Beugung und Interferenz von Mikrowellen. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Doppelspalt, Interferenz.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Beugung und Interferenz von Mikrowellen. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Doppelspalt, Interferenz."

Transkript

1 Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Doppelspalt, Interferenz. Prinzip Wird ein Doppelspalt in den divergenten Mikrowellenstrahl gebracht, so entsteht hinter diesem ein charakteristischer Intensitätsverlauf, aus dessen Periodizität die Wellenlänge der verwendeten Mikrowellen bestimmt werden kann. Hinweis Vor der Durchführung dieses Versuches ist es sinnvoll, aber nicht zwingend erforderlich, zunächst den Versuch P Stehende Wellen im Mikrowellenbereich durchzuführen. Material () Aus dem Mikrowellensatz Mikrowellensender Mikrowellenempfänger Mikrowellensonde Steuereinheit Mikrowelle Maßstab Winkelskala Doppelspalt Abdeckplatte Zusätzliches Material Vielfachmessinstrument, analog Verbindungsleitung, 32 A, 750 mm, rot Verbindungsleitung, 32 A, 750 mm, blau Tonnenfuß PHYWE Stativstange Edelstahl 8/8, l = 250 mm, d = 0 mm Doppelmuffe PHYWE Messschieber (Schieblehre), Edelstahl Klebeband Abb. : Versuchsaufbau zur Interferenz P246090

2 Aufgaben Veranschaulichen Sie sich zunächst das Phänomen der Beugung am Einfachspalt und am Steg. Messen Sie anschließend das Intensitätsprofil aus der Beugung am Doppelspalt, und bestimmen Sie aus diesem die Wellenlänge λ der verwendeten elektromagnetischen Wellen. Theorie Wird in den Strahlengang einer Lichtquelle ein Beugungsobjekt wie beispielsweise ein Spalt, Doppelspalt oder Gitter gebracht, lässt sich hinter diesem Objekt in einiger Entfernung ein für das Objekt charakteristisches Intensitätsmuster beobachten. Ursache hierfür ist die Beugung des Lichts an den Kanten des Objekts. Dies lässt sich durch das Huygenssche Prinzip erklären, nach dem jeder Punkt der Objektkante als Ausgangspunkt einer neuen Welle betrachtet wird. Wenn sich die Wellen an einem entfernten Ort wieder überlagern (Interferenz) entsteht nun eine Intensitätsverteilung, die mit einer geometrischen Projektion (Schattenwurf) nicht erklärlich ist (keine Berücksichtigung der Beugungseffekte). Somit ist der Nachweis der Interferenz auch ein Beispiel für die Wellennatur des Lichts (hier: des Lichts im Mikrowellenbereich). Abb. 2: Zur Geometrie des Aufbaus Es lässt sich allgemein für die Beugung am Gitter die erwartete Intensitätsverteilung in Abhängigkeit des Ortes angeben. Die Verteilung hängt dabei insbesondere von der Anzahl der verwendeten Spalte ab. In diesem Versuch soll der Spezialfall des Doppelspalts untersucht werden, für welchen gilt (siehe Abb. 2): I ( α)=i 0 ( sin (γ) 2 2 γ ) cos (δ) () mit k γ= b sin(α) 2 (2) k δ= a sin( α) 2 (3) und Diese beiden Substitutionen dienen der Übersichtlichkeit der Darstellung von Gl.. Der Parameter k, die sogenannte Wellenzahl, ist dabei wie folgt definiert: k= 2 2π λ (4) P246090

3 Der Winkel α ist dabei durch die Versuchsgeometrie festgelegt (siehe Abb. 2): x α=arctan( ) d Weiterhin findet Zusammenhang: sich für die Periodizität (5) Δp der d Δ p=λ a Intensitätsverteilung folgender (6) Eine experimentelle Bestimmung der Periodizität kann also beispielsweise genutzt werden, um die verwendete Wellenlänge λ festzustellen. Die oben beschriebenen Zusammenhänge gelten allerdings nur dann, wenn in der sogenannten Fernfeldnäherung gearbeitet wird: Nur, wenn die Distanz zwischen Blende und Ort der Intensitätsmessung (hier: zwischen Doppelspalt und Sonde) hinreichend groß ist, sind die der Interferenz zugrundeliegenden Beugungseffekte am Spalt deutlich genug entwickelt. Um abzuschätzen, ob in einer Versuchsanordnung die Fernfeldnäherung gilt, wird die sogenannte Fresnelzahl F definiert: F= b2 d λ (7) Hier bezeichnet b eine charakteristische Größe der Blende (hier: Spaltbreite b), und d den Abstand der Blende zum Ort der Intensitätsmessung. Die Fresnelzahl ist dimensionslos. Die Fernfeldnäherung ist dann erfüllt, wenn F (8) Daher ist darauf zu achten, dass der Abstand d des Doppelspalts zur Sonde nicht zu klein gewählt wird, da dieser reziprok in die Fresnelzahl eingeht. P

4 Aufbau und Durchführung Erster Vorversuch: Beugung am Spalt Bauen Sie den Versuch gemäß Abb. 3 auf. Abb. 3: Versuchsaufbau zur Beugung am Spalt Schließen Sie dazu Mikrowellensender und -empfänger an den dafür vorgesehenen Buchsen der Steuereinheit an. Verbinden Sie das Vielfachmessinstrument mit dem VoltmeterAusgang der Steuereinheit und wählen Sie den Messbereich 0 V (Gleichspannung). Wählen Sie die maximale Amplitude am Amplitudendrehregler. Die Benutzung des Lautsprechers und der internen oder externen Modulation ist für diesen Versuchsteil nicht notwendig. Setzen Sie Winkelskala und Maßstab mit Hilfe der Schraube auf der Rückseite der Winkelskala und der Aussparung im Maßstab zusammen, und richten Sie die Markierung der Skala auf 80 aus. Bringen Sie durch Drehung des Maßstabs die Markierungen (Pfeile) auf Winkelskala und Maßstab in Übereinstimmung (siehe Abb. 4). Abb. 4: Aufbau und Ausrichtung von Winkelskala und Maßstab 4 P246090

