab b a b a ba a b a b ab b a b a ba a b a b a b a b ab b usw. 9

10 4.10 Faktorzerlegung mit dem TI Beispiel 1 10x 19xy 6y? Eingabe: Faktor 10x ^ 19x * y 6y ^ Ergebnis: x 3y5x y Hinweis: Die Funktion Faktor() ist über erreichbar. Die Buchstaben x, y und z werden mit den Tasten, und eingegeben. Die Taste ist bei den Buchstaben x, y, z und t nicht notwendig! Das Multiplikationszeichen zwischen x und y ist notwendig. Tipp: Anzeige kontrollieren, Sie merken anhand der falschen Schreibweise, dass der Rechner xy als eine Variable anschaut! Die Berechnung wird mit der Taste ausgeführt. Beispiel 3 3 x y? Eingabe: Faktor x ^3 y ^3 Ergebnis: x yx xy y Hinweis: Die Funktion Faktor() ist über erreichbar. Die Buchstaben x, y und z werden mit den Tasten, und eingegeben. Die Taste ist bei den Buchstaben x, y, z und t nicht notwendig! Die Berechnung wird mit der Taste ausgeführt. Beispiel u u v vu v u? Eingabe: Faktor u^3 u^v ^ v * u^ v ^3u? Ergebnis: uu vu v Hinweis: Die Funktion Faktor() ist über erreichbar. Das Multiplikationszeichen zwischen v und u ist notwendig. Tipp: Anzeige kontrollieren, Sie merken anhand der falschen Schreibweise, dass der Rechner vu als eine Variable anschaut! Die Berechnung wird mit der Taste ausgeführt. 10

11 4.11 Übungen, Frommenwiler Lösen Sie die folgenden Aufgaben: Nummer Seite Bemerkungen 9 (alle) 18 Kontrolle mit TI üben 30 (d bis h) 18 Kontrolle mit TI üben 31 (b, d bis i) 18 Kontrolle mit TI üben 3 (alle) 19 Kontrolle mit TI üben 33 (b, d, f bis l) 19 Kontrolle mit TI üben 34 (a, c, e, g, h und i) 19 Kontrolle mit TI üben 35 (a, c, e, g, i und k) 19 Kontrolle mit TI üben 36 (c bis f) 19 Kontrolle mit TI üben 37 (alle) 0 Kontrolle mit TI üben 38 (alle) GSBM (a und b) 0 Kontrolle mit TI üben 39 (alle) GSBM (a und b) 0 Kontrolle mit TI üben 11

12 4.1 Übungen (zum Teil alte BM-Prüfungen) Zerlegen Sie in Faktoren und vereinfachen Sie falls möglich: 1. a 14a 4? 3a 7a 60 a 7a 1 3 a 9a a 3 a 4 0 3a 4 a 5 a 3 3 a 5. 16r 8r 1? 4r u u v vu v u? 3 u u uv uv v u u u v v u v u u v u v x 18x 81? 4 3 x 6x 7 3 x 3 x 9 3 x 3 x 3 x 3 Binom 5. 3 x x x 3? x 4x x 4 x x 1 x 4 x 1 x x x x x x 4 4 x x 4 a x y a xy? 6. a xa y oder a ax ay xy aa x y a x a xa y direkt 1

13 7. r rs s r sr s? Binom 8. 3a a 3 a 6a 1? r rs rs s r s r s r s r s r s 1 r s r s 1 doppeltes Pr odukt 3a a 3 a 6a 1 3a a 3 a 6a 1 3a a 3 a 6a 1 3a a 3 a 6a 1 3a a 3 a 6a 1 a1 a1 a 4a 4a 8a 4 a a 1 4 a a 1 8 a 1 a 1 9. v u u v u v? u v uv v u v u u v u v v uv u u v u v u v u v uv u v uv u v 1 v1 v u v u u v u v u v u v v u v u v u uv u v uv u v u u v u v u v v u 4 u v 10. x y xy w? x y w wx Binom x xy y w x x wx w y x Binom y w x y w x y w w y x w y x w xyw y x y w 13

14 11. a b c a b c? a c (Rapperswil 1987) a b c a b c a c a b c a b c a b c a b c a c a b c a b ca b c a b c b a c b a c a c a c a c 4b x y 1. x y x y x y x y x y x y x y? (Biel 1987) x y x y x y x y x y x y x y x y x y x yx y 1 x y x y x y 1 x y 1 1 1x y 1 x y x y 13. a a b ab b a b 3 3? (Biel 1987) a b b a b a b a ba b a b a b a a b a b a b 14

15 a a b ab b a a b ab b 14. a b a b ab 3 3? (Biel 1987) ab ab a b 3 3 a b a a b b 3 3 a a b b ab a b b aba abb a b ba b a b a b a b a b a b a b a a b a b a a b a b a b a b a b a b a b a ab b Binom a b a ab b m n 6m n 9m n 3m n m n mn n 15. m n 1m n 6mn? (Frauenfeld 1996) 3m n 6mn m 3n 1 nm mn n m nm n6mn m 1 3m n m3n 1 3n 1 n m n m nm n6mn m 1 3 m n 3n 1 m 1 n m n m n m n 6 m n m 1 m n m 3n 1 m n 15

15ab 21bc 9b = 3b 5a 7c 3

15ab 21bc 9b = 3b 5a 7c 3 4 4.1 Einführung Haben alle Summanden einer algebraischen Summe einen gemeinsamen Faktor, so kann man diesen gemeinsamen Faktor ausklammern. Die Summe wird dadurch in ein Produkt umgewandelt. Tipp: Kontrolle

