Investition und Finanzierung

Größe: px
Ab Seite anzeigen:

Download "Investition und Finanzierung"

Transkript

1 Ivestitio ud Fiazierug - Vorlesug 3 - Prof. Dr. Raier Elsche Prof. Dr. Raier Elsche

2 2.1 Strategiewahl als Ivestitiosobjekt Prof. Dr. Raier Elsche

3 Ivestitiosobjekte eizele Gegestäde des Uterehmugsvermöges Uterehmuge oder Teiluterehmuge strategische Alterative (z.b. ach Asoff) Produktetwicklug Marktetwicklug Marktdurchdrigug Diversifikatio Zurechug aller Zahluge, die durch die Ivestitio i diese Objekte verursacht wurde Prof. Dr. Raier Elsche

4 Klassifikatio vo Etscheidugssituatioe (1) Ja-Nei-Etscheiduge: Etscheiduge, bei dee zwische de Alterative Durchführug oder Uterlassug eier Ivestitio zu wähle ist (2) Auswahletscheiduge: Etscheiduge, bei dee eies vo mehrere Ivestitiosprojekte ausgewählt ud durchgeführt wird (3) Programmetscheiduge: Es geht icht darum, eies vo mehrere Ivestitiosprojekte zu realisiere, soder darum, ei Ivestitiosprogramm aufzustelle. Dieses Programm besteht aus der Agabe der jeweilige Ivestitiosvolumia für die mögliche Ivestitiosprojekte. Prof. Dr. Raier Elsche

5 Ivestitiosetscheidugsprobleme köe sich beziehe auf: Beurteilug eies IO*, für das es keie Alterative gibt Bewertug mehrerer alterativer IO Eizelivestitioe Auswahlprobleme Ersatzprobleme Wa sollte ei im Eisatz befidliches IO ersetzt werde? *IO: Ivestitiosobjekt Prof. Dr. Raier Elsche

6 2.2 Methode der Ivestitiosrechug Prof. Dr. Raier Elsche

7 Ivestitiosrechug bei Sicherheit (1) Zuächst werde Verfahre behadelt, die... bei eifacher ökoomischer Zielsetzug, mit eiwertige Erwartuge (Sicherheit) i.d.r. uvollstädig (z.b. ohe Steuer) eie isolierte Eizelfalletscheidug uterstütze. Prof. Dr. Raier Elsche

8 Ivestitiosrechug bei Sicherheit (2) statische Verfahre dyamische Verfahre zeitpuktbezogee Methode: Kapitalwertmethode Edwertmethode Zeitwertmethode Kostevergleichsrechug Gewivergleichsrechug Retabilitätsrechug Amortisatiosrechug zeitraumbezogee Methode: Itere-Zisfuß-Methode Auitätemethode Prof. Dr. Raier Elsche

9 Statische Ivestitiosrecheverfahre Gemeisamkeite: uzureichede Erfassug vo Ziswirkuge fast immer Betrachtug eier repräsetative Durchschittsperiode statische Verfahre arbeite mit periodisierte Größe Verfahre: Kostevergleichsrechug Gewivergleichsrechug Retabilitätsvergleichsrechug Amortisatiosrechug Prof. Dr. Raier Elsche

10 Das Etscheidugsproblem Typ A Typ B (1) Aschaffugskoste A , ,- (2) Wirtschaftliche Nutzugsdauer 6 Jahre 3 Jahre (3) Maximale Leistugsabgabe p.a. x max Stk Stk. (4) Zahlugswirksame Fixkoste p.a. K f 2.500, ,- (5) Variable Koste pro Stück k v 1,20 1,30 (6) Erlöse pro Stück p 3,60 3,40 (7) Restwert ach Jahre RW , ,- Erwartete Absatzzahle 1. Jahr 2. Jahr 3. Jahr 4. Jahr 5. Jahr 6. Jahr (8) Kalkulatioszissatz (KZF) i 10 % Soll das Produkt produziert werde ud ggf. welche Maschie soll ageschafft werde? Prof. Dr. Raier Elsche

11 Kostevergleichsrechug Etscheidugsgröße: -Gesamtkoste pro Periode (K) -Gesamtkoste pro Stück (k = K / X) Etscheidugsregel: K Mi bzw. k Mi Für das Beispiel ergibt sich: Typ A Typ B (9) Absatz pro Periode X , ,00 (10) Kalk. Abschreibuge Ab , ,67 (11) Kalk. Zise (i* KB) Z , ,00 (4) sost. Fixkoste K f 2.500, ,00 (12) Fixkoste p.a , ,67 (13) variable Koste p.a , ,00 (14) Gesamtkoste p.a. K , ,67 (15) Stückkoste k 3,31 3,12 Prof. Dr. Raier Elsche

12 Kapitalbidug ud Abschreibug Ab 1 (A) = A 0 (A) Aahme: Abschreibug = Tilgug KB (A) = A 0 (A) 3 Ab(A) = KB (B) = A 0 (B) 1,5 Ab(B) = A 0 (B) Ab 1 (B) = RW (A) = RW (B) = ,5 3 6 Ab A o RW Ao RW KB oder KB Ao Ab 2 2 Z i KB Prof. Dr. Raier Elsche

