Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Technische Mechanik III Übung WS 2004 / Klausur Teil 2. Linz, 21. Jänner Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:"

Transkript

1 Technische Mechanik III Übung WS 004 / 005 Klausur Teil Institut für Robotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer Tel.: +43/73/ Fax: +43/73/ Sekretariat: Mag. Martina Mayr / DW 9788 Linz,. Jänner 005 Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: Punkte: / 00 Note: Schreiben Sie Ihre Antworten und Berechnungen nur in die vorgesehenen Kästchen! Falls der Platz nicht ausreichen sollte: Kreuzen Sie an und führen Sie Ihre Rechnung unter Angabe der genauen Aufgabennummer (z.b...) auf der Rückseite der vorherigen Seite weiter. Antworten und Berechnungen, die nicht genau zugeordnet sind, werden für die Beurteilung nicht berücksichtigt!

2 Technische Mechanik III Übung WS 004 / 005. Verkehrsschild (50 Punkte) Gegeben sei ein Verkehrsschild, das aus zwei starren, masselosen Schildern, elastischen Balken und einem kleinen starren Querbalken besteht. Die Verbindung zwischen dem kleinen (nicht beweglichen) Querbalken und dem elastischen Balken sei locker verschraubt, so dass dies als ein Gelenk angesehen werden kann. Für die beiden elastischen Balken soll jeweils ein Ritzansatz verwendet werden. Zusätzlich soll noch eine Kraft auf die jeweiligen Schilder zu berücksichtigen werden (z.b. auf Grund von Wind), die man durch eine resultierende Kraft mit einem Angriffsspunkt in der Mitte annehmen kann. Gewichtskräfte / -potentiale sind zu vernachlässigen. Die Abmessungen und sonstigen Daten seien aus folgenden Bild zu entnehmen. Minimalkoordinaten: qt = (, q ) Trägheitsparameter um die y-achse: I Dichte & Querschnittsfläche: ρ, A Länge unterer Balken: 3L Länge unteres Schild: a Länge oberer Balken: L Länge oberes Schild: a Klausur Teil vom 6. November 004 Seite /

3 Technische Mechanik III Übung WS 004 / Geom. Randbedingungen unterer Balken 3 Punkte Geben Sie die geometrischen Randbedingungen für den unteren Balken an:.. Ritzansatz unterer Balken 3 Punkte Welche sind geeignete Ritzansätze mit w ( x, t) = w( x) q( t) (bitte ankreuzen): Ritzansatz geeignet nicht geeignet x( x L) w = L x ( x L) w = 3 8 L x( L x ) w = 3 0 L.3. Wahl Ritz-Ansatz 3 Punkte Wählen Sie den einfachst möglichen Ansatz aus und berechnen Sie zusätzlich die ersten beiden Ableitungen nach der Ortskoord. x und nach der Zeit w ( x, t), w ''( x, t), w& ( x, ) an: ' t Klausur Teil vom 6. November 004 Seite 3 / 3

4 Technische Mechanik III Übung WS 004 / Kinetische Energie des unteren Balken 6 Punkte Berechnen Sie die Kinetische Energie T des unteren Balkens mit ρa=konst..5. Potentielle Energie des unteren Balkens 6 Punkte Berechnen Sie die Potentielle Energie V des unteren Balkens mit EI=konst. Klausur Teil vom 6. November 004 Seite 4 / 4

5 Technische Mechanik III Übung WS 004 / Geom. Randbedingungen oberer Balken 3 Punkte Geben Sie die geometrischen Randbedingungen für den oberen Balken, im körpereigenen Koordinatensystem ( x, z) an: Beachten Sie, dass die Verbindung zwischen unterem starren Schild und oberen elastischen Balken starr sein soll!!.7. Ritzansatz oberer Balken 3 Punkte Welche sind geeignete Ritzansätze mit w ( x, t) = w( x) q( t) (bitte ankreuzen): Ritzansatz geeignet nicht geeignet x w = L 3 x w 3 8 L w sin( x) = =.8. Wahl Ritz-Ansatz oberer Balken 3 Punkte Wählen Sie den einfachst möglichen Ansatz aus und berechnen Sie die ersten beiden Ableitungen nach der Ortskoord. x und nach der Zeit w ( x, t), w ''( x, t), w& ( x, ) an: ' t Klausur Teil vom 6. November 004 Seite 5 / 5

6 Technische Mechanik III Übung WS 004 / Kinetische Energie des oberen Balken 6 Punkte Berechnen Sie die Kinetische Energie T des oberen Balkens mit ρa=konst. Beachten Sie bitte dabei, dass ein Einfluss von q& ( t ) vorhanden ist: stellen Sie zuerst den Ortsvektor im Inertialkoordinatensystem auf und setzen Sie die Zeitableitung in T = r& T r& dm mit dm = ρadx ein. Beachten Sie beim Aufstellen des Ortsvektors, dass es auf Grund der Linearisierung zu keinen vertikalen Verschiebungen im System kommen kann..0. Potentielle Energie des oberen Balkens 6 Punkte Berechnen Sie die Potentielle Energie V des oberen Balkens mit EI=konst. Klausur Teil vom 6. November 004 Seite 6 / 6