5 Abb. 5: Einzelspalt im Mikrowellenstrahl Montieren Sie den Doppelspalt im Drehzentrum der Winkelskala so, dass einer der beiden Spalte zentriert ist, und benutzen Sie die Abdeckplatte, um den anderen Spalt zu verschließen. Positionieren Sie den Sender bei 200 mm auf der Schiene der Winkelskala und den Empfänger bei ca. 500 mm auf dem Maßstab (siehe Abb. 5). Schalten Sie nun den Mikrowellensender ein, indem Sie die Steuereinheit an das Stromnetz anschließen, und drehen Sie den Maßstab um 45 (Abb. 6). Abb. 6: Beugung am Spalt Entfernen Sie den Doppelspalt aus dem Strahlengang, und beobachten Sie dabei den Ausschlag des Voltmeters. Notieren Sie Ihre Beobachtung. Zweiter Vorversuch: Beugung an einem Hindernis (Steg) Schließen Sie Mikrowellensender und -sonde an den dafür vorgesehenen Buchsen der Steuereinheit an. Verbinden Sie das Vielfachmessinstrument mit dem Voltmeter-Ausgang der Steuereinheit und wählen Sie den Messbereich 0 V (Gleichspannung). Wählen Sie die maximale Amplitude am Amplitudendrehregler. Die Benutzung des Lautsprechers und der internen oder externen Modulation ist für diesen Versuchsteil nicht notwendig. Befestigen Sie die Sonde mit Hilfe der Doppelmuffe an der Stativstange im Tonnenfuß. Montieren Sie die Abdeckplatte im Drehzentrum der Winkelskala, und positionieren Sie die Sonde ca. 0 cm hinter der Platte (siehe Abb. 7). Schalten Sie nun den Mikrowellensender ein, indem Sie die Steuereinheit an das Stromnetz anschließen. P

6 Abb. 7: Beugung am Steg Verschieben Sie die Sonde senkrecht zur Ausbreitungsrichtung der Strahlung, und beobachten Sie dabei den Ausschlag des Voltmeters. Notieren Sie Ihre Beobachtung. Versuch zur Interferenz von Mikrowellen Schließen Sie Mikrowellensender und -sonde an den dafür vorgesehenen Buchsen der Steuereinheit an. Verbinden Sie das Vielfachmessinstrument mit dem Voltmeter-Ausgang der Steuereinheit und wählen Sie den Messbereich 3 V (Gleichspannung). Die Benutzung des Lautsprechers und der internen oder externen Modulation ist für diesen Versuch nicht notwendig. Abb. 8: Versuchsaufbau zur Interferenz Bauen Sie nun den Versuch nach Abb. 8 und 9 auf. Montieren Sie dazu den Doppelspalt im Drehzentrum der Winkelskala und positionieren Sie den Sender bei 400 mm auf der Schiene der Winkelskala. Befestigen Sie die Sonde mit Hilfe der Doppelmuffe an der Stativstange im Tonnenfuß. Positionieren Sie die Sonde und den Maßstab so hinter dem Doppelspalt, dass die Verschiebung der Sonde senkrecht zu der Ausbreitungsrichtung der Mikrowellen erfolgt (siehe Abb. 9). Stellen Sie die Sonde zunächst mittig hinter den Doppelspalt und wählen Sie einen Abstand zwischen Doppelspalt und Sonde von mindestens 0 cm (Fernfeldnäherung, siehe oben). 6 P246090

7 Abb. 9: Messung des Intensitätsprofils Schalten Sie den Mikrowellensender ein, indem Sie die Steuereinheit an das Stromnetz anschließen, und suchen Sie durch Verschiebung der Sonde entlang des Maßstabs das globale Maximum der Intensitätsverteilung hinter dem Doppelspalt. Stellen Sie nun die Amplitude am Amplitudendrehregler so ein, dass der volle Messbereich des Vielfachmessinstruments genutzt wird. Variieren Sie nun die Position r der Sonde und notieren Sie die Positionen der Intensitätsmaxima und -minima. Verwenden Sie eine Schrittweite von cm. Achten Sie beim Ablesen der Position auf dem Maßstab darauf, eine mögliche Parallaxe zu vermeiden (siehe Abb. 0). Um ein versehentliches Verschieben des Maßstabs zu vermeiden empfiehlt es sich, diesen mit Klebeband o.ä. an der Auflagefläche zu fixieren. Abb. 0: Ablesen des Maßstabs (hier als Beispiel die Position r = 440 mm) Messen Sie auch den Abstand d zwischen Doppelspalt und Maßstab, die Spaltbreite b und den Abstand der Spaltmitten a mit Hilfe eines Messschiebers, oder greifen Sie auf die Angaben in der Auswertung zurück. Weiterhin können auch die interne Modulation und der interne Lautsprecher der Steuereinheit genutzt werden, um die Intensitätsvariation hinter dem Doppelspalt zu veranschaulichen. P

8 Auswertung und Ergebnis Überprüfen Sie zunächst, ob die Bedingung für die Fernfeldnäherung erfüllt ist. Bestimmen Sie anschließend aus den relativen Positionen x der Maxima und Minima die Periodizität des Intensitätsverlaufs. Nutzen Sie diese, um die verwendete Wellenlänge zu bestimmen. r in mm U in V x in mm α sin(α) γ δ Isim Tabelle : Beispieldaten mit theoretischer Vorhersage Isim des Intensitätsverlaufs. 8 P246090

9 Abb. : Vergleich gemessener und simulierter Werte für das Intensitätsprofil Mit den Werten b = 2.5 cm, d = 2 cm und λ = 3.58 cm (siehe Versuch P Stehende Wellen im Mikrowellenbereich ) errechnet sich die Fresnelzahl F zu b2 (2.5 cm)2 F= = 0.65 d λ (2cm 3.58 cm) Die Bedingung für die Fernfeldnäherung ist also näherungsweise erfüllt. Soll die Wellenlänge λ aus der Messung gewonnen werden, so findet sich mit den Werten aus dem Messbeispiel ein Wert von a 5.27 cm λ=δ p =80 mm =35. mm d 2 cm Tatsächlich wird der Mikrowellensender mit einer Frequenz von 9.5 GHz, also einer Wellenlänge von λ = 3.58 mm betrieben (siehe oben). Die Theorie sagt nun für den betrachteten Messbereich die Existenz dreier Maxima voraus (siehe Abb. ), welche experimentell bestätigt wird. Als maximale Intensität I0 wurde hier der gemessene Wert zur Normierung des simulierten Intensitätsverlaufs herangezogen. Die Abweichungen der Messungen von der theoretischen Vorhersage erklären sich zum einen durch eine mögliche Parallaxe beim Ablesen der Sondenposition auf dem Maßstab, und zum anderen durch die große Schrittweite ( cm) bei der Rasterung des Intensitätsprofils. Beachten Sie, dass die Intensität in den Randbereichen überlagert wird von einem schwachen, ungebeugten Störsignal des Mikrowellensenders, da der Doppelspalt nur über eine endliche Ausdehnung verfügt und Streustrahlung seitlich den Spalt passieren kann. Deutung Bei allen Interferenz- und Beugungserscheinungen handelt es sich um Phänomene, welche erst durch die Beschreibung des Lichts (hier: Licht im Mikrowellenbereich) als Welle erklärlich werden. Etwa bei der Beugung am (Einzel-)Spalt im ersten Vorversuch werden die Mikrowellen in einen Winkel(-bereich) gebeugt, so dass nach Entfernung des Spaltes aus dem P