13 Kapitalbidug: kotiuierliche Kapitalbidugsreduktio A 0 GE A 0 L 2 L A 0 2 L A 0 2 L L L : Liquidatioserlös am Ede der Projektlebesdauer t Prof. Dr. Raier Elsche

14 Kapitalbidug: bei Rückflüsse zum Periodeede A 0 A ( 1) L L A 0 0 L 2 L A 2 L L 2 1 t Prof. Dr. Raier Elsche

15 Awedugsmöglichkeite awedbar, we Erträge irrelevat sid (Laptopkauf) oder für die betrachtete Ivestitiosalterative midestes als gleich azusetze sid gemäß Olfert z.b. bei Ratioalisierugsivestitioe awedbar auch bei Ersatzivestitioe, die die Leistugsfähigkeit der zu ersetzede Maschie aimmt Prof. Dr. Raier Elsche

16 Beurteilug der Kostevergleichsrechug Die Kostevergleichsrechug verlagt idetische Erlöse der verglichee Alterative (hier sowohl bei Gesamtkoste- als auch bei Stückkostebetrachtug icht gegebe). Zeitliche Uterschiede i der Plaugsperiode (=Nutzugsdauer) bzw. i der Verteilug der Koste über die Zeit werde icht beachtet. Vielzahl vo implizite Prämisse durch die Durchschittsbildug, isbesodere bei de kalkulatorische Koste Eie Etscheidug, ob der eue Markt überhaupt bediet werde soll, ist icht möglich (Verachlässigug der Erlöse). Prof. Dr. Raier Elsche

17 Gewivergleichsrechug Etscheidugsgröße: - Gewi pro Periode (G) - Gewi pro Stück (g ) Etscheidugsregel: G Max bzw. g Max Für das Beispiel ergibt sich: Typ A Typ B (16) Erlöse p.a. (p*x) , ,00 (14) Koste p.a. K , ,67 (17) Gewi p.a. (16)-(14) , ,33 (6) Erlöse pro Stück p 3,60 3,40 (15) Stückkoste k 3,31 3,12 (18) Stückgewi (6)-(15) 0,29 0,28 Prof. Dr. Raier Elsche

18 Beurteilug der Gewivergleichsrechug Die Gewivergleichsrechug verlagt gleiche Laufzeit der Alterative (hier icht gegebe: Typ A: 6 Jahre, Typ B: 3 Jahre). Zeitliche Uterschiede i der Plaugsperiode (=Nutzugsdauer) bzw. i der Verteilug der Koste über die Zeit werde icht beachtet. Vielzahl vo implizite Prämisse durch die Durchschittsbildug, isbesodere bei de kalkulatorische Koste Die uterschiedliche Kapitalbidug wird ur aäherd durch kalkulatorische Zise erfasst. Prof. Dr. Raier Elsche

19 Literaturhiweise zu Vorlesug 3 Bleis, C.: Grudlage Ivestitio ud Fiazierug, Müche, Blohm, H. / Lüder, K.: Ivestitio, 10. Aufl., Müche Götze, U.: Ivestitiosrechug, 6. Aufl., Berli et al Kruschwitz, L.: Ivestitiosrechug, 13. Aufl., Müche Olfert, K. / Reichel, C.: Ivestitio, 11. Aufl., Ludwigshafe, Perrido, L. / Steier, M.: Fiazwirtschaft der Uterehmug, 16. Aufl., Müche Prof. Dr. Raier Elsche

Investitionsentscheidungsrechnung Annuitäten Methode

Investitionsentscheidungsrechnung Annuitäten Methode Mit Hilfe der köe folgede Ivestitioe beurteilt werde: eizele Ivestitioe alterative Ivestitiosobjekte optimale Ersatzzeitpukte Seite 1 Folgeder Zusammehag besteht zwische der Kapitalbarwertmethode ud der

Mehr

Investition und Finanzierung

Investition und Finanzierung Investition und Finanzierung - Vorlesung 3 29.10.2013 - Prof. Dr. Rainer Elschen Prof. Dr. Rainer Elschen - 37 - 2.1 Strategiewahl als Investitionsobjekt Prof. Dr. Rainer Elschen - 38 - Investitionsobjekte

Mehr

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10.

Aufgabe 1. Die Abschreibungen erfolgen linear. Der Kalkulationszinssatz beträgt i = 0,10. Aufgabe Der Vechtaer Esse auf Räder -Service beötigt eie eue Küche zur Zubereitug der Mahlzeite. Sie köe zwische de Modelle A ud B wähle. Die Eiahme durch die Auslieferug der Esse sid uabhägig davo, welche

Mehr

Übungsaufgaben zur Investitionsrechnung

Übungsaufgaben zur Investitionsrechnung Übugsaufgabe zur Ivestitiosrechug Übugsaufgabe (Statische Ivestitiosrechug): Ihre Uterehmug plat die Aschaffug eier eue Maschie. Zur Wahl stehe die beide Alterative A ud B. Folgede Date sid für die beide

Mehr

Investitions- und Wirtschaftlichkeitsrechnung. Investitionsrechnungsmodelle bei Sicherheit. Kapitalwertmethode. Kostenvergleich