7 Technische Mechanik III Übung WS 004 / Generalisierte Kräfte 8 Punkte Berechnen Sie die generalisierte Kraft Q zufolge der Kraft F, die jeweils auf ein Schild wirkt: Klausur Teil vom 6. November 004 Seite 7 / 7

8 Technische Mechanik III Übung WS 004 / 005. Stabilität und Steuerbarkeit (0 Punkte) Gegeben sind folgende Bewegungsgleichungen der Form M q& + Pq& + Qq = Bu mit 0 u q B =, u =, und 0 q = u q a) M =, P =,, Q = b) M =, P =, und Q = c) M =, P =,. 0 Q = 5.. Stabilitätssätze für mechanische Systeme - Gültigkeit 5 Punkte Bei welcher der obigen Bewegungsgleichungen sind die in der Vorlesung behandelten Stabilitätssätze der Mechanik nicht anwendbar? Begründen Sie Ihre Antwort!.. Stabilitätssätze für mechanische Systeme - Instabilität 5 Punkte Bei welcher der obigen Bewegungsgleichungen können Sie ohne Rechnung sofort Instabilität feststellen? Begründen Sie Ihre Antwort! Klausur Teil vom 6. November 004 Seite 8 / 8

9 Technische Mechanik III Übung WS 004 / Stabilitätssätze für mechanische Systeme - Analyse 0 Punkte Führen Sie die Stabilitätsuntersuchung des verbleibenden Systems mit Hilfe des passenden Stabilitätssatzes der Mechanik durch. Klausur Teil vom 6. November 004 Seite 9 / 9

10 Technische Mechanik III Übung WS 004 / Pendel Linearisieren in der Kinematik (30 Punkte) Gegeben ist folgendes mechanische System (Einzelpendel) bestehend aus Körpern. Das Pendel bewegt sich mit konstanter Geschwindigkeit in positive y Richtung. Am unteren Ende ist über eine Feder ein Torus (Rundkörper) mit dem Freiheitsgrad angebracht (reibungsfrei). Die entspannte Federlänge sei q. Das Motormoment M wirkt direkt auf das Pendel. v 0 y q 0 I M y Iy v 0y g Rundkörper: m, C S s Ix S x q q S k L reibungsfrei Ä Minimalkoordinaten: q T = ( q q ) T Minimalgeschwindigkeiten : q & = ( & & ) S C m T I g = S Trägheitsparameter um die z-achse:, C Massen:, m q q Erdbeschleunigung: ( g 0 0) Federkonstante : k Entspannte Federlänge : q0 Hinweis Taylorreihe : f f x f! x 3 f 3! x 3 ( x) = f ( x + x) = f ( x ) + x + x + x x 0 x x0 Klausur Teil vom 6. November 004 Seite 0 / 0

11 Technische Mechanik III Übung WS 004 / Schwerpunktsgeschwindigkeiten 6 Punkte Berechnen Sie die Schwerpunktsgeschwindigkeitsvektoren, v : v S S 3.. Winkelgeschwindigkeiten Punkte Berechnen Sie die Winkelgeschwindigkeitsvektoren, ω : ωs S Klausur Teil vom 6. November 004 Seite /

12 Technische Mechanik III Übung WS 004 / Taylor Reihen 4 Punkte Geben Sie die Taylor Reihe für sin q und cos q um den Linearisierungspunkt q = 30 an. Linearisieren Sie bis zu der Ordnung, die Sie in weiterer Folge für eine gültige lineare Bewegungsgleichung brauchen. Setzen Sie für x = q. Hinweis: sin ( 30 ) =, ( 30 ) cos = Kinetische Energie T 6 Punkte Geben Sie die kinetische Energie T des Körpers an. Beachten Sie dabei, dass sin ( q) + cos ( q) = gilt, und setzen Sie für die Linearisierung benötigten Größen aus der Taylorreihe (3.3.) ein. Achten Sie auf die Ordnung der Terme, um ein linearisiertes System zu erhalten. Streichen Sie alle Terme, die keine lineare Bewegungsgleichung erzeugen. Klausur Teil vom 6. November 004 Seite /

13 Technische Mechanik III Übung WS 004 / Potentielle Energie 5 Punkte Berechnen Sie die potentielle Energie V des Gesamtsystems, und setzen Sie auch hier wieder die Terme aus der Taylorreihe ein, um ein linearisiertes System zu erhalten Generalisierte Kräfte Punkte Berechnen Sie die generalisierte Kraft zufolge des Moments M : Klausur Teil vom 6. November 004 Seite 3 / 3