10 Strahlengang die Intensität unter demselben Winkel geringer ist als zuvor. Bei der Beugung am Hindernis (zweiter Vorversuch) ist hinter der Abdeckplatte eine endliche Intensität messbar, obwohl die Platte aus reflektierendem Metall besteht. Dies liegt daran, dass an den Kanten der Platte die Mikrowellen gebeugt werden, und sich Elementarwellen in den (vermeintlichen) Schattenraum ausbreiten. Ohne auf das Konzept der Beugung von Wellen zurückzugreifen, etwa durch eine geometrische Projektion (Schattenwurf), sind diese beiden Versuche nicht erklärbar. Tatsächlich sind die Beugungsbilder zweier komplementärer Objekte, also beispielsweise eines Spalts und eines Stegs gleicher Breite, oder einer Kreisscheibe und einer Lochblende des gleichen Durchmessers, nicht zu unterscheiden. Dieser Sachverhalt ist bekannt als Babinetsches Theorem oder Babinetsches Prinzip und gilt für alle Beugungseffekte. Bei der Interferenz hinter dem Doppelspalt werden nun die gebeugten Wellen zweier Spalte überlagert, und ein charakteristischer Intensitätsverlauf entsteht. Dies ist ebenfalls ein Wellenphänomen, welches im Strahlen- oder Teilchenbild nicht erklärbar ist. 0 P246090

Beugung von Mikrowellen an Spalt und Steg. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung.

Beugung von Mikrowellen an Spalt und Steg. Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung. Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Huygenssches Prinzip, Spalt, Steg, Beugung. Prinzip Treffen elektromagnetische Wellen auf die Kante eines Objekts (beispielsweise Spalt und Steg),

Mehr

Stehende Wellen im Mikrowellenbereich

Stehende Wellen im Mikrowellenbereich Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Reflexion, Abstandsgesetz. Prinzip Werden elektromagnetische Wellen zwischen zwei Reflektoren hin- und hergeworfen, so bildet sich eine stehende

Mehr

Ausbreitung von Mikrowellen (Quadratisches Abstandsgesetz) Mikrowellen, elektromagnetische Wellen, Kugelwelle, virtuelle Quelle, Reflexion.

Ausbreitung von Mikrowellen (Quadratisches Abstandsgesetz) Mikrowellen, elektromagnetische Wellen, Kugelwelle, virtuelle Quelle, Reflexion. Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Kugelwelle, virtuelle Quelle, Reflexion. Prinzip Die Intensität einer Strahlungsquelle, z.b. eines Mikrowellensenders, an einem beliebigen Ort

Mehr

Polarisation von Mikrowellen. Mikrowellen, elektromagnetische Wellen, Transversalwellen, Polarisation, Gesetz von Malus.

Polarisation von Mikrowellen. Mikrowellen, elektromagnetische Wellen, Transversalwellen, Polarisation, Gesetz von Malus. Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Transversalwellen, Polarisation, Gesetz von Malus. Prinzip Elektromagnetische Wellen treffen auf ein Gitter, dessen Durchlässigkeit von der Drehebene

Mehr

Energieerhaltung bei Reflexion und Transmission von Mikrowellen

Energieerhaltung bei Reflexion und Transmission von Mikrowellen Verwandte Begriffe Mikrowellen, elektromagnetische Energieerhaltung, Erhaltungssätze. Wellen, Reflexion, Transmission, Polarisation, Prinzip Treffen elektromagnetische Wellen auf ein Hindernis, so werden

Mehr

Material Aus dem Mikrowellensatz (siehe Abb. 2) Steuereinheit Mikrowelle Mikrowellenempfänger Mikrowellensender Winkelskala

Material Aus dem Mikrowellensatz (siehe Abb. 2) Steuereinheit Mikrowelle Mikrowellenempfänger Mikrowellensender Winkelskala Verwandte Begriffe Mikrowellen, elektromagnetische Wellen, Reflexion, Transmission, Brechung, Absorption, Polarisation. Prinzip Treffen elektromagnetische Wellen auf ein Hindernis, so können u.a. Reflexion,

Mehr

Versuch Nr. 18 BEUGUNG

Versuch Nr. 18 BEUGUNG Grundpraktikum der Physik Versuch Nr. 18 BEUGUNG Versuchsziel: Justieren eines optischen Aufbaus. Bestimmung der Wellenlänge eines Lasers durch Ausmessen eines Beugungsmusters am Gitter. Ausmessen der

Mehr

Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT

Wellenoptik/Laser. Praktikumsversuch Meßtechnik INHALT Praktikumsversuch Meßtechnik Wellenoptik/Laser INHALT 1.0 Einführung 2.0 Versuchsaufbau/Beschreibung 3.0 Aufgaben 4.0 Zusammenfassung 5.0 Fehlerdiskussion 6.0 Quellennachweise 1.0 Einführung Die Beugung

Mehr

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten

Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten Versuch O04: Fraunhofer-Beugung an einem und mehreren Spalten 5. März 2014 I Lernziele Huygen sches Prinzip und optische Interferenz Photoelektronik als Messmethode II Physikalische Grundlagen Grundlage

Mehr

Protokoll zum Versuch: Interferenz und Beugung

Protokoll zum Versuch: Interferenz und Beugung Protokoll zum Versuch: Interferenz und Beugung Fabian Schmid-Michels Nils Brüdigam Universität Bielefeld Wintersemester 2006/2007 Grundpraktikum I 30.11.2006 Inhaltsverzeichnis 1 Ziel 2 2 Theorie 2 2.1

Mehr

Mikrowellenoptik. Marcel Köpke & Axel Müller

Mikrowellenoptik. Marcel Köpke & Axel Müller Mikrowellenoptik Marcel Köpke & Axel Müller 03.05.2012 Inhaltsverzeichnis 1 Bestimmung der Wellenlänge 3 2 Intensitätmessung 5 3 Fresnel-Beugung 7 4 Einzel- und Mehrfachspalte 8 4.1 Einzelspalt...................................