Investitions- und Wirtschaftlichkeitsrechnung. Investitionsrechnungsmodelle bei Sicherheit. Kapitalwertmethode. Kostenvergleich Ivestitiosrechugsmodelle bei Sicherheit Notwedige Formel fide Sie i der Formelsammlug (Dowload) Ivestitios- ud Statische Verfahre (Eiperiodemodelle) Dyamische Verfahre (Mehrperiodemodelle) Kostevergleich

Mehr

Lerneinheit 2: Grundlagen der Investition und Finanzierung

Lerneinheit 2: Grundlagen der Investition und Finanzierung Lereiheit 2: Grudlage der Ivestitio ud Fiazierug 1 Abgrezug zu de statische Verfahre Durchschittsbetrachtug wird aufgegebe Zeitpukt der Zahlugsmittelbewegug explizit berücksichtigt exakte Erfassug der

Mehr

Dynamische Investitionsrechnung

Dynamische Investitionsrechnung Fiazierug (Mitschrifte aus Vorlesuge a der FH Merseburg/ Feiiger) Dyamische Ivestitiosrechug - berücksichtigt mehrere oder alle Ivestitioe eier Periode (bei statisch wird ur mit eier Periode gerechet,

Mehr

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor.

Investitionsausgabe (Zeitpunkt t 0 ): Für einen Gewerbebetrieb ist - wie bei einem optierenden Betrieb - die MwSt kein Kostenfaktor. - 12 - Aufgabe 3: (50 Pukte) Dyamische Ivestitiosrechug 1. Ivestitiosrechug 1.1 Kalkulatioszissatz: Gewichteter Mittelwert vo Fremd- ud Eigekapitalkoste: Für das Eigekapital würde der Ivestor als alterative

Mehr

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung

Prof. Dr.-Ing. Bernd Kochendörfer. Bauwirtschaft und Baubetrieb. Investitionsrechnung ud Baubetrieb A Ivestitiosrechug ud Baubetrieb Ivestitiosbegriff Bilazorietierter Ivestitiosbegriff Umwadlug vo Geldkapital i adere Forme vo Vermöge Aktiva Passiva Zahlugsorietierter Ivestitiosbegriff

Mehr

Klausur Grundlagen der Investition und Finanzierung

Klausur Grundlagen der Investition und Finanzierung Fachhochschule Bochum /Fachhochschule Müster /Fachhochschule Südwestfale (Weiterbildeder) Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. Wolfgag Hufagel / Prof. Dr. Wifried Rimmele/ Fachhochschule

Mehr

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung

Planen und Organisieren von Arbeitsabläufen. Kostenrechnung osterechug Bei der Vorkalkulatio werde die eies Erzeugisses vor der Herstellug ermittelt. Sie ist Grudlage für ei Preisagebot. Die Nachkalkulatio wird ach der Herstellug eies Erzeugisses durchgeführt.

Mehr

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung

Die grundsätzlichen Aufgaben der Investitionsrechnung Unterschiedliche Verfahren der Investitionsrechnung 2 Ivestitio 2.1 Grudlage der Ivestitiosrechug Lerziele Dieses Kapitel vermittelt: Die grudsätzliche Aufgabe der Ivestitiosrechug Uterschiedliche Verfahre der Ivestitiosrechug 2.1.1 Ivestitiosbegriffe ud

Mehr

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren

1.1 Berechnung des Endwerts einer Einmalanlage bei linearer ganzjähriger Verzinsung nach n Verzinsungsjahren Forelsalug zur Fiazatheatik 1. Eifache Zisrechug (lieare Verzisug) 1.1 Berechug des Edwerts eier Eialalage bei liearer gazjähriger Verzisug ach Verzisugsjahre p = 1 + = ( 1+ i ) 1 1.2 Berechug des Gegewartswerts

Mehr

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09

Mathematik. Vorlesung im Bachelor-Studiengang Business Administration (Modul BWL 1A) an der FH Düsseldorf im Wintersemester 2008/09 Mathematik Vorlesug im Bachelor-Studiegag Busiess Admiistratio (Modul BWL A) a der FH Düsseldorf im Witersemester 2008/09 Dozet: Dr. Christia Kölle Teil I Fiazmathematik, Lieare Algebra, Lieare Optimierug

Mehr

Finanzmathematische Formeln und Tabellen

Finanzmathematische Formeln und Tabellen Jui 2008 Dipl.-Betriebswirt Riccardo Fischer Fiazmathematische Formel ud Tabelle Arbeitshilfe für Ausbildug, Studium ud Prüfug im Fach Fiaz- ud Ivestitiosrechug Dieses Werk, eischließlich aller seier Teile,

Mehr

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung

Beurteilung des Businessplans zur Tragfähigkeitsbescheinigung Fachkudige Stellugahme Beurteilug des Busiessplas zur Tragfähigkeitsbescheiigug Name Datum Has Musterma 7. Oktober 2015 Wilfried Orth Grüdugsberatug Stadort Würzburg: Stadort Stuttgart: Waldleite 9a Möhriger

Mehr

Methodische Grundlagen der Kostenkalkulation

Methodische Grundlagen der Kostenkalkulation Methodische Grudlage der Kostekalkulatio Plaugsebee Gebrauchsgüter Die i der ladwirtschaftliche Produktio eigesetzte Produktiosmittel werde i Gebrauchsgüter ud Verbrauchsgüter uterteilt. Zu de Gebrauchsgüter