14 Technische Mechanik III Übung WS 004 / Lagrange II Berechnen Sie V q T Punkte Geben Sie die Steifigkeitsmatrix K des linearisierten Systems an. Punkte Geben Sie das Haltemoment bzw. die Ruhelage der Feder q an. Punkte M Halt 0 Klausur Teil vom 6. November 004 Seite 4 / 4

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift:

Technische Mechanik III Übung WS 2002 / Klausur Teil 1. Linz, 29. November Name: Vorname: Matrikelnummer: Studienkennzahl: Unterschrift: echnische Mechanik III Übung WS 2002 / 2003 Klausur eil 1 Abteilung für obotik o. Univ.-Prof. Dr.-Ing. Hartmut Bremer el.: +43/732/2468-9786 Fax: +43/732/2468-9792 bremer@mechatronik.uni-linz.ac.at Sekretariat:

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 8 (Austeilung am: 14.09.11, Abgabe am 1.09.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

Probeklausur zur T1 (Klassische Mechanik)

Probeklausur zur T1 (Klassische Mechanik) Probeklausur zur T1 (Klassische Mechanik) WS 006/07 Bearbeitungsdauer: 10 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 8/7/ Name: Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

04/02/13. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Klausur Technische Mechanik C 04/0/ Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen,

Mehr

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise:

06/02/12. Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Prof Dr-Ing Ams Klausur Technische Mechanik C 06/0/1 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel

Mehr

Klausur zur T1 (Klassische Mechanik)

Klausur zur T1 (Klassische Mechanik) Klausur zur T1 (Klassische Mechanik) WS 2006/07 Bearbeitungsdauer: 120 Minuten Prof. Stefan Kehrein Name: Matrikelnummer: Gruppe: Diese Klausur besteht aus vier Aufgaben. In jeder Aufgabe sind 10 Punkte

Mehr

2. Lagrange-Gleichungen

2. Lagrange-Gleichungen 2. Lagrange-Gleichungen Mit dem Prinzip der virtuellen Leistung lassen sich die Bewegungsgleichungen für komplexe Systeme einfach aufstellen. Aus dem Prinzip der virtuellen Leistung lassen sich die Lagrange-Gleichungen

Mehr

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte)

τ 30 N/mm bekannt. N mm N mm Aufgabe 1 (7 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik IIIII Profs. P. Eberhard, M. Hanss WS 114 P 1. Februar 14 Bachelor-Prüfung in Technischer Mechanik IIIII Nachname, Vorname Matr.-Nummer Fachrichtung

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Formalismus und kleinen Schwingungen Jonas Probst 22.09.2009 1 Teilchen auf der Stange Ein Teilchen der Masse m wird durch eine Zwangskraft auf einer masselosen Stange gehalten, auf

Mehr

Klausur Technische Mechanik C

Klausur Technische Mechanik C Klausur Technische Mechanik C 1/2/14 Matrikel: Studiengang: Hinweise: - Die Prüfungszeit beträgt zwei Stunden - Erlaubte Hilfsmittel sind: Formelsammlungen, Deckblätter der Übungsaufgaben und Taschenrechner

Mehr

5. Zustandsgleichung des starren Körpers

5. Zustandsgleichung des starren Körpers 5. Zustandsgleichung des starren Körpers 5.1 Zustandsgleichung 5.2 Körper im Schwerefeld 5.3 Stabilität freier Rotationen 2.5-1 5.1 Zustandsgleichung Zustand: Der Zustand eines starren Körpers ist durch

Mehr

Klassische Experimentalphysik I (Mechanik) (WS 16/17)

Klassische Experimentalphysik I (Mechanik) (WS 16/17) Klassische Experimentalphysik I (Mechanik) (WS 16/17) http://ekpwww.physik.uni-karlsruhe.de/~rwolf/teaching/ws16-17-mechanik.html Klausur 2 Anmerkung: Diese Klausur enthält 9 Aufgaben, davon eine Multiple

Mehr

Dynamik und Regelung Mechanischer Systeme

Dynamik und Regelung Mechanischer Systeme Dynamik und Regelung Mechanischer Systeme Von Priv.-Doz. Dr.-Ing. habil. Hartmut Bremer Technische Universität München Mit 101 Bildern B. G.Teubner Stuttgart 1988 Inhalt s Verzeichnis Vorbemerkung: Der

Mehr

Fallender Stein auf rotierender Erde

Fallender Stein auf rotierender Erde Übungen zu Theoretische Physik I - Mechanik im Sommersemester 2013 Blatt 4 vom 13.05.13 Abgabe: 27. Mai Aufgabe 16 4 Punkte allender Stein auf rotierender Erde Wir lassen einen Stein der Masse m in einen

Mehr

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13

Übungen zur Theoretischen Physik 2 Lösungen zu Blatt 13 Prof. C. Greiner, Dr. H. van Hees Sommersemester 014 Übungen zur Theoretischen Physik Lösungen zu Blatt 13 Aufgabe 51: Massenpunkt auf Kugel (a) Als generalisierte Koordinaten bieten sich Standard-Kugelkoordinaten