Mehr

Terme und Formeln Grundoperationen

Terme und Formeln Grundoperationen Terme und Formeln Grundoperationen Die Vollständige Anleitung zur Algebra vom Mathematiker Leonhard Euler (*1707 in Basel, 1783 in Petersburg) prägte den Unterricht und die Lehrmittel für lange Zeit. Euler

Mehr

Repetitionsaufgaben Termumformungen

Repetitionsaufgaben Termumformungen Kantonale Fachschaft Mathematik Repetitionsaufgaben Termumformungen Zusammengestellt von der Fachschaft Mathematik der Kantonsschule Willisau Inhaltsverzeichnis A) Vorbemerkung... 1 B) Lernziele... 1 C)

Mehr

c) 10k + 6m 8n + 5k m 2n = 5 ( 3k + m 2n)

c) 10k + 6m 8n + 5k m 2n = 5 ( 3k + m 2n) R. Brinkmann http://brinkmann-du.de Seite 1 17.09.01 Lösungen Terme I Ergebnisse: E1 E E Ergebnisse a) 5x + 7y x + 1y = 4( x + 5y) b) 1 a+ 4 b+ 5 a+ 11 b+ 1 a = 1 ( 4a+ 5b) 9 6 9 6 c) 10k + 6m 8n + 5k

Mehr

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen.

Download. Basics Mathe Gleichungen mit Klammern und Binomen. Einfach und einprägsam mathematische Grundfertigkeiten wiederholen. Download Michael Franck Basics Mathe Gleichungen mit Klammern und Binomen Einfach und einprägsam mathematische Grundfertigkeiten wiederholen Downloadauszug aus dem Originaltitel: Basics Mathe Gleichungen

Mehr

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3.

1 3 Z 1. x 3. x a b b. a weil a 0 0. a 1 a weil a 1. a ist nicht erlaubt! 5.1 Einführung Die Gleichung 3 x 9 hat die Lösung 3. 5 5.1 Einführung Die Gleichung 3x 9 hat die Lösung 3. 3x 9 3Z 9 x 3 3 Die Gleichung 3x 1 hat die Lösung 1 3. 3x 1 1 3 Z 1 x 3 Definition Die Gleichung bx a, mit a, b Z und b 0, hat die Lösung: b x a a

Mehr

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS

Grundlagen in Mathematik für die 1. Klassen der HMS und der FMS Grundlagen in Mathematik für die. Klassen der HMS und der FMS Einleitung Ø In der Mathematik wird häufig auf bereits Gelerntem und Bekanntem aufgebaut. Wer die Grundlagen nicht beherrscht, hat deshalb

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II Inhaltsverzeichnis 1 Ziele 2 2 Potenzen, bei denen der Exponent negativ oder 0 ist 2 3 Potenzregeln 3 4 Terme mit Wurzelausdrücken 4 5 Wurzelgesetze 4 6 Distributivgesetz 5 7

Mehr

Wiederholung der Grundlagen

Wiederholung der Grundlagen Terme Schon wieder! Terme nerven viele von euch, aber sie kommen immer wieder. Daher ist es wichtig, dass man besonders die Grundlagen drauf hat. Bevor es also mit der richtigen Arbeit los geht solltest

Mehr

Termumformungen. 2. Kapitel aus meinem Lehrgang ALGEBRA. Ronald Balestra CH St. Peter

Termumformungen. 2. Kapitel aus meinem Lehrgang ALGEBRA. Ronald Balestra CH St. Peter Termumformungen 2. Kapitel aus meinem Lehrgang ALGEBRA Ronald Balestra CH - 7028 St. Peter www.ronaldbalestra.ch e-mail: theorie@ronaldbalestra.ch 11. Oktober 2009 Überblick über die bisherigen ALGEBRA

Mehr

Termumformungen. Klasse 8. Friedrich W. Buckel

Termumformungen. Klasse 8. Friedrich W. Buckel ALGEBRA Terme 3 Termumformungen Faktorisierung (Teil ) Klasse 8 Datei Nr. 1103 Friedrich W. Buckel August 00 Neu bearbeitet September 005 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 1101 1 Was

Mehr

5 25 Radizieren 25 5 und Logarithmieren log 25 2

5 25 Radizieren 25 5 und Logarithmieren log 25 2 .1 Übersicht Operationen Addition und Subtraktion 7 Operationen. Stufe Multiplikation 3 1 und Division 1: 3 Operationen 3. Stufe Potenzieren, Radizieren und Logarithmieren log. Reihenfolge der Operationen

Mehr

Terme. Kein Term, da sich eine Division durch Null ergibt

Terme. Kein Term, da sich eine Division durch Null ergibt Allgemeines Terme Definition: Eine Variable ist ein Platzhalter für eine Zahl. In der Regel verwendet man für Variablen Kleinbuchstaben, z.b.: x, y, a,... Definition: Ein Term ist eine sinnvolle Kombination

Mehr

Inhaltsverzeichnis Mathematik

Inhaltsverzeichnis Mathematik 1. Mengenlehre 1.1 Begriff der Menge 1.2 Beziehungen zwischen Mengen 1.3 Verknüpfungen von Mengen (Mengenoperationen) 1.4 Übungen 1.5 Übungen (alte BM-Prüfungen) 1.6 Zahlenmengen 1.7 Grundmenge (Bezugsmenge)

Mehr

Faktorisieren von Sumen. Üben. Faktorisieren von Summen. Lösung. Faktorisiere durch Ausklammern oder mit den binomischen Formeln: b) x + 3y + xy