Mehr

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Klausurenskript Finanzmathematik Prof. Dr. Güter Hellig lausureskript Fiazatheatik Ihalt: lausur vo WS 9/. Eifache Zise: Vorschüssigkeit ud Nachschüssigkeit. Reterechug: Reteedwert ud Retebarwert 3. Tilgugsrechug: Tilgugspla bei Ratetilgug

Mehr

Einführung in die Investitionsrechnung

Einführung in die Investitionsrechnung Eiführug i die Ivestitiosrechug Geld ud / oder Zeit Frage: Wie viel ist mei Geld morge wert? Wie viel muss ma jährlich zahle, um i Jahre eie bestimmte Betrag gespart zu habe? Wie lage muss bei eiem gegebee

Mehr

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule

BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Handelsschule BERUFSKOLLEG KAUFMÄNNISCHE SCHULEN DES KREISES DÜREN Zweijährige Höhere Hadelsschule Abschlussprüfug Sommer Fach: MATHEMATIK Bearbeitugszeit: Erlaubte Hilfsmittel: Zeitstude Nicht-programmierbarer Tascherecher

Mehr

Investitionsrechnung: Übungsserie I

Investitionsrechnung: Übungsserie I Thema Dokumetart Ivestitiosrechug: Übugsserie I Lösuge Theorie im Buch "Itegrale Betriebswirtschaftslehre" Teil: Kapitel: D1 Fiazmaagemet 3 Ivestitio Ivestitiosrechug: Übugsserie I Aufgabe 1 Die BAU AG

Mehr

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield

Aufgabenblatt 4. A1. Definitionen. Lösungen. Zins = Rate Zinskurve = Zinsstruktur Rendite = Yield Augabeblatt 4 Lösuge A. Deiitioe Zis = Rate Ziskurve = Zisstruktur Redite = Yield A. Deiitioe Zerobod = Nullkupoaleihe = Zero coupo bod Aleihe, die vor Ede der Lauzeit keie Zahluge leistet ud am Ede der

Mehr

Klausur Grundlagen der Investition und Finanzierung Neue DPO

Klausur Grundlagen der Investition und Finanzierung Neue DPO Istitut für Verbudstudie der Fachhochschule Nordrhei-Westfales IV NRW Verbudstudiegag Techische Betriebswirtschaft Prof. Dr. W. Hufagel / Prof. Dr. Wifried Rimmele Fachhochschule Bochum Hochschule für

Mehr

Aufgabe 2 : (Programmplanung II; Investitionsrechnung) (60 Punkte)

Aufgabe 2 : (Programmplanung II; Investitionsrechnung) (60 Punkte) 4 Aufgabe 2 : (Programmplaug II; Ivestitiosrechug) (6 Pukte) Ei Nebeerwerbsladwirt ud seie mitarbeitede Ehefrau möchte ihre erhebliche Arbeitsbelastug durch Aufgebe der Milchviehhaltug verriger ud als

Mehr

Bewertung von Anleihen

Bewertung von Anleihen Bewertug vo Aleihe Arithmetik der Aleihebewertug: Überblick Zerobods ud Koupoaleihe Ziskurve: Spot Zise ud Yield to Maturity Day cout Kovetioe Replikatio ud Arbitrage Forward Zise Yield ud ex post realisierte

Mehr

52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! 13,0 MaxiRend Control 23 ZEICHNUNGSFRIST: 19.02. BIS 16.03.2007

52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! 13,0 MaxiRend Control 23 ZEICHNUNGSFRIST: 19.02. BIS 16.03.2007 QUALITÄT ZAHLT SICH AUS. 13,0 MaxiRed Cotrol 23 52 % * ERTRAGS- CHANCE STEIGEN SIE AUF! * Effektive Redite: 9,81 % p. a. uter Berücksichtigug des Ausgabeaufschlages (Aahme: Zahlug des Bous vo 52 % am Ede

Mehr

3. Tilgungsrechnung. 3.1. Tilgungsarten

3. Tilgungsrechnung. 3.1. Tilgungsarten schreier@math.tu-freiberg.de 03731) 39 2261 3. Tilgugsrechug Die Tilgugsrechug beschäftigt sich mit der Rückzahlug vo Kredite, Darlehe ud Hypotheke. Dabei erwartet der Gläubiger, daß der Schulder seie

Mehr

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel:

= T. 1.1. Jährliche Ratentilgung. 1.1. Jährliche Ratentilgung. Ausgangspunkt: Beispiel: E Tilgugsrechug.. Jährliche Raeilgug Ausgagspuk: Bei Raeilgug wird die chuldsumme (Newer des Kredis [Aleihe, Hypohek, Darleh]) i gleiche Teilberäge T geilg. Die Tilgugsrae läss sich ermiel als: T =.. Jährliche

Mehr

Dynamisches Programmieren Stand

Dynamisches Programmieren Stand Dyamisches Programmiere Stad Stad der Dige: Dyamische Programmierug vermeidet Mehrfachberechug vo Zwischeergebisse Bei Rekursio eisetzbar Häufig eifache bottom-up Implemetierug möglich Das Subset Sum Problem:

Mehr

Finanzmathematik für HAK

Finanzmathematik für HAK Fiazmathematik für HAK Dr.Mafred Gurter 2008. Kapitalverzisug bei der Bak mit lieare (eifache) Zise währed des Jahres Beispiel : Ei Kapital vo 3000 wird mit 5% für 250 Tage verzist. Wie viel bekommt ma

Mehr

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist.