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

TECHNISCHE MECHANIK III (DYNAMIK)

TECHNISCHE MECHANIK III (DYNAMIK) Klausur im Fach TECHNISCHE MECHANIK III (DYNAMIK) WS 2014 / 2015 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 2 3 4 Summe Punkte: 15 7 23 15 60 Davon erreicht Bearbeitungszeit: Hilfsmittel:

Mehr

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009

9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 2009 9. Übungsblatt zur VL Einführung in die Klassische Mechanik und Wärmelehre Modul P1a, 1. FS BPh 8. Dezember 009 Aufgabe 9.1: Doppelfeder Eine Kugel wird im Schwerefeld der Erde zwischen zwei Federn mit

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 11/02/14 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt

Mehr

Übung zu Mechanik 4 Seite 28

Übung zu Mechanik 4 Seite 28 Übung zu Mechanik 4 Seite 28 Aufgabe 47 Auf ein Fundament (Masse m), dessen elastische Bettung durch zwei Ersatzfedern dargestellt wird, wirkt die periodische Kraft F(t) = F 0 cos (Ω t). Die seitliche

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 12/13, 13.02.2013 1. Aufgabe: (TM III) Um vom Boden aufzustehen, rutscht ein Mensch mit konstanter Geschwindigkeitv

Mehr

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am )

Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: , Abgabe am ) Übungen Theoretische Physik I (Mechanik) Blatt 7 (Austeilung am: 7.9.11, Abgabe am 14.9.11) Beispiel 1: Stoß in der Ebene [3 Punkte] Betrachten Sie den elastischen Stoß dreier Billiardkugeln A, B und C

Mehr

1. Probe - Klausur zur Vorlesung E1: Mechanik

1. Probe - Klausur zur Vorlesung E1: Mechanik Fakultät für Physik der LMU 27.12.2011 1. Probe - Klausur zur Vorlesung E1: Mechanik Wintersemester 2011/2012 Prof. Dr. Joachim O. Rädler, PD Dr. Bert Nickel und Dr. Frank Jäckel Name:... Vorname:... Matrikelnummer:...

Mehr

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2

() = Aufgabe 1 ( Punkte) Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 2012 P 2 Institut für Technische und Num. Mechanik Technische Mechanik II/III Profs. Eberhard / Seifried SS 212 P 2 BachelorPrüfung in Technischer Mechanik II/III Nachname, Vorname Matr.Nummer Fachrichtung 28.

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab

Blatt Musterlösung Seite 1. Aufgabe 1: Schwingender Stab Seite 1 Aufgabe 1: Schwingender Stab Ein Stahlstab der Länge l = 1 m wird an beiden Enden fest eingespannt. Durch Reiben erzeugt man Eigenschwingungen. Die Frequenz der Grundschwingung betrage f 0 = 250

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Klausur Technische Mechanik 05/08/13 Matrikelnummer: Folgende Angaben sind freiwillig: Name, Vorname: Studiengang: Hinweise: Die Bearbeitungszeit der Klausur beträgt drei Stunden. Die Prüfung umfasst die

Mehr

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte]

Beispiel 1:Der Runge-Lenz Vektor [2 Punkte] Übungen Theoretische Physik I (Mechanik) Blatt 9 (Austeilung am: 1.9.11, Abgabe am 8.9.11) Hinweis: Kommentare zu den Aufgaben sollen die Lösungen illustrieren und ein besseres Verständnis ermöglichen.

Mehr

5. Kritische Drehzahl

5. Kritische Drehzahl Aufgabenstellung: 5. Kritische Drehzahl y y Ω c/4 c/4 m c/4 e z O O S c/4 x Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.5-1 Der starre Körper mit der Masse m dreht sich mit der konstanten Winkelgeschwindigkeit

Mehr

Übungen zu Lagrange-Formalismus und kleinen Schwingungen

Übungen zu Lagrange-Formalismus und kleinen Schwingungen Übungen zu Lagrange-Foralisus und kleinen Schwingungen Jonas Probst.9.9 Teilchen auf der Stange Aufgabe: Ein Teilchen der Masse wird durch eine Zwangskraft auf einer asselosen Stange gehalten, auf der

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 2 - Lösung Technische Universität München 1 Fakultät für Physik 1 Perle Eine Perle der Masse m gleite reibungsfrei auf einem vertikal stehenden Ring vom Radius

Mehr

Das mathematische Pendel

Das mathematische Pendel 1 Das mathematische Pendel A. Krumbholz, S. Effendi 25. Juni 2013 2 Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung 3 1.1 Das mathematische Pendel........................... 3 1.2

Mehr

3. Systeme von starren Körpern

3. Systeme von starren Körpern Systeme von starren Körpern lassen sich folgendermaßen berechnen: Die einzelnen starren Körper werden freigeschnitten. Für jeden einzelnen Körper werden die Bewegungsgleichungen aufgestellt. Die kinematischen

Mehr

F b. Abbildung 1: Fachwerk

F b. Abbildung 1: Fachwerk AUTOMATION & CONTROL INSTITUTE INSTITUT FÜR AUTOMATISIERUNGS- & REGELUNGSTECHNIK VU Modellbildung Übungsbeispiele: Mechanische Systeme Beispiel 1: Fachwerke bezeichnen eine im Bauingenieurwesen oftmals

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten.

KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 17. März 2012 Die Bearbeitungszeit für alle drei Aufgaben beträgt 90 Minuten. KLAUSUR ZUR TECHNISCHEN MECHANIK I Termin: 7. März Die Bearbeitungszeit für alle drei Aufgaben beträgt 9 Minuten. AUFGABE (6 Punkte) Der Stab in Abb. mit l =,5 m ist in gelenkig gelagert und in abgestützt.

Mehr

1. Grundlagen der ebenen Kinematik

1. Grundlagen der ebenen Kinematik Lage: Die Lage eines starren Körpers in der Ebene ist durch die Angabe von zwei Punkten A und P eindeutig festgelegt. Die Lage eines beliebigen Punktes P wird durch Polarkoordinaten bezüglich des Bezugspunktes

Mehr

Klausur Technische Mechanik

Klausur Technische Mechanik Institut für Mechanik und Fluiddynamik Institut für Mechanik und Fluiddynamik Klausur Technische Mechanik 10/02/10 Aufgabe S1 Gegeben ist ein durch eine Pendelstütze und ein Festlager A abgestütztes Fachwerk.

Mehr

Nachklausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Nachklausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Nachklausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Montag, 19.03.2017, 10:00-12:00

Mehr

Rechenübungen zur Physik I im WS 2009/2010

Rechenübungen zur Physik I im WS 2009/2010 Rechenübungen zur Physik I im WS 2009/200. Klausur (Abgabe Di 5.2.09, 0.00 Uhr N7) Name, Vorname: Geburtstag: Ihre Identifizierungs-Nr. (ID ) ist: 22 Hinweise: Studentenausweis: Hilfsmittel: Lösungen:

Mehr

Kinetik des starren Körpers

Kinetik des starren Körpers Technische Mechanik II Kinetik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes 2.

Mehr

Lagrangesche Mechanik. Ari Wugalter 22. September 2009

Lagrangesche Mechanik. Ari Wugalter 22. September 2009 Lagrangesche Mechanik. September 009 Teil II. Lagrangesche Mechanik. Einführung in die Lagrange-Regeln.Art.. Generalisierte Koordinaten, Freiheitsgrade und Zwangsbedingungen In der Newtonschen Mechanik

Mehr

Formelsammlung: Physik I für Naturwissenschaftler

Formelsammlung: Physik I für Naturwissenschaftler Formelsammlung: Physik I für Naturwissenschaftler 1 Was ist Physik? Stand: 13. Dezember 212 Physikalische Größe X = Zahl [X] Einheit SI-Basiseinheiten Mechanik Zeit [t] = 1 s Länge [x] = 1 m Masse [m]

Mehr

Übung zu Mechanik 3 Seite 61

Übung zu Mechanik 3 Seite 61 Übung zu Mechanik 3 Seite 61 ufgabe 105 Ein Massenpunkt om Gewicht G fällt aus der Höhe h auf eine federnd gestützte Masse om Gewicht G. Um welchen etrag h wird die Feder (Federkonstante c) maximal zusammengedrückt

Mehr

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago

Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 2009/10, VO+UE Univ. Prof. Dr. Christoph Dellago Übungen zur Einführung in die Physikalischen Rechenmethoden II WS 009/0, 606 VO+UE Univ Prof Dr Christoph Dellago ) Berechnen Sie cos (06) ohne Verwendung der Winkelfunktionen des Taschenrechners auf 4

Mehr

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann,

Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, Diplomvorprüfung zur Vorlesung Experimentalphysik I Prof. Dr. M. Stutzmann, 09.09. 2004 Bearbeitungszeit: 90 min Umfang: 7 Aufgaben Gesamtpunktzahl: 45 Erklärung: Ich erkläre mich damit einverstanden,

Mehr

Lösung VIII Veröentlicht:

Lösung VIII Veröentlicht: 1 Impulse and Momentum Bei einem Crash-Test kollidiert ein Auto der Masse 2kg mit einer Wand. Die Anfangs- und Endgeschwindigkeit des Autos sind jeweils v = (- 2 m/ s) e x und v f = (6 m/ s) e x. Die Kollision

Mehr

Kinematik des Massenpunktes

Kinematik des Massenpunktes Technische Mechanik II Kinematik des Massenpunktes Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes Eindimensionale

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Probeklausur Physik für Ingenieure 1

Probeklausur Physik für Ingenieure 1 Probeklausur Physik für Ingenieure 1 Othmar Marti, (othmar.marti@physik.uni-ulm.de) 19. 1. 001 Probeklausur für Ingenieurstudenten Prüfungstermin 19. 1. 001, 8:15 bis 9:15 Name Vorname Matrikel-Nummer