Faktorisieren von Sumen. Üben. Faktorisieren von Summen. Lösung. Faktorisiere durch Ausklammern oder mit den binomischen Formeln: b) x + 3y + xy X Faktorisieren von Sumen 1 Faktorisiere durch Ausklammern oder mit den binomischen Formeln: a) 3xy + xy b) 1 + 4x + 3y + xy c) 9u 49v d) x 4ax + 4a e) 4b + 0bc + 5c X 1 a) 3xy + xy = 3 xy +xy y = xy (3+y)

Mehr

Selbständiges Arbeiten. Mittelstufe - (SprachProfil) Faktorzerlegungen. Klasse 3v

Selbständiges Arbeiten. Mittelstufe - (SprachProfil) Faktorzerlegungen. Klasse 3v Selbständiges Arbeiten Mittelstufe - (SprachProfil) Faktorzerlegungen Klasse 3v 14. August 2016 Inhaltsverzeichnis 1 Ziele, Arbeitsauftrag & Zeiteinteilung 2 1.1 Ziele..................................

Mehr

Mathematik-Dossier 8 Rechnen mit Variablen (angepasst an das Lehrmittel Mathematik 1)

Mathematik-Dossier 8 Rechnen mit Variablen (angepasst an das Lehrmittel Mathematik 1) Name: Mathematik-Dossier 8 Rechnen mit Variablen (angepasst an das Lehrmittel Mathematik 1) Inhalt: Terme umformen / Rechenregeln mit Variablen Klammerregeln Verbindung von Operationen verschiedener Stufe

Mehr

Grundwissen Mathematik

Grundwissen Mathematik Grundwissen Mathematik Algebra Terme und Gleichungen Jeder Abschnitt weist einen und einen teil auf. Der teil sollte gleichzeitig mit dem bearbeitet werden. Während die bearbeitet werden, sollte man den

Mehr

Berufliches Gymnasium Gelnhausen

Berufliches Gymnasium Gelnhausen Berufliches Gymnasium Gelnhausen Fachbereich Mathematik Die inhaltlichen Anforderungen für das Fach Mathematik für Schülerinnen und Schüler, die in die Einführungsphase (E) des Beruflichen Gymnasiums eintreten

Mehr

1.2 Rechnen mit Termen II

1.2 Rechnen mit Termen II 1.2 Rechnen mit Termen II (Thema aus dem Gebiet Algebra) Inhaltsverzeichnis 1 Potenzen, bei denen der Exponent negativ oder 0 ist 2 2 Potenzregeln 2 3 Terme mit Wurzelausdrücken 4 4 Wurzelgesetze 4 5 Das

Mehr

Rationales Rechnen. Punktrechnung geht vor Strichrechnung

Rationales Rechnen. Punktrechnung geht vor Strichrechnung Rationales Rechnen Au ösung von Klammern Die Reihenfolge von Rechenoperationen wird durch Klammersetzung 1 festgelegt. Um Klammern zu sparen, vereinbart man: Multiplikation bzw. Division werden vor der

Mehr

Am Anfang stand die Algebra

Am Anfang stand die Algebra Am Anfang stand die Algebra In diesem Kapitel... Die Gesetze der Algebra einhalten (und anwenden) Die Multiplikationseigenschaft der Null ausnutzen Ihre Exponentialkraft stärken Spezielle Produkte und

Mehr

Rechnen mit Klammern

Rechnen mit Klammern Rechnen mit Klammern W. Kippels 28. Juli 2012 Inhaltsverzeichnis 1 Gesetze und Formeln zum Rechnen mit Klammern 3 1.1 Kommutativgesetze.............................. 3 1.2 Assoziativgesetze...............................

Mehr

Kapitel 4: Variable und Term

Kapitel 4: Variable und Term 1. Klammerregeln Steht ein Plus -Zeichen vor einer Klammer, so bleiben beim Auflösen der Klammern die Vorzeichen erhalten. Bei einem Minus -Zeichen werden die Vorzeichen gewechselt. a + ( b + c ) = a +

Mehr

Aufgabe Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit wie möglich!

Aufgabe Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit wie möglich! Kapitel 1 Rechengesetze 1.1 Körperaxiome und Rechenregeln 1.1.1 Binomische Formeln Aufgabe 1.1.1.1. 1. Multiplizieren Sie nacheinander schrittweise folgende Terme aus und vereinfachen Sie diese so weit

Mehr

Rechnen mit Klammern

Rechnen mit Klammern Rechnen mit Klammern W. Kippels 22. August 2015 Inhaltsverzeichnis 1 Gesetze und Formeln zum Rechnen mit Klammern 3 1.1 Kommutativgesetze.............................. 3 1.2 Assoziativgesetze...............................

Mehr

Mathematik, Klasse 7, Terme und Termwerte

Mathematik, Klasse 7, Terme und Termwerte Mathematik, Klasse 7, Terme und Termwerte. Finde den Term und berechne dann den Termwert für x = - 5 und x = 00. x = x = x = 3 x = 4 x = 5 x = - 5 x =00 T (x) = 5 8 4 7 T (x) = 3 6 9-5 T 3 (x) = 0 3 8

Mehr

Terme und Gleichungen

Terme und Gleichungen Terme und Gleichungen Rainer Hauser November 00 Terme. Rekursive Definition der Terme Welche Objekte Terme genannt werden, wird rekursiv definiert. Die rekursive Definition legt zuerst als Basis fest,

Mehr

Aufgabensammlung Klasse 8

Aufgabensammlung Klasse 8 Aufgabensammlung Klasse 8 Inhaltsverzeichnis 1 Potenzen mit natürlichen Hochzahlen 3 1.1 Rechenregeln für das Rechnen mit Potenzen..................... 3 1.1.1 Addition und Subtraktion von Potenzen...................