Unendliche Folge Eine Folge heißt unendlich, wenn die Anzahl der Glieder unbegrenzt ist. . Folge ud Reihe.... Folge..... Grudlage.....2 Arithmetische Folge... 2..3 Geometrische Folge... 2.2 Reihe... 2.2. Grudlage... 2.2.2 Arithmetische Reihe... 2.2.3 Geometrische Reihe... 3.3 Eiige spezielle

Mehr

Factoring. Alternative zur Bankfinanzierung?

Factoring. Alternative zur Bankfinanzierung? Factorig Alterative zur Bakfiazierug? Beschreibug Factorig Im Factorigverfahre schließ e Uterehme ud Factor eie Vertrag, auf desse Grudlage alle kü ftige Forderuge des Uterehmes laufed gekauft werde. Zuvor

Mehr

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II

Übungen zur Klausur Nr. 2: Wahrscheinlichkeitsrechnung II Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe II mit gymasialer Oberstufe ud Fachschule - staatlich aerkat - Kurslehrer: Lagebach Berufskolleg Marieschule Lippstadt Schule der Sekudarstufe

Mehr

Finanzwirtschaftliche Formeln

Finanzwirtschaftliche Formeln Bueffelcoach Olie Service Bilazbuchhalter Übersichte Fiazwirtschaft Fiazwirtschaftliche Formel AuF Aufzisugsfaktor ( 1+ i) Zist eie heutige Wert mit Zis ud Ziseszis für Jahre auf, hilft also bei der Frage,

Mehr

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222

Korrekturrichtlinie zur Studienleistung Wirtschaftsmathematik am 22.12.2007 Betriebswirtschaft BB-WMT-S11-071222 Korrekturrichtliie zur Studieleistug Wirtschaftsmathematik am..007 Betriebswirtschaft BB-WMT-S-07 Für die Bewertug ud Abgabe der Studieleistug sid folgede Hiweise verbidlich: Die Vergabe der Pukte ehme

Mehr

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge

Beispiel 4 (Die Urne zu Fall 4 mit Zurücklegen und ohne Beachten der Reihenfolge ) das Sitzplatzproblem (Kombinationen mit Wiederholung) Reihenfolge 1 Beispiel 4 (Die Ure zu Fall 4 mit Zurücklege ud ohe Beachte der Reihefolge ) das Sitzplatzproblem (Kombiatioe mit Wiederholug) 1. Übersicht Ziehugsmodus ohe Zurücklege des gezogee Loses mit Zurücklege

Mehr

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie

Übungen Abgabetermin: Freitag, , 10 Uhr THEMEN: Testtheorie Uiversität Müster Istitut für Mathematische Statistik Stochastik WS 203/204, Blatt Löwe/Heusel Aufgabe (4 Pukte) Übuge Abgabetermi: Freitag, 24.0.204, 0 Uhr THEMEN: Testtheorie Die Sollstärke der Rohrwäde

Mehr

Lösungen zu Kontrollfragen

Lösungen zu Kontrollfragen Lehrstuhl für Fiazwirtschaft Lösuge zu Kotrollfrage Fiazwirtschaft Prof. Dr. Thorste Poddig Fachbereich 7: Wirtschaftswisseschaft 2 Forme der Fremdfiazierug (Kapitel 6) Allgemeier Überblick 89. Ma ka die

Mehr

17. Kapitel: Die Investitionsplanung

17. Kapitel: Die Investitionsplanung ABWL 17. Kapiel: Die Ivesiiosplaug 1 17. Kapiel: Die Ivesiiosplaug Leifrage des Kapiels: Welche Type vo Ivesiiosobjeke gib es? Wie läss sich die Voreilhafigkei eies Ivesiiosobjeks fesselle? Wie ka aus

Mehr

Dritter Zirkelbrief: Ungleichungen

Dritter Zirkelbrief: Ungleichungen Matheschülerzirkel Uiversität Augsburg Schuljahr 014/015 Dritter Zirkelbrief: Ugleichuge Ihaltsverzeichis 1 Grudlage vo Ugleichuge 1 Löse vo Ugleichuge 3 3 Mittel 4 4 Mittelugleichuge 5 5 Umordugsugleichug

Mehr

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien?