Mehr

Beugung von Ultraschallwellen

Beugung von Ultraschallwellen M5 Beugung von Ultraschallwellen Die Beugungsbilder von Ultraschall nach Einzel- und Mehrfachspalten werden aufgenommen und ausgewertet. 1. Theoretische Grundlagen 1.1 Beugung (Diffraktion) Alle fortschreitenden

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 22-1 Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1. Vorbereitung : Wellennatur des Lichtes, Interferenz, Kohärenz, Huygenssches Prinzip, Beugung, Fresnelsche und Fraunhofersche Beobachtungsart,

Mehr

VERSUCH P2-15: ZENTIMETERWELLENOPTIK MIT MESSINTERFACE

VERSUCH P2-15: ZENTIMETERWELLENOPTIK MIT MESSINTERFACE VERSUCH P2-15: ZENTIMETERWELLENOPTIK MIT MESSINTERFACE GRUPPE 19 - SASKIA MEISSNER, ARNOLD SEILER 1. Bestimmung der Wellenlänge λ Wir bestimmen die Wellenlänge der Mikrowellenstrhalung. Vor der Quelle

Mehr

Beugung am Spalt und Gitter

Beugung am Spalt und Gitter Demonstrationspraktikum für Lehramtskandidaten Versuch O1 Beugung am Spalt und Gitter Sommersemester 2006 Name: Daniel Scholz Mitarbeiter: Steffen Ravekes EMail: daniel@mehr-davon.de Gruppe: 4 Durchgeführt

Mehr

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt

Doppelspalt. Abbildung 1: Experimenteller Aufbau zur Beugung am Doppelspalt 5.10.802 ****** 1 Motivation Beugung am Doppelspalt: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Der Unterschied der Intensitätsverteilungen

Mehr

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am

UNIVERSITÄT BIELEFELD. Optik. GV Interferenz und Beugung. Durchgeführt am UNIVERSITÄT BIELEFELD Optik GV Interferenz und Beugung Durchgeführt am 10.05.06 Dozent: Praktikanten (Gruppe 1): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer Inhaltsverzeichnis 1 Ziel

Mehr

Wellenfront und Wellenstrahl

Wellenfront und Wellenstrahl Wellenfront und Wellenstrahl Es gibt unterschiedliche Arten von Wellen, Wasserwellen, elektromagnetische Wellen oder Lichtwellen. Um die verschiedenen Wellen zu beschreiben, haben sich Begriffe wie WELLENFRONT

Mehr

Othmar Marti Experimentelle Physik Universität Ulm

Othmar Marti Experimentelle Physik Universität Ulm Grundkurs IIIa für Physiker Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Vorlesung nach Tipler, Gerthsen, Hecht Skript: http://wwwex.physik.uni-ulm.de/lehre/gk3a-2002

Mehr

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2

Praktikum Physik. Protokoll zum Versuch: Beugung. Durchgeführt am Gruppe X. Name 1 und Name 2 Praktikum Physik Protokoll zum Versuch: Beugung Durchgeführt am 01.12.2011 Gruppe X Name 1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuer: Wir bestätigen hiermit, dass wir das Protokoll

Mehr

2. Schulaufgabe aus der Physik

2. Schulaufgabe aus der Physik Q Kurs QPh0 2. Schulaufgabe aus der Physik Be max 50 BE Punkte am 22.06.207 Name : M U S T E R L Ö S U N G Konstanten: c Schall =340 m s,c Licht=3,0 0 8 m s.wie können Sie den Wellencharakter von Mikrowellenstrahlung

Mehr

9.10 Beugung Beugung

9.10 Beugung Beugung 9.0 Beugung Abb. 9. Aufbau des Original Michelson-Morley Experiments von 887 mit einer massiven Granitplatte in einem Quecksilberbad (Wikipedia). 9.0 Beugung Bisher sind wir von der Idealisierung ebener

Mehr

Versuch P2-18: Laser und Wellenoptik Teil A

Versuch P2-18: Laser und Wellenoptik Teil A Versuch P2-18: Laser und Wellenoptik Teil A Sommersemester 2005 Gruppe Mi-25: Bastian Feigl Oliver Burghard Inhalt Vorbereitung 1 Physikalische Grundlagen... 2 1.1 Funktionsweise eines Lasers... 2 2 Versuchsbeschreibungen...

Mehr

8. GV: Interferenz und Beugung

8. GV: Interferenz und Beugung Protokoll zum Physik Praktikum I: WS 2005/06 8. GV: Interferenz und Beugung Protokollanten Jörg Mönnich - Anton Friesen - Betreuer Maik Stuke Versuchstag Dienstag, 31.01.2006 Interferenz und Beugung 1

Mehr

Versuch Draht: Nehmen Sie von den vorhandenen Objekten die Beugungsbilder auf, und erklären Sie diese qualitativ.

Versuch Draht: Nehmen Sie von den vorhandenen Objekten die Beugungsbilder auf, und erklären Sie diese qualitativ. 1 Versuch 411 Beugung an Hindernissen 1. Aufgaben Untersuchen Sie mit Hilfe einer CCD - Zeile die Intensitätsverteilung des gebeugten Lichtes an Spalt, Doppelspalt, Kante und dünnem Draht. a) im Fernfeld

Mehr

UNIVERSITÄT BIELEFELD

UNIVERSITÄT BIELEFELD UNIVERSITÄT BIELEFELD 5. Schwingungen und Wellen 5.6 - Beugung von Ultraschall Durchgeführt am 3.0.06 Dozent: Praktikanten (Gruppe ): Dr. Udo Werner Marcus Boettiger Daniel Fetting Marius Schirmer E3-463

Mehr

Beugung am Gitter mit Laser ******

Beugung am Gitter mit Laser ****** 5.10.301 ****** 1 Motiation Beugung am Gitter: Wellen breiten sich nach dem Huygensschen Prinzip aus; ihre Amplituden werden superponiert (überlagert). Die Beugung am Gitter erzeugt ein schönes Beugungsbild