Mehr

Vorkurs für das Fach Mathematik am beruflichen Gymnasium, Bildungsgang Technik, der BBS Neustadt

Vorkurs für das Fach Mathematik am beruflichen Gymnasium, Bildungsgang Technik, der BBS Neustadt Berufsbildende Schule Neustadt an der Weinstraße Vorkurs für das Fach Mathematik am beruflichen Gymnasium, Bildungsgang Technik, der BBS Neustadt Liebe Schülerinnen und Schüler, wir freuen uns, dass Sie

Mehr

Damit kann die Kantenlänge s berechnet werden: s = s=17cm ; 3s = 51cm; 5s = 85 cm d) Volumen des Würfels: 2197cm 3

Damit kann die Kantenlänge s berechnet werden: s = s=17cm ; 3s = 51cm; 5s = 85 cm d) Volumen des Würfels: 2197cm 3 1 a) b) c) d) 3 59.57 3.905493027 3.905 (mit TR lösen) 3 656.589 8.691562701 8.692 (mit TR lösen) 3 125.125 5.001666111 5.002 (mit TR lösen) 3 30.8994 3.137978874 3.138 (mit TR lösen) e) 3 30 1256 0.287989866

Mehr

Grundoperationen Arbeitsplan

Grundoperationen Arbeitsplan Grundoperationen Arbeitsplan Inhaltsverzeichnis. Grundideen der Planarbeit 2. Termine 3. Arbeitsweise 4. Lernkontrollen 5. Aufträge für die Planarbeit Ausklammern Binome Kürzen von Brüchen Erweitern von

Mehr

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung

Herzlich willkommen zur Demo der mathepower.de Aufgabensammlung Herzlich willkommen zur der Um sich schnell innerhalb der ca. 350.000 Mathematikaufgaben zu orientieren, benutzen Sie unbedingt das Lesezeichen Ihres Acrobat Readers: Das Icon finden Sie in der links stehenden

Mehr

x 4, t 3t, y 2y y 4, 5z 3z 1 2z 4, usw. Jede quadratische Gleichung kann durch elementare Umformungen auf die Form

x 4, t 3t, y 2y y 4, 5z 3z 1 2z 4, usw. Jede quadratische Gleichung kann durch elementare Umformungen auf die Form 14 14.1 Einführung und Begriffe Gleichungen, in denen die Unbekannte in der zweiten Potenz vorkommt, heissen quadratische Gleichungen oder Gleichungen zweiten Grades. Beispiele: 4, t 3t, y y y 4, 5z 3z

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Informatik Medieninformatik Wirtschaftsinformatik Wirtschaftsingenieurwesen

Mehr

und (c) ( 1 2 ) und (c) 2 x + z y

und (c) ( 1 2 ) und (c) 2 x + z y Teil II: Übungen 59 Übung 1 1. Berechne (((4/3+5/2) 6/5) 2/5) 5/2. 2. Berechne (a) 1 ( 2 ( ( 2 3 ) ( 3 4 ) ), (b) 1 und (c) ( 1 2 ) 4 ) ( 3 ). 4 3. Vereinfache: (a) ( 4 xy + 3 4z yz )( xy 2 y ),(b) x y

Mehr

Sammlung von 10 Tests

Sammlung von 10 Tests ALGEBRA Potenzen und Wurzeln Sammlung von 0 Tests Die hier gezeigten Aufgen sind thematisch geordnet alle in der Datei 00 enthalten. Hier nur die Gruppierung zu Tests. Datei Nr. 0 September 00 Friedrich

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Allgemeiner Maschinenbau Fahrzeugtechnik Dresden 2002

Mehr

Termumformungen. ALGEBRA Terme 2. Binomische Formeln. INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr. 12102. Friedrich W.

Termumformungen. ALGEBRA Terme 2. Binomische Formeln.  INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr. 12102. Friedrich W. ALGEBRA Terme Termumformungen Binomische Formeln Meistens in Klasse 8 Datei Nr. 0 Friedrich W. Buckel Stand: 4. November 008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Inhalt DATEI 0 Was sind und was leisten

Mehr

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos:

Mathematik. FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli Kontakt und weitere Infos: FOS 11. Jahrgangsstufe (technisch) c 2003, Thomas Barmetler Stand: 23. Juli 2004 Kontakt und weitere Infos: www.schule.barmetler.de Inhaltsverzeichnis 1 Wiederholung 5 1.1 Bruchrechnen.............................

Mehr

Rechnen mit rationalen Zahlen

Rechnen mit rationalen Zahlen Rechnen mit rationalen Zahlen a ist die Gegenzahl von a und ( a) a Subtraktionsregel: Statt eine rationale Zahl zu subtrahieren, addiert man ihre Gegenzahl. ( 8) ( ) ( 8) + ( + ) 8 + 7, (,6) 7, + ( +,6)

Mehr

b) 5xu + 15xv 10xz = 5x( u 3v + 2z) c) 26xy 13xz = 13x ( 2y z)

b) 5xu + 15xv 10xz = 5x( u 3v + 2z) c) 26xy 13xz = 13x ( 2y z) R. Brinkmann http://brinkmann-du.de Seite 1 17.09.01 Lösungen Terme II : E1 E E3 x y = x y a) b) 5xu + 15xv 10xz = 5x( u 3v + z) c) 6xy 13xz = 13x ( y z) bx by + bz = b( x y + z) 4 4 4 4 e) 7x 7y + 7z

Mehr

Fit für die E-Phase?