1. Ein Kapital von 5000 ist zu 6,5% und ein Kapital von 4500 zu 7% auf 12 Jahre angelegt. Wie groß ist der Unterschied der Endkapitalien? Fiazmathematik Aufgabesammlug. Ei Kapital vo 5000 ist zu 6,5% ud ei Kapital vo 4500 zu 7% auf 2 Jahre agelegt. Wie groß ist der Uterschied der Edkapitalie? 2. Wa erreicht ei Kapital eie höhere Edwert,

Mehr

Investitionsrechnung

Investitionsrechnung Ivestitiosrechug Gliederug: 1. Grudlage der Ivestitiosrechug 2. Statistische Ivestitiosrechug 3. Dyamische Ivestitiosrechug 4. Ivestitiosetscheiduge mit Gewisteuer 5. Ivestitiosetscheiduge uter Usicherheit

Mehr

Übungsblatt 1 zur Vorlesung Angewandte Stochastik

Übungsblatt 1 zur Vorlesung Angewandte Stochastik Dr Christoph Luchsiger Übugsblatt 1 zur Vorlesug Agewadte Stochastik Repetitio WT Herausgabe des Übugsblattes: Woche 9, Abgabe der Lösuge: Woche 1 (bis Freitag, 1615 Uhr), Rückgabe ud Besprechug: Woche

Mehr

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation

Fachartikel CVM-NET4+ Erfüllt die Energieeffizienz- Richtlinie. Neuer Multikanal-Leistungs- und Verbrauchsanalyser Aktuelle Situation 1 Joatha Azañó Fachartikel Abteilug Eergiemaagemet ud etzqualität CVM-ET4+ Erfüllt die Eergieeffiziez- Richtliie euer Multikaal-Leistugs- ud Verbrauchsaalyser Aktuelle Situatio Die gegewärtige Richtliie

Mehr

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen

WS 2000/2001. zeitanteiliger nomineller Jahreszinssatz für eine unterjährige Verzinsungsperiode bei einfachen Zinsen Aufgabe 1: WS 2000/2001 Aufgabe 1: (4 P (4 Pukte) Gebe Sie die Formel zur Bestimmug des relative sowie des koforme Zissatzes a ud erläuter Sie die Uterschiede bzw. Gemeisamkeite der beide Zisfüße. Lösug:

Mehr

Testen statistischer Hypothesen

Testen statistischer Hypothesen Kapitel 9 Teste statistischer Hypothese 9.1 Eiführug, Sigifiaztests Sigifiaztest für µ bei der ormalverteilug bei beatem σ = : X i seie uabhägig ud µ, ) verteilt, µ sei ubeat. Stelle eie Hypothese über

Mehr

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i

Ausgangspunkt: Über einen endlichen Zeitraum wird aus einem Kapital (Rentenbarwert RBW v n,i D. Reterechug 1.1. Jährliche Retezahluge 1.1.1. Vorschüssige Retezahluge Ausgagspukt: Über eie edliche Zeitraum wird aus eiem Kapital (Retebarwert RBW v,i ), das ziseszislich agelegt ist, jeweils zu Begi

Mehr

Beurteilende Statistik - Testen von Hypothesen Alternativtest

Beurteilende Statistik - Testen von Hypothesen Alternativtest Moika Kobel 26.03.2005 Hypothesetest_i.mcd Beurteilede Statistik - Teste vo Hypothese Alterativtest Bsp.: Eie Fabrik liefert Schachtel mit Schraube hoher Qualität ( 10% der Schraube sid fehlerhaft ) ud

Mehr

PrivatKredit. Direkt ans Ziel Ihrer Wünsche

PrivatKredit. Direkt ans Ziel Ihrer Wünsche PrivatKredit Direkt as Ziel Ihrer Wüsche Erlebe Sie eue Freiräume. Leiste Sie sich, was Ihe wichtig ist. Sie träume scho seit lagem vo eier eue Aschaffug, wie z. B.: eiem eue Auto eue Möbel Oder es stehe

Mehr

Finanzmathematik. = K 0 (1+i) n = K 0 q n

Finanzmathematik. = K 0 (1+i) n = K 0 q n Fiazmathematik 1. Kapitalverzisug: Beispiel 1: Ei Kapital vo 3000 wird mit 5% verzist. Wie viel bekommt ma am Ede eies Jahres samt Zise? Die Zise Z werde so berechet: Z = K 0 p/100 = 3000 5/100 = 0. Das

Mehr

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek

Unternehmensbewertung und Aktienanalyse von Karina Liebenstein & Bartholomäus Fietzek Uterehmesbewertug ud Aktieaalyse vo Karia Liebestei & Bartholomäus Fietzek Uterehmesbewertug Es gibt kei allgemei verbidliches Verfahre, soder eie Vielzahl vo Methode Sie diee zur Bewertug vo Uterehme

Mehr

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß

Investitionsund Finanzierungsplanung mittels Kapitalwertmethode, Interner Zinsfuß Ivesiiosud Fiazierugsplaug miels Kapialwermehode, Ierer Zisfuß Bearbeie vo Fraka Frid, Chrisi Klegel WI. Aufgabe: Eie geplae Ivesiio mi Aschaffugsausgabe vo.,- läss jeweils zum Jahresede die folgede Eiahme

Mehr

Aktueller Status hinsichtlich der angekündigten Kursgewinnsteuer

Aktueller Status hinsichtlich der angekündigten Kursgewinnsteuer ÄNDERUNGEN IM JAHR 2011 Aktueller Status hisichtlich der ageküdigte Kursgewisteuer Abei möchte wir Sie über wesetliche Ihalte aus der Regierugsvorlage Budgetbegleitgesetz 2011-2014 vom 30.11.2010 zur Kursgewibesteuerug

Mehr

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen:

n 1,n 2,n 3,...,n k in der Stichprobe auftreten. Für die absolute Häufigkeit können wir auch die relative Häufigkeit einsetzen: 61 6.2 Grudlage der mathematische Statistik 6.2.1 Eiführug i die mathematische Statistik I der mathematische Statistik behadel wir Masseerscheiuge. Wir habe es deshalb im Regelfall mit eier große Zahl