Mehr

Versuchsauswertung: Mikrowellenoptik

Versuchsauswertung: Mikrowellenoptik Praktikum Klassische Physik II Versuchsauswertung: Mikrowellenoptik (P2-15) Christian Buntin, Jingfan Ye Gruppe Mo-11 Karlsruhe, 26. April 21 Inhaltsverzeichnis 1 Bestimmung der Wellenlänge 2 2 Beobachtung

Mehr

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter

1 Beugungsmuster am Gitter. 2 Lautsprecher. 3 Der Rote Punkt am Mond. 4 Phasengitter 1 Beugungsmuster am Gitter Ein Gitter mit 1000 Spalten, dessen Spaltabstand d = 4, 5µm und Spaltbreite b = 3µm ist, werde von einer kohärenten Lichtquelle mit der Wellenlänge λ = 635nm bestrahlt. Bestimmen

Mehr

Praktikum GI Gitterspektren

Praktikum GI Gitterspektren Praktikum GI Gitterspektren Florian Jessen, Hanno Rein betreut durch Christoph von Cube 9. Januar 2004 Vorwort Oft lassen sich optische Effekte mit der geometrischen Optik beschreiben. Dringt man allerdings

Mehr

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes

Beugung am Gitter. Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 2: Beugung am Gitter Beugung am Gitter Theoretische Grundlagen Beugung tritt immer dann auf, wenn Hindernisse die Ausbreitung des Lichtes beeinträchtigen.

Mehr

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum II Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert O06 Beugung an Spalt und Gitter (Pr_PhII_O06_Beugung_7, 5.10.015) 1..

Mehr

1. ZIELE 2. ZUR VORBEREITUNG. D03 Beugung D03

1. ZIELE 2. ZUR VORBEREITUNG. D03 Beugung D03 Beugung 1. ZIELE Licht breitet sich gradlinig aus, meistens. Es geht aber auch um die Ecke. Lässt man z. B. ein Lichtbündel durch eine kleine Blende fallen, so beobachtet man auf dem Schirm abwechselnd

Mehr

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung!

Profilkurs Physik ÜA 08 Test D F Ks b) Welche Beugungsobjekte führen zu folgenden Bildern? Mit Begründung! Profilkurs Physik ÜA 08 Test D F Ks. 2011 1 Test D Gitter a) Vor eine Natriumdampflampe (Wellenlänge 590 nm) wird ein optisches Gitter gehalten. Erkläre kurz, warum man auf einem 3,5 m vom Gitter entfernten

Mehr

Interferenz und Beugung

Interferenz und Beugung Interferenz und Beugung In diesem Kapitel werden die Eigenschaften von elektromagnetischen Wellen behandelt, die aus der Wellennatur des Lichtes resultieren. Bei der Überlagerung zweier Wellen ergeben

Mehr

Interferenz von Schallwellen

Interferenz von Schallwellen Interferenz von Schallwellen Das Wort Interferenz verbindet man meist mit dem Doppelspaltversuch der Optik. Der zeigt, dass sich Licht wie eine Welle verhält. Trifft der Berg einer Welle aus dem einen

Mehr

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik

Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik Vorlesung 6: Wechselstrom, ElektromagnetischeWellen, Wellenoptik, georg.steinbrueck@desy.de Folien/Material zur Vorlesung auf: www.desy.de/~steinbru/physikzahnmed georg.steinbrueck@desy.de 1 WS 2015/16

Mehr

Physikalisches Praktikum 3. Abbésche Theorie

Physikalisches Praktikum 3. Abbésche Theorie Physikalisches Praktikum 3 Versuch: Betreuer: Abbésche Theorie Dr. Enenkel Aufgaben: 1. Bauen Sie auf einer optischen Bank ein Modellmikroskop mit optimaler Vergrößerung auf. 2. Untersuchen Sie bei verschiedenen

Mehr

Interferenz und Beugung - Optische Instrumente

Interferenz und Beugung - Optische Instrumente Interferenz und Beugung - Optische Instrumente Martina Stadlmeier 25.03.2010 1 Inhaltsverzeichnis 1 Kohärenz 3 2 Interferenz 3 2.1 Interferenz an einer planparallelen Platte...............................

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik : Abbildung 1: Experimenteller Aufbau zur Untersuchung der Beugung am Spalt 1. Versuchsziel Eine akustische Welle trifft auf einen engen Spalt und wird dadurch in die geometrischen

Mehr

Labor für Technische Physik

Labor für Technische Physik Hochschule Bremen City University of Applied Sciences Fakultät Elektrotechnik und Informatik 1. Versuchsziele Labor für Technische Physik Prof. Dr.-Ing. Dieter Kraus, Dipl.-Ing. W.Pieper Der Versuch soll

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Bestimmung der Wellenlänge von Schallwellen mit einer Abbildung 1: Experimenteller Aufbau zur Bestimmung der Wellenlänge von Schallwellen mit einer. 1. Versuchsziel Wenn sich

Mehr

Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik

Wellenoptik. Beugung an Linsenöffnungen. Das Huygensche Prinzip. Kohärenz. Wellenoptik Wellenoptik Beugung an Linsenöffnungen Wellenoptik Typische bmessungen D der abbildenden System (Blenden, Linsen) sind klein gegen die Wellenlänge des Lichts Wellencharakter des Lichts führt zu Erscheinungen

Mehr

Beugung am Einfach- und Mehrfachspalt

Beugung am Einfach- und Mehrfachspalt O03 Beugung am Einfach- und Mehrfachspalt Die Beugungsbilder von Einzel- und Mehrfachspalten werden in Fraunhoferscher Anordnung aufgenommen und ausgewertet. Dabei soll insbesondere die qualitative Abhängigkeit

Mehr

Beugung und Interferenz

Beugung und Interferenz Beugung und Interferenz Christopher Bronner, Frank Essenberger Freie Universität Berlin 15. September 2006 Inhaltsverzeichnis 1 Physikalische Grundlagen 1 2 Aufgaben 3 3 Messprotokoll 4 3.1 Geräte.................................