Fit für die E-Phase? Kapitel Bruchrechnung (mit und ohne Variablen) a) 6 4 i) 6 7 7 8 4 b) 5 5 4 6 7 j) : 7 8 c) 5a a 4 ab y 6 k) : b y d) y l) ( y ) : y y e) a a a m) a 8b 5 6b f) y y n) a 5b 9a 0 b g) a b b y y o) +y y (+y)

Mehr

(a+1) = a+12 12(b+6) 36. = 12b (a+4) 12(a-2) = 12a+48. 3a b a. kürzen mit 19 (=ggt) k)

(a+1) = a+12 12(b+6) 36. = 12b (a+4) 12(a-2) = 12a+48. 3a b a. kürzen mit 19 (=ggt) k) Lösungen Mathematik Dossier Rechnen mit Varilen a) Erweitern mit Bruch (-) (-) 6 a+ b+6 a+ a- 6 (a+) 6 a+ (b+6) b+ (a+) (a-) a+ a-6 6 0 (a+) a+ (b+6) 6 b+ 6 (a+) (a-) a+ a- (-0) (-0) (-) (-) (-0) (-)(a+)

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Betriebswirtschaft International Business Dresden 05 . Mengen

Mehr

Mathematik-Übungssammlung für die Studienrichtung Facility Management

Mathematik-Übungssammlung für die Studienrichtung Facility Management Mathematik-Übungssammlung für die Studienrichtung Facility Management Auf den nachfolgenden Seiten finden Sie Übungen zum Stoff, welcher bei Studienbeginn vorausgesetzt wird. Der dazugehörige Stoff wird

Mehr

Brüche, Polynome, Terme

Brüche, Polynome, Terme KAPITEL 1 Brüche, Polynome, Terme 1.1 Zahlen............................. 1 1. Lineare Gleichung....................... 3 1.3 Quadratische Gleichung................... 6 1.4 Polynomdivision........................

Mehr

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht

2 Rechentechniken. 2.1 Potenzen und Wurzeln. Übersicht 2 Rechentechniken Übersicht 2.1 Potenzen und Wurzeln.............................................. 7 2.2 Lösen linearer Gleichungssysteme..................................... 8 2.3 Polynome.........................................................

Mehr

Kapitel 3. Kapitel 3 Gleichungen

Kapitel 3. Kapitel 3 Gleichungen Gleichungen Inhalt 3.1 3.1 Terme, Gleichungen, Lösungen x 2 2 + y 2 2 3.2 3.2 Verfahren zur zur Lösung von von Gleichungen 3x 3x + 5 = 14 14 3.3 3.3 Gleichungssysteme Seite 2 3.1 Terme, Gleichungen, Lösungen

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

) sind keine Terme. Setzt man für die Variable eines Terms eine Zahl ein, so erhält man als Ergebnis wieder eine Zahl. y = 2 3 y = 11

) sind keine Terme. Setzt man für die Variable eines Terms eine Zahl ein, so erhält man als Ergebnis wieder eine Zahl. y = 2 3 y = 11 Wert eines Terms berechnen sind sinnvolle Rechenausdrücke, die aus Zahlen, Variablen, Rechenzeichen und Klammern bestehen können. Setzt man für die Variablen Zahlen ein, so erhält man als Ergebnis wieder

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme. Kapitel 3 Gleichungen und Ungleichungen linke Seite = rechte Seite Grundmenge: Menge aller Zahlen, die wir als Lösung der Gleichung

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Gleichungen und Ungleichungen

Gleichungen und Ungleichungen Kapitel 3 Gleichungen und Ungleichungen Josef Leydold Auffrischungskurs Mathematik WS 2017/18 3 Gleichungen und Ungleichungen 1 / 58 Gleichung Eine Gleichung erhalten wir durch Gleichsetzen zweier Terme.

Mehr

Faktorisierung bei Brüchen und Bruchtermen

Faktorisierung bei Brüchen und Bruchtermen Faktorisierung bei Brüchen und Bruchtermen Rainer Hauser Mai 2016 1 Einleitung 1.1 Rationale Zahlen Teilt man einen Gegenstand in eine Anzahl gleich grosse Stücke, so bekommt man gebrochene Zahlen, die

Mehr

Runden Potenzen und Wurzel Terme. Mathematik W2. Mag. Rainer Sickinger BRP, LMM. v 7 Mag. Rainer Sickinger Mathematik W2 1 / 82

Runden Potenzen und Wurzel Terme. Mathematik W2. Mag. Rainer Sickinger BRP, LMM. v 7 Mag. Rainer Sickinger Mathematik W2 1 / 82 Mathematik W2 Mag. Rainer Sickinger BRP, LMM v 7 Mag. Rainer Sickinger Mathematik W2 1 / 82 Das Stellenwertsystem eins < zehn < hundert < tausend < zehntausend < hunderttausend... v 7 Mag. Rainer Sickinger

Mehr

Mathematik Runden, Potenzen, Terme

Mathematik Runden, Potenzen, Terme Mathematik Runden, Potenzen, Terme Mag. Rainer Sickinger HTL v 7 Mag. Rainer Sickinger Mathematik Runden, Potenzen, Terme 1 / 81 Das Stellenwertsystem eins < zehn < hundert < tausend < zehntausend < hunderttausend...