Mehr

Internet-Zahlungsverfahren aus Sicht der Händler: Ergebnisse der Umfrage IZH5

Internet-Zahlungsverfahren aus Sicht der Händler: Ergebnisse der Umfrage IZH5 Iteret- aus Sicht der Hädler: Ergebisse der Umfrage IZH5 Vorab-Kurzauswertug ausgewählter Aspekte Dezember 2009 1 Gegestad ud ausgewählte Ergebisse der Studie Mit der aktuelle füfte Umfragewelle zum Thema

Mehr

4 Wirtschaftlichkeitsrechnungen

4 Wirtschaftlichkeitsrechnungen Wirtschaftlichkeitsrechuge 59 4 Wirtschaftlichkeitsrechuge Der gelegetlich vertretee Auffassug, dass sich die klassische Verfahre der Ivestitiosrechug gar icht oder ur uter Eischräkuge für (die Plaug vo)

Mehr

Die Instrumente des Personalmanagements

Die Instrumente des Personalmanagements 15 2 Die Istrumete des Persoalmaagemets Zur Lerorietierug Sie solle i der Lage sei:! die Ziele, Asätze ud Grüde eier systematische Persoalplaug darzulege;! die Istrumete der Persoalplaug zu differeziere;!

Mehr

Solvency II Bewertungen, Vorbereitungen und Erwartungen deutscher Versicherungen und Pensionskassen. Studie Oktober 2012

Solvency II Bewertungen, Vorbereitungen und Erwartungen deutscher Versicherungen und Pensionskassen. Studie Oktober 2012 Solvecy II Bewertuge, Vorbereituge ud Erwartuge deutscher Versicheruge ud Pesioskasse Studie Oktober 2012 2 Eiordug der Studie Utersuchugssteckbrief Zielsetzug - Die Studie utersucht mit Blick auf Solvecy

Mehr

15.4 Diskrete Zufallsvariablen

15.4 Diskrete Zufallsvariablen .4 Diskrete Zufallsvariable Vo besoderem Iteresse sid Zufallsexperimete, bei dee die Ergebismege aus reelle Zahle besteht bzw. jedem Elemetarereigis eie reelle Zahl zugeordet werde ka. Solche Zufallsexperimet

Mehr

Lektion II Grundlagen der Kryptologie

Lektion II Grundlagen der Kryptologie Lektio II Grudlage der Kryptologie Klassische Algorithme Ihalt Lektio II Grudbegriffe Kryptologie Kryptographische Systeme Traspositioschiffre Substitutioschiffre Kryptoaalyse Übuge Vorlesug Datesicherheit

Mehr

Wirtschaftsmathematik

Wirtschaftsmathematik Studiegag Betriebswirtschaft Fach Wirtschaftsmathematik Art der Leistug Studieleistug Klausur-Kz. BW-WMT-S1 040508 Datum 08.05.004 Bezüglich der Afertigug Ihrer Arbeit sid folgede Hiweise verbidlich: Verwede

Mehr

Investition und Finanzierung

Investition und Finanzierung Ivestitio ud Fiazierug - Vorlesug 11 - Prof. Dr. Raier Elsche Prof. Dr. Raier Elsche - 186 - Eiheitskursfeststellug Kursfeststellug ach dem Meistausführugsprizip durch Börsemakler. Kaufaufträge Verkaufsaufträge

Mehr

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung)

3 Die Außenfinanzierung durch Fremdkapital (Kreditfinanzierung) 3 Die Außefiazierug durch Fremdkapital (Kreditfiazierug) 3.1 Die Charakteristika ud Forme der Kreditfiazierug Aufgabe 3.1: Idealtypische Eigeschafte vo Eige- ud Fremdkapital Stelle Sie die idealtypische

Mehr

s n =a 1 1 qn 1 q Für unendliche Reihen mit q 1 gilt: s=a 1

s n =a 1 1 qn 1 q Für unendliche Reihen mit q 1 gilt: s=a 1 Fiazmathematik Folge Arithmetische Geometrische Rekursiosformel a 1 =a d a 1 =a q N-tes Glied a =a 1 1 d a =a 1 q 1 N-te Partialsummer Prozetreche Grudwert, Bezugsgrösse Prozetfuss Prozetsatz i p s = 2

Mehr

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung

Vereinheitlichung Einheitlicher Maßstab der Risikoeinschätzung. Limitierung / Steuerung Messung und Limitierung ist fundamental für die Steuerung . Marktpreisrisiko Motivatio der VaR-Ermittlug Vereiheitlichug Eiheitlicher Maßstab der Risikoeischätzug Limitierug / Steuerug Messug ud Limitierug ist fudametal für die Steuerug Kapitaluterlegug Zur Deckug

Mehr

Statistik und Wahrscheinlichkeitsrechnung

Statistik und Wahrscheinlichkeitsrechnung Statistik ud Wahrscheilichkeitsrechug Dr. Joche Köhler 9.04.008 Äderug Übugsstude Statistik ud Wahrscheilichkeitsrechug Die Gruppe vo Markus trifft sich am Doerstag statt im HCI D zusamme mit der Gruppe

Mehr

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert.