Mehr

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2012 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Wellen und Quanten Interferenzphänomene werden an unterschiedlichen Strukturen untersucht. In Aufgabe 1 wird zuerst der Spurabstand einer CD bestimmt. Thema der Aufgabe 2 ist eine Strukturuntersuchung

Mehr

Ferienkurs Experimentalphysik III

Ferienkurs Experimentalphysik III Ferienkurs Experimentalphysik III 24. Juli 2009 Vorlesung Mittwoch - Interferenz und Beugung Monika Beil, Michael Schreier 1 Inhaltsverzeichnis 1 Phasendierenz und Kohärenz 3 2 Interferenz an dünnen Schichten

Mehr

Spannung und Stromstärke einer Solarzelle Einfluss von der Fläche und der Beleuchtungsstärke

Spannung und Stromstärke einer Solarzelle Einfluss von der Fläche und der Beleuchtungsstärke Spannung und Stromstärke einer Solarzelle ENT Schlüsselworte Sonnenenergie, Fotovoltaik, Solarzelle, Lichtintensität, Elektrische Energie, Leerlaufspannung, Kurzschlussstromstärke Prinzip Solarzellen wandeln

Mehr

Überlagern sich zwei Schwingungen, so gilt für die Amplitude, also für die maximale Auslenkung:

Überlagern sich zwei Schwingungen, so gilt für die Amplitude, also für die maximale Auslenkung: (C) 2015 - SchulLV 1 von 12 Einführung Egal ob im Alltag oder im Urlaub, Wellen begegnen uns immer wieder in Form von Wasser, Licht, Schall,... Eine einfache Welle besteht aus einem Maximum und einem Minimum.

Mehr

Versuch 3: Beugung am Spalt und Kreisblende

Versuch 3: Beugung am Spalt und Kreisblende Versuch 3: Beugung am Spalt und Kreisblende Dieser Versuch soll der Einführung der allgemeinen Beugungstheorie dienen. Beugungsphänomene werden in verschiedenen Erscheinungsformen zunächst nur beobachtet.

Mehr

Experimente mit Ultraschall

Experimente mit Ultraschall Batchelorarbeit Experimente mit Ultraschall eingereicht von Caroline Krüger am Fachbereich Didaktik der Physik Leipzig 2009 Betreuer: Dr. P. Rieger Zweitgutachter: Prof. Dr. W. Oehme 1 Inhaltsverzeichnis:

Mehr

Lösung: a) b = 3, 08 m c) nein

Lösung: a) b = 3, 08 m c) nein Phy GK13 Physik, BGL Aufgabe 1, Gitter 1 Senkrecht auf ein optisches Strichgitter mit 100 äquidistanten Spalten je 1 cm Gitterbreite fällt grünes monochromatisches Licht der Wellenlänge λ = 544 nm. Unter

Mehr

Beugung und Interferenz als Remotely Controlled Laboratory (RCL) S. Gröber, M. Vetter, A. Lütkefedder, B. Eckert, H.-J. Jodl

Beugung und Interferenz als Remotely Controlled Laboratory (RCL) S. Gröber, M. Vetter, A. Lütkefedder, B. Eckert, H.-J. Jodl Beugung und Interferenz als Remotely Controlled Laboratory (RCL) S. Gröber, M. Vetter, A. Lütkefedder, B. Eckert, H.-J. Jodl 1 Auswahl des Versuchs als RCL Der Einführung von Beugung und Interferenz in

Mehr

PeP Physik erfahren im ForschungsPraktikum

PeP Physik erfahren im ForschungsPraktikum Physik erfahren im ForschungsPraktikum Vom Kerzenlicht zum Laser Kurs für die. Klasse, Gymnasium, Mainz.2004 Daniel Klein, Klaus Wendt Institut für Physik, Johannes Gutenberg-Universität, D-55099 Mainz

Mehr

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007

Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde. Sommersemester 2007 Einführung in die Physik II für Studierende der Naturwissenschaften und Zahnheilkunde Sommersemester 2007 VL #45 am 18.07.2007 Vladimir Dyakonov Erzeugung von Interferenzen: 1) Durch Wellenfrontaufspaltung

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgabe ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Physikklausur Nr.4 Stufe

Physikklausur Nr.4 Stufe Physikklausur Nr.4 Stufe 12 08.05.2009 Aufgabe 1 6/3/5/4 Punkte Licht einer Kaliumlampe mit den Spektrallinien 588nm und 766nm wird auf einen Doppelspalt des Spaltmittenabstands 0,1mm gerichtet. a.) Geben

Mehr

Wie breitet sich Licht aus?

Wie breitet sich Licht aus? A1 Experiment Wie breitet sich Licht aus? Die Ausbreitung des Lichtes lässt sich unter anderem mit dem Strahlenmodell erklären. Dabei stellt der Lichtstrahl eine Idealisierung dar. In der Praxis beobachtet

Mehr

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min

Zentralabitur 2011 Physik Schülermaterial Aufgabe I ga Bearbeitungszeit: 220 min Thema: Eigenschaften von Licht Gegenstand der Aufgabe 1 ist die Untersuchung von Licht nach Durchlaufen von Luft bzw. Wasser mit Hilfe eines optischen Gitters. Während in der Aufgabe 2 der äußere lichtelektrische

Mehr

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN

Quantenphysik. Teil 3: PRAKTISCHE AKTIVITÄTEN Praktische ktivität: Bestimmung der Dicke eines Haars mittels Beugung von Licht 1 Quantenphysik Die Physik der sehr kleinen Teilchen mit großartigen nwendungsmöglichkeiten Teil 3: PRKTISCHE KTIVITÄTEN

Mehr

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli)

2. Optik. 2.1 Elektromagnetische Wellen in Materie Absorption Dispersion. (Giancoli) 2. Optik 2.1 Elektromagnetische Wellen in Materie 2.1.1 Absorption 2.1.2 Dispersion 2.1.3 Streuung 2.1.4 Polarisationsdrehung z.b. Optische Aktivität: Glucose, Fructose Faraday-Effekt: Magnetfeld Doppelbrechender

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Kraus Abbildung 1: Experimenteller Aufbau zur optischen Ermittlung der Schallgeschwindigkeit. 1. Versuchsziel In einer mit einer Flüssigkeit gefüllten Küvette ist eine stehende

Mehr

Physik-Praktikum: BUB

Physik-Praktikum: BUB Physik-Praktikum: BUB Einleitung Während man Lichtbrechung noch mit einer Modellvorstellung von Licht als Teilchen oder als Strahl mit materialabhängiger Ausbreitungsgeschwindigkeit erklären kann, ist

Mehr

Einführung in die Gitterbeugung

Einführung in die Gitterbeugung Einführung in die Gitterbeugung Methoden der Physik SS2006 Prof. Szymanski Seibold Elisabeth Leitner Andreas Krieger Tobias EINLEITUNG 3 DAS HUYGENSSCHE PRINZIP 3 DIE BEUGUNG 3 BEUGUNG AM EINZELSPALT 3

Mehr

Lichtbrechung / Lichtbeugung

Lichtbrechung / Lichtbeugung Lichtbrechung / Lichtbeugung 1. Aufgaben 1. Über die Beugung an einem Gitter sind die Wellenlängen ausgewählter Spektrallinien von Quecksilberdampf zu bestimmen. 2. Für ein Prisma ist die Dispersionskurve

Mehr

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16

Physik-Department. Ferienkurs zur Experimentalphysik 3. Matthias Golibrzuch 16/03/16 Physik-Department Ferienkurs zur Experimentalphysik 3 Matthias Golibrzuch 16/03/16 Inhaltsverzeichnis Technische Universität München 1 Kohärenz 1 2 Beugung 1 2.1 Huygenssches Prinzip.............................