Mehr

Kurzrepetition Stützkurs

Kurzrepetition Stützkurs zusf_stuetzkurs.nb Urs Vonesch Kurzrepetition Stützkurs. Die vier Grundoperationen.. Grundbegriffe a + b Summand plus Summand = Summe (Addition) a - b Minuend minus Subtrahend = Differenz (Subtraktion)

Mehr

Gleichungen auflösen Verpackte Zahlen

Gleichungen auflösen Verpackte Zahlen 0 rmaüb8 Gleichungen auflösen Verpackte Zahlen 18 LU 4 Gleichungen auflösen 1) 13lOx+1 11x3x+48 1x 159x 84x+8 75x+8 9x 18=3x ) 5x+8=53 7x 3=3 5x±31 56 4x+1=0 6x 14=4 19x 19=95 3) 13z 80=96 3z 49+736 11

Mehr

Faktorzerlegung von Polynomen 2. Grades

Faktorzerlegung von Polynomen 2. Grades Faktorzerlegung von Polynomen 2. Grades eine Lernaufgabe zur Herleitung und Anwendung der binomischen Formeln Ronald Balestra CH - 8046 Zürich www.ronaldbalestra.ch Name: Vorname: 14. August 2016 Inhaltsverzeichnis

Mehr

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z).

2 Die Körper-Axiome. I. Axiome der Addition (A.1) Assoziativgesetz. Für alle x, y, z R gilt (x + y)+z = x +(y + z). 17 Wir setzen in diesem Buch die reellen Zahlen als gegeben voraus. Um auf sicherem Boden zu stehen, werden wir in diesem und den folgenden Paragraphen einige Axiome formulieren, aus denen sich alle Eigenschaften

Mehr

(0,12) 0, ab, (0,3a) 0,09a + a, 2 x 0,48x 0,24x +,

(0,12) 0, ab, (0,3a) 0,09a + a, 2 x 0,48x 0,24x +, 3 6 13. 100 0 y (10. y)(10 0 y) a. 6ab. 9b (a. 3b) 0,81a 01,8ab. b (0,9a 0b) 49x. 14xy. 4y nicht möglich I 36a 060ab. 5b (6a 05b) 5x 015xy. 3y nicht möglich A 5a. 49b nicht möglich R 0,01x. 0,x. 1 (0,1x.

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. April Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de April 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik April 2017 1 / 74 Ein paar Tipps vorab Be gritty : Perseverance and

Mehr

Grundlagen und Grundoperationen

Grundlagen und Grundoperationen ZaHlenMenGen und t erme 1 Grundlagen und Grundoperationen 1 Zahlenmengen und t erme Im Zentrum dieses Kapitels stehen die elementaren Zahlenmengen N, Z, Q und R. Weiter werden die Grundlagen für den Umgang

Mehr

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2

Kapitel 1:»Rechnen« c 3 c 4 c) b 5 c 4. c 2 ) d) (2x + 3) 2 e) (2x + 0,01)(2x 0,01) f) (19,87) 2 Kapitel :»Rechnen«Übung.: Multiplizieren Sie die Terme so weit wie möglich aus. a /5 a 5 Versuchen Sie, vorteilhaft zu rechnen. Übung.2: Berechnen Sie 9% von 2573. c 3 c 4 b 5 c 4 ( b 2 c 2 ) (2x + 3)

Mehr

Quadratische Gleichungen

Quadratische Gleichungen Quadratische Gleichungen 1/10 Quadratische Gleichungen Teil 2 Die Aufgaben in diesem beziehen sich auf Quadratische Gleichungen Teil I Grundlagen. Sie können nach Durcharbeiten dieses Skriptums beantwortet

Mehr

Rechnen mit Potenzen und Termen

Rechnen mit Potenzen und Termen Sieglinde Fürst Rechnen mit Potenzen und Termen Themenbereich Algebra Inhalte Rechnen mit Potenzen - Rechenregeln Gleitkommadarstellung Auflösen von Klammern Multiplizieren von Termen Ziele Rechenregeln

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden (FH) Fachbereich Informatik/Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengang Bauingenieurwesen Dresden 2005 . Mengen Kenntnisse

Mehr

TI-89. Zahlen, Mengen, Terme. Johann Berger

TI-89. Zahlen, Mengen, Terme. Johann Berger TI-89 Zahlen, Mengen, Terme Johann Berger 005 www.johnny.ch Dezimalbrüche Sofern der Rechner auf EXACT eingestellt ist (siehe Einleitung) werden abbrechende Dezimalbrüche als gekürzte normale Brüche dargestellt:

Mehr

Übstunden 7. Klasse Aufgaben und Lösungen zur Algebra

Übstunden 7. Klasse Aufgaben und Lösungen zur Algebra Übstunden 7. Klasse Aufgaben und Lösungen zur Algebra Jens Möller Owingen jmoellerowingen@aol 5 Blätter Übungen und Hausaufgaben Blatt 01 Regeln: (1) Punktrechnung ( bzw: ) geht vor Strichrechnung ( +

Mehr

Übungen zu dem Mathe-Fit Kurs

Übungen zu dem Mathe-Fit Kurs Hochschule Darmstadt Fachbereich Mathematik und Naturwissenschaften WS 00/ Übungen zu dem Mathe-Fit Kurs Thema : Mengen A.. Durch welche charakterisierenden Eigenschaften können die folgenden Mengen beschrieben

Mehr

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades

Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Analytische Lösung algebraischer Gleichungen dritten und vierten Grades Inhaltsverzeichnis 1 Einführung 1 2 Gleichungen dritten Grades 3 3 Gleichungen vierten Grades 7 1 Einführung In diesem Skript werden