Mehr

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern

ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern ERGEBNISSE TECHNISCHE MECHANIK III-IV Lehrstuhl für Technische Mechanik, TU Kaiserslautern WS 16/17, 25.2.217 1. Aufgabe: (TM3) a g y a S v S ϕ x m P A 1111111 1111111 1111 1111 Die abgebildete homogene

Mehr

Wiederholung Physik I - Mechanik

Wiederholung Physik I - Mechanik Universität Siegen Wintersemester 2011/12 Naturwissenschaftlich-Technische Fakultät Prof. Dr. M. Risse, M. Niechciol Department Physik 9. Übungsblatt zur Vorlesung Physik II für Elektrotechnik-Ingenieure

Mehr

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte

Name: Gruppe: Matrikel-Nummer: Aufgabe Punkte T1: Klassische Mechanik, SoSe007 Prof. Dr. Jan von Delft Theresienstr. 37, Zi. 40 Dr. Vitaly N. Golovach vitaly.golovach@physik.lmu.de Nachholklausur zur Vorlesung T1: Theoretische Mechanik, SoSe 007 (8.

Mehr

Klassische Theoretische Physik: Elektrodynamik

Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu Klassische Elektrodynamik 1 Klassische Theoretische Physik: Elektrodynamik Kaustuv Basu (Deutsche Übersetzung: Jens Erler) Argelander-Institut für Astrono mie Auf de m Hügel 71 kbasu@astro.uni-bonn.de

Mehr

Abbildung 1: Atwoodsche Fallmaschine mit Feder

Abbildung 1: Atwoodsche Fallmaschine mit Feder Philipp Landgraf Christina Schindler Ferienkurs Theoretische Mechanik SS 04 Abbildung : Atwoodsche Fallmaschine mit Feder A Probeklausur. Atwoodsche Fallmaschine Die Atwoodsche Fallmaschine besteht aus

Mehr

Ferienkurs Theoretische Mechanik. Lagrangeformalismus

Ferienkurs Theoretische Mechanik. Lagrangeformalismus Ferienkurs Theoretische Mechanik Lagrangeformalismus Sebastian Wild Mittwoch, 14.09.2011 Inhaltsverzeichnis 1 Zwangskräfte und Lagrangegleichungen 1. Art 2 1.1 Motivation, Definition von Zwangsbedingungen..........

Mehr

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme

Ferienkurs Theoretische Mechanik 2009 Hamilton Formalismus und gekoppelte Systeme Fakultät für Physik Technische Universität München Michael Schrapp Übungsblatt 3 Ferienkurs Theoretische Mechanik 009 Hamilton Formalismus und gekoppelte Systeme Hamilton-Mechanik. Aus Doctoral General

Mehr

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1

3. Impuls und Drall. Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik 2.3-1 3. Impuls und Drall Die Integration der Bewegungsgleichung entlang der Bahn führte auf die Begriffe Arbeit und Energie. Die Integration der Bewegungsgleichung bezüglich der Zeit führt auf die Begriffe

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 17. Januar 26 Übungsblatt 9 Lösungsvorschlag 4 Aufgaben,

Mehr

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion

Aufgabe1 EStrich ist Lennard Jones Potential mit Exponentialfunktion Aufgabe EStrich ist Lennard Jones Potential mit Exponentialfunktion Ansatz: Exponentialfunktion mit 3 Variablen einführen: a: Amplitude b:stauchung c:verschiebung_entlang_x_achse EStrich r_, ro_, _ : a

Mehr

Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31

Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31 Universität Regensburg Naturwissenschaftliche Fakultät II Universitätsstraße 31 Bitte Rückseite beachten! D-93053 Regensburg Physik Postfach: D-93040 Regensburg Prof. Dr. A. Penzkofer Telefon (0941) 943-2107

Mehr

Übung zu Mechanik 3 Seite 36

Übung zu Mechanik 3 Seite 36 Übung zu Mechanik 3 Seite 36 Aufgabe 61 Ein Faden, an dem eine Masse m C hängt, wird über eine Rolle mit der Masse m B geführt und auf eine Scheibe A (Masse m A, Radius R A ) gewickelt. Diese Scheibe rollt

Mehr

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06

Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 2005/06 Übungen zu: Theoretische Physik I klassische Mechanik W 2213 Tobias Spranger - Prof. Tom Kirchner WS 25/6 http://www.pt.tu-clausthal.de/qd/teaching.html 16. November 25 Übungsblatt Lösungsvorschlag 3 Aufgaben,

Mehr

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik

4. Drehschwinger. B 2 Schwerpunkt S. c 2 P 2. S P 1 c 1 m, J B 1. Prof. Dr. Wandinger 6. Schwingungen Dynamik c 2 B 2 Schwerpunkt S P 2 S P 1 c 1 m, J O O B 1 Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.4-1 Aufgabenstellung: 4. Drehschwinger Der Drehschwinger besteht aus einem starren Körper, der im Punkt