Mehr

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2)

Lk Physik in 12/2 1. Klausur aus der Physik Blatt 1 (von 2) Lk Physik in 12/2 1. Klausur aus der Physik 26. 4. 27 Blatt 1 (von 2) 1. Schwingkreis in Schwingkreis aus einem Kondensator der Kapazität C = 2 nf und einer Spule der Induktivität L = 25 mh soll zu ungedämpften

Mehr

Versuch P2-16,17,18: Laser A. Auswertung. Von Jan Oertlin und Ingo Medebach. 7. Juni 2010

Versuch P2-16,17,18: Laser A. Auswertung. Von Jan Oertlin und Ingo Medebach. 7. Juni 2010 Versuch P2-16,17,18: Laser A Auswertung Von Jan Oertlin und Ingo Medebach 7. Juni 2010 Inhaltsverzeichnis 1 Brewsterwinkel 2 1.1 Aufbau des Experimentier-Gaslasers............................ 2 1.2 Bestimmung

Mehr

Physikalisches Praktikum

Physikalisches Praktikum Physikalisches Praktikum Versuch 17: Lichtbeugung Universität der Bundeswehr München Fakultät für Elektrotechnik und Informationstechnik Institut für Physik Oktober 2015 Versuch 17: Lichtbeugung Im Modell

Mehr

Ferienkurs Experimentalphysik III - Optik

Ferienkurs Experimentalphysik III - Optik Ferienkurs Experimentalphysik III - Optik Max v. Vopelius, Matthias Brasse 25.02.09 Inhaltsverzeichnis 1 Welleneigenschaften von Licht 1 2 Lichtbeugung 1 2.1 Beugung am Einfachspalt...............................

Mehr

4. Klausur ( )

4. Klausur ( ) EI PH J2 2011-12 PHYSIK 4. Klausur (10.05.2012) Telle oder Weilchen? Eure letzte Physik-Klausur in der Schule! Du kannst deinen GTR verwenden. Achte auf eine übersichtliche Darstellung! (Bearbeitungszeit:

Mehr

7. Klausur am

7. Klausur am Name: Punkte: Note: Ø: Profilkurs Physik Abzüge für Darstellung: Rundung: 7. Klausur am 8.. 0 Achte auf die Darstellung und vergiss nicht Geg., Ges., Formeln, Einheiten, Rundung...! Angaben: h = 6,66 0-34

Mehr

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik)

22. Vorlesung EP. IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) 22. Vorlesung EP IV Optik 25. Optische Instrumente Fortsetzung: b) Optik des Auges c) Mikroskop d) Fernrohr 26. Beugung (Wellenoptik) V Strahlung, Atome, Kerne 27. Wärmestrahlung und Quantenmechanik Versuche

Mehr

2 Mehrdimensionale mechanische Wellen

2 Mehrdimensionale mechanische Wellen TO Stuttgart OII 30 (Physik) Mehrdimensionale mechanische Wellen. Darstellung mehrdimensionaler Wellen Um die Beschreibung von mehrdimensionalen Wellen zu vereinfachen werden in Diagrammen nur die Wellenfronten

Mehr

Optische Bank für Schüler, Komplettset

Optische Bank für Schüler, Komplettset Optische Bank für Schüler, Komplettset Übersicht Mit der optischen Bank als Komplettset können Schüler selbständig Grundlagenversuche zur Strahlenoptik durchführen. Alle Komponenten, inklusive der dreigeteilten

Mehr

Stromstärke und Widerstand in Reihenschaltung

Stromstärke und Widerstand in Reihenschaltung Lehrer-/Dozentenblatt Gedruckt: 30.03.207 7:0:20 P372900 Stromstärke und Widerstand in Reihenschaltung (Artikelnr.: P372900) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Klasse 7-0 Lehrplanthema:

Mehr

Praktikumsvorbereitung Laser A

Praktikumsvorbereitung Laser A Praktikumsvorbereitung Laser A André Schendel, Silas Kraus Gruppe DO-20 21. Mai 2012 Grundlagen 0.1 Interferenz und Beugung Wenn sich zwei kohärente Wellen überlagern, tritt Interferenz auf. Dabei können

Mehr

Physik - Anfängerpraktikum Versuch Beugung am Spalt

Physik - Anfängerpraktikum Versuch Beugung am Spalt Physik - Anfängerpraktikum Versuch 406 - Beugung am Spalt Sebastian Rollke (103095) und Daniel Brenner (105292) 21. September 2005 Inhaltsverzeichnis 1 Einleitung 2 1.1 Zielsetzung.......................................

Mehr

13.1 Bestimmung der Lichtgeschwindigkeit

13.1 Bestimmung der Lichtgeschwindigkeit 13 Ausbreitung des Lichts Hofer 1 13.1 Bestimmung der Lichtgeschwindigkeit 13.1.1 Bestimmung durch astronomische Beobachtung Olaf Römer führte 1676 die erste Berechung zur Bestimmung der Lichtgeschwindigkeit

Mehr

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern

Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Thema: Spektroskopische Untersuchung von Strahlung mit Gittern Gegenstand der Aufgaben ist die spektroskopische Untersuchung von sichtbarem Licht, Mikrowellenund Röntgenstrahlung mithilfe geeigneter Gitter.

Mehr

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops

Beugung an Spalt und Gitter, Auflösungsvermögen des Mikroskops 1 Beugung an palt und Gitter, Auflösungsvermögen des Mikroskops 1 Einleitung Das Mikroskop ist in Medizin, Technik und Naturwissenschaft ein wichtiges Werkzeug um Informationen über Objekte auf Mikrometerskala

Mehr

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01.