Mehr

Vorkurs Mathematik. JProf. Dr. Pia Pinger. September/Oktober Lennéstraße 43, 1. OG

Vorkurs Mathematik. JProf. Dr. Pia Pinger. September/Oktober Lennéstraße 43, 1. OG Vorkurs Mathematik JProf. Dr. Pia Pinger Lennéstraße 43, 1. OG pinger@uni-bonn.de September/Oktober 2017 JProf. Dr. Pia Pinger Vorkurs Mathematik September/Oktober 2017 1 / 74 Ein paar Tipps vorab Be gritty

Mehr

1.1 Rechnen mit Termen (Thema aus dem Bereich Algebra)

1.1 Rechnen mit Termen (Thema aus dem Bereich Algebra) 1.1 Rechnen mit Termen (Thema aus dem Bereich Algebra) Inhaltsverzeichnis 1 Terme 2 1.1 Definition des Begriffs..................................... 2 1.2 Vorzeichen von Termen.....................................

Mehr

Seiten 4 / 5. Lösungen Mathematik-Dossier 8 Rechnen mit Variablen

Seiten 4 / 5. Lösungen Mathematik-Dossier 8 Rechnen mit Variablen Seiten 4 / 5 Distributivgesetz Multiplikation Division - Verbindung v. Operationen versch. Stufe 1 a) 15a : 5 = 15 a : 5 = 15 : 5 a = 3a b) 7x 3 = 7 x 3 = 7 3 x = 21x c) 8x 3y = 8 x 3 y = 8 3 x y = 24xy

Mehr

Polynomgleichungen. Gesetzmäßigkeiten

Polynomgleichungen. Gesetzmäßigkeiten Polynomgleichungen Gesetzmäßigkeiten Werden zwei Terme durch ein Gleichheitszeichen miteinander verbunden, so entsteht eine Gleichung. Enthält die Gleichung die Variable x nur in der 1. Potenz, so spricht

Mehr

Mathematikaufgaben zur Vorbereitung auf das Studium

Mathematikaufgaben zur Vorbereitung auf das Studium Hochschule für Technik und Wirtschaft Dresden Fakultät Informatik / Mathematik Mathematikaufgaben zur Vorbereitung auf das Studium Studiengänge Kartographie/Geoinformatik Vermessung/Geoinformatik Dresden

Mehr

Ich mache eine saubere, klare Darstellung, schreibe die Aufgabenstellung ab und unterstreiche das Resultat doppelt.

Ich mache eine saubere, klare Darstellung, schreibe die Aufgabenstellung ab und unterstreiche das Resultat doppelt. Mathplan 8.2.1 Arithmetik Algebra Grundoperationen Terme über Q Teil I Name: (112) 3 = 14 Hilfsmittel : Algebra 2 / AB 8 Zeitvorschlag: 3 Wochen von: Lernkontrolle am: bis Probe 8.2.1 Wichtige Punkte:

Mehr

Demo für

Demo für SUMMENZEICHEN Regeln und Anwendungen Gebrauchs des Summenzeichens mit Aufgaben aus vielen Bereichen für Angela Datei Nr. 4 Stand:. Oktober INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK Demo für 4 Summenzeichen

Mehr

MATHEMATIK Grundkurs 11m3 2010

MATHEMATIK Grundkurs 11m3 2010 MATHEMATIK Grundkurs 11m3 2010 Städtisches Gymnasium Leichlingen Zusammenfassende Informationen zum Unterricht ab 29. Oktober 2010 Für jede Doppelstunde ein Kapitel 2 Kapitel 1 Doppelstunde 29.10.2010

Mehr

b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe

b n = b In der darauffolgenden Prüfung zu diesem Thema mussten die Schülerinnen und Schüler die Aufgabe Aufgabenblatt Aufgaben zum Thema Potenzgesetze 1. Unterhaltsame Potenzgesetze Im Unterricht wurden die folgenden 5 Potenzgesetze behandelt: 1. Gesetz: 2. Gesetz: 3. Gesetz: 4. Gesetz: 5. Gesetz: a n a

Mehr

Wirtschafts- und Finanzmathematik

Wirtschafts- und Finanzmathematik Prof. Dr. Stefan Etschberger HSA Wirtschafts- und Finanzmathematik für Betriebswirtschaft und International Management Wintersemester 2016/17 Organisation Termine, Personen, Räume Gliederung 1 Grundlegende

Mehr

Kubische und quartische Gleichungen:

Kubische und quartische Gleichungen: Kubische und quartische Gleichungen: Die ersten Mathematiker, die allgemeine Lösungswege für kubische und quartische Gleichungen gefunden haben, waren die italienischen Mathematiker der Renaissance (ca.