Mehr

Kinematik des starren Körpers

Kinematik des starren Körpers Technische Mechanik II Kinematik des starren Körpers Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Kinematik des Massenpunktes

Mehr

Technische Mechanik Dynamik

Technische Mechanik Dynamik Hans Albert Richard Manuela Sander Technische Mechanik Dynamik Grundlagen - effektiv und anwendungsnah Mit 135 Abbildungen Viewegs Fachbiicher der Technik vieweg VII VII 1 Fragestellungen der Dynamik 1

Mehr

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau

Klausur Physik 1 (GPH1) am Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 16.5.08 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 ab

Mehr

1. Geradlinige Bewegung

1. Geradlinige Bewegung 1. Geradlinige Bewegung 1.1 Kinematik 1.2 Schwerpunktsatz 1.3 Dynamisches Gleichgewicht 1.4 Arbeit und Energie 1.5 Leistung Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.1-1 1.1 Kinematik Ort: Bei

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte)

Klassische Theoretische Physik I WS 2013/ Komplexe Zahlen ( = 35 Punkte) Karlsruher Institut für Technologie www.tkm.kit.edu/lehre/ Klassische Theoretische Physik I WS 013/014 Prof. Dr. J. Schmalian Blatt 8 Dr. P. P. Orth Abgabe 0.1.013 1. Komplexe Zahlen (5 + 5 + 5 + 5 + 5

Mehr

1 Lagrange-Formalismus

1 Lagrange-Formalismus Lagrange-Formalismus SS 4 In der gestrigen Vorlesung haben wir die Beschreibung eines physikalischen Systems mit Hilfe der Newton schen Axiome kennen gelernt. Oft ist es aber nicht so einfach die Kraftbilanz

Mehr

Grundlagen der Analytischen Mechanik

Grundlagen der Analytischen Mechanik Höhere Technische Mechanik Grundlagen der Analytischen Mechanik Prof. Dr.-Ing. Ulrike Zwiers, M.Sc. Fachbereich Mechatronik und Maschinenbau Hochschule Bochum WS 2009/2010 Übersicht 1. Grundlagen der Analytischen

Mehr

Klausur Physik 1 (GPH1) am 8.7.02

Klausur Physik 1 (GPH1) am 8.7.02 Name, Matrikelnummer: Klausur Physik 1 (GPH1) am 8.7.02 Fachbereich Elektrotechnik und Informatik, Fachbereich Mechatronik und Maschinenbau Zugelassene Hilfsmittel: Beiblätter zur Vorlesung Physik 1 im

Mehr

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper

1. Kinematik. 1.1 Lage 1.2 Geschwindigkeit. Starrkörperdynamik Prof. Dr. Wandinger. 2. Der starre Körper 1. Kinematik 1.1 Lage 1.2 Geschwindigkeit 2.1-1 Aus den Eigenschaften des starren Körpers folgt: Wird an einem beliebigen Punkt B des starren Körpers ein kartesisches Koordinatensystem Bξηζ aufgetragen,

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Lösung zu Übungsblatt 2

Lösung zu Übungsblatt 2 Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Lösung zu Übungsblatt konservative Kräfte, Vielteilchensystee und ausgedehnte Körper 1. Potential der Gravitationskraft

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

Probestudium der Physik 2011/12

Probestudium der Physik 2011/12 Probestudium der Physik 2011/12 Karsten Kruse 2. Mechanische Schwingungen und Wellen - Theoretische Betrachtungen 2.1 Der harmonische Oszillator Wir betrachten eine lineare Feder mit der Ruhelänge l 0.

Mehr

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators

Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Gewöhnliche Differentialgleichungen am Beispiel des harmonischen Oszillators Horst Laschinsky 12. Oktober 1999 Inhaltsverzeichnis 1 Gewöhnliche lineare homogene Differentialgleichungen 2. Ordnung mit konstanten

Mehr

Mechatronische Elemente und Systeme II Teil B

Mechatronische Elemente und Systeme II Teil B Prüfungsklausur im Fach Mechatronische Elemente und Systeme II Teil B 27. Juli 2009 HINWEIS: Die nachfolgenden Klausuraufgaben Mechatronische Elemente und Systeme II Teil B stellen nur die Hälfte der Prüfungsaufgaben

Mehr

Experimentalphysik 1

Experimentalphysik 1 Technische Universität München Fakultät für Physik Ferienkurs Experimentalphysik 1 WS 16/17 Lösung 1 Ronja Berg (ronja.berg@tum.de) Katharina Scheidt (katharina.scheidt@tum.de) Aufgabe 1: Superposition

Mehr

Drehbewegungen. Lerninhalte

Drehbewegungen. Lerninhalte Physik Lerninhalte man informiere sich über: Winkelgeschwindigkeit, Winkelbeschleunigung Drehmoment, Drehimpuls, Drehimpulserhaltung Trägheitsmoment, Steiner scher Satz gleichmäßig beschleunigte Drehbewegung