Der schwingende Dipol (Hertzscher Dipol): Experimentalphysik I/II für Studierende der Biologie und Zahnmedizin Caren Hagner V6 17.01. Der schwingende Dipol (Hertzscher Dipol): 1 Dipolachse Ablösung der elektromagnetischen Wellen vom Dipol 2 Dipolachse KEINE Abstrahlung in Richtung der Dipolachse Maximale Abstrahlung senkrecht zur Dipolachse

Mehr

FK Experimentalphysik 3, Lösung 3

FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter FK Experimentalphysik 3, Lösung 3 1 Transmissionsgitter Ein Spalt, der von einer Lichtquelle beleuchtet wird, befindet sich im Abstand von 10 cm vor einem Beugungsgitter (Strichzahl

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Abbildung 1: Experimenteller Aufbau zur Untersuchung von stehenden Wellen 1. Versuchsziel Bringt man zwei ebene Wellen gleicher Amplitude und Frequenz, aber entgegengesetzter

Mehr

wir-sind-klasse.jimdo.com

wir-sind-klasse.jimdo.com 1. Einführung und Begriffe Eine vom Erreger (periodische Anregung) wegwandernde Störung heißt fortschreitende Welle. Die Ausbreitung mechanischer Wellen erfordert einen Träger, in dem sich schwingungsfähige

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen

Mehr

Elektrische Felder und Potentiale im Plattenkondensator (Artikelnr.: P )

Elektrische Felder und Potentiale im Plattenkondensator (Artikelnr.: P ) Elektrische Felder und Potentiale im Plattenkondensator (Artikelnr.: P2420100) Curriculare Themenzuordnung Fachgebiet: Physik Bildungsstufe: Hochschule Lehrplanthema: Elektrizität und Magnetismus Unterthema:

Mehr

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für

Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für Testaufgaben bitte zuhause lösen. Richtige Antworten werden im Internet demnächst bekannt gegeben. Bitte kontrollieren Sie Ihre Klausuranmeldung für den 13.02.2003 unter www.physik.uni-giessen.de/ dueren/

Mehr

Physikalisches Praktikum 3

Physikalisches Praktikum 3 Datum: 0.10.04 Physikalisches Praktikum 3 Versuch: Betreuer: Goniometer und Prisma Dr. Enenkel Aufgaben: 1. Ein Goniometer ist zu justieren.. Der Brechungsindex n eines gegebenen Prismas ist für 4 markante

Mehr

Atom- und Kernphysik. Beobachtung der Aufspaltung der Balmerlinien an deuteriertem Wasserstoff (Isotopieaufspaltung) LD Handblätter Physik

Atom- und Kernphysik. Beobachtung der Aufspaltung der Balmerlinien an deuteriertem Wasserstoff (Isotopieaufspaltung) LD Handblätter Physik Ato- und Kernphysik Atohülle Baler-Serie des Wasserstoff LD Handblätter Physik P6.2.1.3 Beobachtung der Aufspaltung der Balerlinien an deuterierte Wasserstoff (Isotopieaufspaltung) P6.2.1.3 (a) P6.2.1.3

Mehr

7.7 Auflösungsvermögen optischer Geräte und des Auges

7.7 Auflösungsvermögen optischer Geräte und des Auges 7.7 Auflösungsvermögen optischer Geräte und des Auges Beim morgendlichen Zeitung lesen kann ein gesundes menschliche Auge die Buchstaben des Textes einer Zeitung in 50cm Entfernung klar und deutlich wahrnehmen

Mehr

5. Die gelbe Doppellinie der Na-Spektrallampe ist mit dem Gitter (1. und 2. Ordnung) zu messen und mit dem Prisma zu beobachten.

5. Die gelbe Doppellinie der Na-Spektrallampe ist mit dem Gitter (1. und 2. Ordnung) zu messen und mit dem Prisma zu beobachten. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum O Gitter/Prisma Geräte, bei denen man von der spektralen Zerlegung des Lichts (durch Gitter bzw. Prismen) Gebrauch macht, heißen (Gitter-

Mehr

Mechanische Energieerhaltung / Maxwellsches Rad TEP

Mechanische Energieerhaltung / Maxwellsches Rad TEP Verwandte Begriffe Maxwellsches Rad, Translationsenergie, Rotationsenergie, potentielle Energie, Trägheitsmoment, Winkelgeschwindigkeit, Winkelbeschleunigung, Momentangeschwindigkeit, Gyroskop. Prinzip

Mehr

Praktikum I PP Physikalisches Pendel

Praktikum I PP Physikalisches Pendel Praktikum I PP Physikalisches Pendel Hanno Rein Betreuer: Heiko Eitel 16. November 2003 1 Ziel der Versuchsreihe In der Physik lassen sich viele Vorgänge mit Hilfe von Schwingungen beschreiben. Die klassische

Mehr

Optik. Beugung am Spalt, am Steg und an der kreisförmigen Lochblende. LD Handblätter Physik P Bi. Wellenoptik Beugung

Optik. Beugung am Spalt, am Steg und an der kreisförmigen Lochblende. LD Handblätter Physik P Bi. Wellenoptik Beugung Optik Wellenoptik Beugung LD Handblätter Physik P5.3.1.1 Beugung am Spalt, am Steg und an der kreisförmigen Lochblende Versuchsziele Untersuchung der Beugung am Spalt bei verschiedenen Spaltbreiten und

Mehr

Beugung von Laserlicht

Beugung von Laserlicht 1. Aufgaben 1. Mit Hilfe der ist der Spurabstand einer CD zu bestimmen. 2. Die Fraunhofer-Beugung ist zur Bestimmung des Durchmessers einer Lochblende und der Größe von Bärlapp-Pollen einzusetzen. 3. Für

Mehr

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen.

1. Bestimmen Sie die Phasengeschwindigkeit von Ultraschallwellen in Wasser durch Messung der Wellenlänge und Frequenz stehender Wellen. Universität Potsdam Institut für Physik und Astronomie Grundpraktikum 10/015 M Schallwellen Am Beispiel von Ultraschallwellen in Wasser werden Eigenschaften von Longitudinalwellen betrachtet. Im ersten

Mehr

Optik II (Beugungsphänomene)

Optik II (Beugungsphänomene) Optik II (Beugungsphänomene) 1 Wellenoptik 2 1 Interferenz von Wellen, Interferenzversuche 3 Überlagerung von Wellen 4 2 Konstruktive und destruktive Interferenz 5 Beugungsphänomene 6 Bei der Interferenz

Mehr