Mehr

Weitere Eigenschaften

Weitere Eigenschaften Weitere Eigenschaften Erklärung der Subtraktion: x y := x + ( y) (5) Die Gleichung a + x = b hat die eindeutig bestimmte Lösung x = b a. Beweis: (a) Zunächst ist x = b a eine Lösung, denn a + x = a + (b

Mehr

Potenzen mit ganzzahligen Exponenten: Rechenregeln

Potenzen mit ganzzahligen Exponenten: Rechenregeln Lüneburg, Fragment Potenzen mit ganzzahligen Exponenten: Rechenregeln 5-E1 5-E2 Potenzen: Rechenregeln Regel 1: Potenzen mit gleicher Basis können dadurch miteinander multipliziert werden, dass man die

Mehr

Partialbruchzerlegung für Biologen

Partialbruchzerlegung für Biologen Partialbruchzerlegung für Biologen Rationale Funktionen sind Quotienten zweier Polynome, und sie tauchen auch in der Biologie auf. Die Partialbruchzerlegung bedeutet, einen einfacheren Ausdruck für eine

Mehr

Mathematik-Dossier. Algebra in der Menge Q

Mathematik-Dossier. Algebra in der Menge Q Name: Mathematik-Dossier Algebra in der Menge Q Inhalt: Das Produkt von Binomen Die Biomischen Formeln Erweitern, Kürzen, Addieren, Subtrahieren, Multiplizieren und Dividieren von Bruchtermen Gleichungen

Mehr

Termumformungen. ALGEBRA Terme 2. Binomische Formeln. INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr Friedrich W.

Termumformungen. ALGEBRA Terme 2. Binomische Formeln.  INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Datei Nr Friedrich W. ALGEBRA Terme Termumformungen Binomische Formeln Meistens in Klasse 8 Datei Nr. 110 Friedrich W. Buckel Stand: 4. November 008 INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK www.mathe-cd.de Inhalt DATEI 1101 1

Mehr

Üben. Binomische Formeln. Lösung. Binomische Formeln. Wende die binomischen Formeln an: c) (b + c)(b c) f) (a x)(a + x) a) (x + y) 2 = x 2 + 2xy + y 2

Üben. Binomische Formeln. Lösung. Binomische Formeln. Wende die binomischen Formeln an: c) (b + c)(b c) f) (a x)(a + x) a) (x + y) 2 = x 2 + 2xy + y 2 X 1a a) (x + y) b) (u v) c) (b + c)(b c) d) (r + s) e) (g f) f) (a x)(a + x) X 1a a) (x + y) = x + xy + y b) (u v) = u uv + v c) (b + c)(b c) = b c d) (r + s) = r + rs + s e) (g f) = g gf + f f) (a x)(a

Mehr

MATHEMATIK Leitprogramm technische Mathematik Rechenregeln

MATHEMATIK Leitprogramm technische Mathematik Rechenregeln M..04.0_ INHALT: 8. ADDITION UND SUBTRAKTION 44 9. MULTIPLIKATION UND DIVISION 49 0. BRÜCHE ERWEITERN UND KÜRZEN 6. RECHNEN MIT POTENZEN 69. RADIZIEREN 79 Information Wie Sie im ersten Kapitel gelernt

Mehr

Das kleine Einmaleins der Wirtschaftsmathematik: Einfache Algebra

Das kleine Einmaleins der Wirtschaftsmathematik: Einfache Algebra Das kleine Einmaleins der Wirtschaftsmathematik: Einfache Algebra In diesem Kapitel Mit Vorzeichen und Klammern rechnen Wichtige Rechengesetze kennenlernen und anwenden Sich mit Brüchen und Prozenten anfreunden

Mehr

Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade

Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade Zahlentheorie für den Gebietswettbewerb für Fortgeschrittene der Österreichischen Mathematik-Olympiade Clemens Heuberger 22. September 2014 Inhaltsverzeichnis 1 Zifferndarstellungen in anderen Basen 1

Mehr

Trainingsblatt Bestimmung von Potenzfunktionen und ganzrationalen Funktionen

Trainingsblatt Bestimmung von Potenzfunktionen und ganzrationalen Funktionen Bestimmung von Potenzunktionen und ganzrationalen Funktionen. Bestimme durch geschicktes Probieren jeweils a und n so, dass der Graph G der Potenzunktion a n durch die eingezeichneten Punkte geht. Skizziere

Mehr

Mathematik. Subtraktion (Minuend Subtrahend = Differenz) Division (Dividend / Divisor = Quotient)

Mathematik. Subtraktion (Minuend Subtrahend = Differenz) Division (Dividend / Divisor = Quotient) Inhalt: Mathematik 2.2003 2003 by Reto Da Forno Termumformungen - Operationsstufen Seite 1 - Gesetze Seite 1 - Addition + Subtraktion Seite 2 - Potenzen Seite 2 - Polynomdivision Seite 3 - Ausklammern

Mehr

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft

Algebra. Roger Burkhardt Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft Algebra Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft FS 2010 Roger Burkhardt roger.burkhardt@fhnw.ch Algebra

Mehr

Mathematische Grundlagen 2. Termrechnen

Mathematische Grundlagen 2. Termrechnen Inhaltsverzeichnis: 2. Termrechnen... 2 2.1. Bedeutung von Termen... 2 2.2. Terme mit Variablen... 4 2.3. Vereinfachen von Termen... 5 2.3.1. Zusammenfassen von gleichartigen Termen... 5 2.3.2. Vereinfachen

Mehr

Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger

Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart Campus Horb Dozent Dipl. Math. (FH) Roland Geiger Internet Vorkurs Mathematik Wirtschaftsingenieurwesen und Informatik DHBW Stuttgart

Mehr

Serie 2. Algebra-Training. Potenzen und Wurzeln. Theorie & Aufgaben. VSGYM / Volksschule Gymnasium

Serie 2. Algebra-Training. Potenzen und Wurzeln. Theorie & Aufgaben. VSGYM / Volksschule Gymnasium Algebra-Training Theorie & Aufgaben Serie 2 Potenzen und Wurzeln Theorie und Aufgaben: Ronald Balestra, Katharina Lapadula VSGYM / Volksschule Gymnasium Liebe Schülerin, lieber Schüler Der Leitspruch «Übung

Mehr