Mehr

Name: Vorname(n): Kenn und Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte

Name: Vorname(n): Kenn und Matrikelnummer: Aufgabe erreichbare Punkte erreichte Punkte Johannes Kepler Universität Linz, Institut für Regelungstechnik und elektrische Antriebe Schriftliche Prüfung aus Automatisierungstechnik, Vorlesung am 06. Mai 2005 Name: Vorname(n): Kenn und Matrikelnummer:

Mehr

Blatt 6. Schwingungen- Lösungsvorschlag

Blatt 6. Schwingungen- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T1) i SoSe 011 Blatt 6. Schwingungen- Lösungsvorschlag Aufgabe 6.1. Räulicher Oszillator

Mehr

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9

I.1.3 b. (I.7a) I.1 Grundbegriffe der Newton schen Mechanik 9 I. Grundbegriffe der Newton schen Mechanik 9 I..3 b Arbeit einer Kraft Wird die Wirkung einer Kraft über ein Zeitintervall oder genauer über die Strecke, welche das mechanische System in diesem Zeitintervall

Mehr

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes

Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am Universität des Saarlandes Übung Systemtheorie und Regelungstechnik I - WS08/09 Übungstermin 1 am 22.11.2008 Universität des Saarlandes Aufgabe 1.1: Gegeben ist der schematische Aufbau eines Mischers: Auf den Antriebsstrang Antriebsstrang

Mehr

TECHNISCHE MECHANIK A (STATIK)

TECHNISCHE MECHANIK A (STATIK) Probeklausur im Fach TECHNISCHE MECHANIK A (STATIK) Nr. 5 Matrikelnummer: Vorname: Nachname: Ergebnis Klausur Aufgabe: 1 3 4 5 6 Summe Punkte: 31 7,5 17,5 9 10 5 80 Davon erreicht Punkte: Gesamtergebnis

Mehr

1. Bewegungsgleichung

1. Bewegungsgleichung 1. Bewegungsgleichung 1.1 Das Newtonsche Grundgesetz 1.2 Dynamisches Gleichgewicht 1.3 Geführte Bewegung 1.4 Massenpunktsysteme 1.5 Schwerpunktsatz Prof. Dr. Wandinger 2. Kinetik des Massenpunkts Dynamik

Mehr

Rotierende Bezugssysteme

Rotierende Bezugssysteme Rotierende Bezugssysteme David Graß 13.1.1 1 Problematik Fährt ein Auto in eine Kurve, so werden die Innsassen nach außen gedrückt, denn scheinbar wirkt eine Kraft auf die Personen im Innern des Fahrzeuges.

Mehr

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2

Physik für Biologen und Geowissenschaftler 15. Juni Grundlagen 2 SI - Einheiten... 2 Fehlerberechnung... 2 Formelsammlung Physik für Biologen und Geowissenschaftler 15. Juni 2005 Inhaltsverzeichnis 1 Grundlagen 2 SI - Einheiten............................................... 2 Fehlerberechnung.............................................

Mehr

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag

Blatt 10. Hamilton-Formalismus- Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik T) im SoSe 20 Blatt 0. Hamilton-Formalismus- Lösungsvorschlag Aufgabe 0.. Hamilton-Formalismus

Mehr

Übungsaufgaben zur Hamilton-Mechanik

Übungsaufgaben zur Hamilton-Mechanik Übungsaufgaben zur Hamilton-Mechanik Simon Filser 24.9.09 1 Parabelförmiger Draht Auf einem parabelförmig gebogenen Draht (z = ar² = a(x² + y²), a = const), der mit konstanter Winkelgeschwindigkeit ω 0

Mehr

2 Bewegungen ihre Ursachen und Folgen

2 Bewegungen ihre Ursachen und Folgen 2 Bewegungen ihre Ursachen und Folgen Die Dynamik ist die Lehre von den Bewegungen und den Kräften, welche diese Bewegungen hervorrufen. Bevor nun die Bewegungen von Massenpunkten, Massenpunktsystemen

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Bachelorprüfung MM I 2. März Vorname: Name: Matrikelnummer:

Bachelorprüfung MM I 2. März Vorname: Name: Matrikelnummer: Institut für Mechatronische Systeme Prof. Dr.-Ing. S. Rinderknecht Erreichbare Punktzahl: 40 Bearbeitungszeit: 60 Min Prüfung Maschinenelemente & Mechatronik I 2. März 2010 Rechenteil Name: Matr. Nr.:......

Mehr

Übung zu Mechanik 3 Seite 48

Übung zu Mechanik 3 Seite 48 Übung zu Mechanik 3 Seite 48 Aufgabe 81 Vor einer um das Maß f zusammengedrückten und verriegelten Feder mit der Federkonstanten c liegt ein Massenpunkt der Masse m. a) Welchen Wert muß f mindestens haben,

Mehr