Auch im Risikofall ist das Entscheidungsproblem gelöst, wenn eine dominante Aktion in A existiert. Prof. Dr. H. Rommelfager: Etscheidugstheorie, Kaitel 3 7 3. Etscheidug bei Risiko (subjektive oder objektive) Eitrittswahrscheilichkeite für das Eitrete der mögliche Umweltzustäde köe vom Etscheidugsträger

Mehr

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie

Streuungsmaße. Prof. Dr. Paul Reuber. Institut für Geographie. Seminar Methoden der empirischen Humangeographie Streuugsmaße Istitut für Geographie Streuugswerte (Streuugsmaße) Die Diskussio um die Mittelwerte hat die Vorteile dieser statistische Kewerte gezeigt, aber bereits, isbesodere beim arithmetische Mittel,

Mehr

Gliederung. Value-at-Risk

Gliederung. Value-at-Risk Value-at-Risk Dr. Richard Herra Nürberg, 4. Noveber 26 IVS-Foru Gliederug Modell Beispiel aus der betriebliche Altersversorgug Verteilug des Gesatschades Value-at-Risk ud Tail Value-at-Risk Risikobeurteilug

Mehr

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003

Integrationsseminar zur BBL und ABWL Wintersemester 2002/2003 Credit Risk+ Itegratiossemiar zur BBL ud BWL Witersemester 2002/2003 Oksaa Obukhova lia Sirsikova Credit Risk+ 1 Ihalt. Eiführug i die Thematik B. Ökoomische Grudlage I. Ziele II. wedugsmöglichkeite 1.

Mehr

AngStat1(Ue13-21).doc 23

AngStat1(Ue13-21).doc 23 3. Ereigisse Versuchsausgäge ud Wahrscheilicheite: a) Wie wird die Wahrscheilicheit des Auftretes eies Elemetarereigisses A geschätzt? A Ω heißt Elemetarereigis we es ur eie Versuchsausgag ethält also

Mehr

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung

Umrechnung einer tatsächlichen Häufigkeitsverteilung in eine prozentuale Häufigkeitsverteilung .3. Prozetuale Häufigkeitsverteilug (HV) Die prozetuale Häufigkeitsverteilug erlaubt de Vergleich vo Auswertuge, dee uterschiedliche Stichprobegröße zugrude liege. Es köe auch uterschiedliche Stichprobegröße

Mehr

Formelsammlung für Investition und Finanzierung

Formelsammlung für Investition und Finanzierung Formelsammlug für Ivesiio ud Fiazierug (Sad: 3.2.22) Seie vo 8 Formelsammlug für Ivesiio ud Fiazierug INHALSVERZEICHNIS. Mahemaische Grudlage...3 a) Auflösug quadraischer Gleichuge mi der pq-formel...3

Mehr

INVESTITION UND FINANZIERUNG

INVESTITION UND FINANZIERUNG TECHNISCHE UNIVERSITÄT DRESDEN Lehrstuhl für Betriebswirtschaftslehre, isbesodere Fiazwirtschaft ud Fiazdiestleistuge Prof. Dr. H. Locarek-Juge INVESTITION UND FINANZIERUNG Witersemester 2000/2001 Grudstudium

Mehr

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen.

= a n: Wurzelexponent x: Radikand oder Wurzelbasis a: Wurzelwert Bei der ersten Wurzel wird einfach das Wurzelzeichen weggelassen. Wurzelgesetze Gesetzmäßigkeite Grudlage Das Wurzelziehe (oder Radiziere) ist die Umkehrug des Potezieres. Daher sid die Wurzelgesetze de Potezgesetze sehr ählich. Die Wurzel aus eier positive Zahl ergibt

Mehr

Kunde. Kontobewegung

Kunde. Kontobewegung Techische Uiversität Müche WS 2003/04, Fakultät für Iformatik Datebaksysteme I Prof. R. Bayer, Ph.D. Lösugsblatt 4 Dipl.-Iform. Michael Bauer Dr. Gabi Höflig 17.11. 2003 Abbildug E/R ach relatioal - Beispiel:

Mehr

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik

Prof. Dr. Günter Hellmig. Aufgabenskript Finanzmathematik Prof. Dr. Güter Hellmig Aufgabeskript Fiazmathematik Ihalt: Aufgabe -: Eifache achschüssige Zise Aufgabe : Eifache vorschüssige Zise Aufgabe 4-5: Ziseszise bei Zisasammlug Aufgabe 6-: Ziseszise bei Zisauszahlug

Mehr

Mit Ideen begeistern. Mit Freude schenken.

Mit Ideen begeistern. Mit Freude schenken. Mehr Erfolg. I jeder Beziehug. Mit Idee begeister. Mit Freude scheke. Erfolgreiches Marketig mit Prämie, Werbemittel ud Uterehmesausstattuge. Wo Prämie ei System habe, hat Erfolg Methode. Die Wertschätzug

Mehr

Karten für das digitale Kontrollgerät

Karten für das digitale Kontrollgerät Karte für das digitale Kotrollgerät Wichtige Iformatioe TÜV SÜD Auto Service GmbH Die Fahrerkarte Im Besitz eier Fahrerkarte muss jeder Fahrer sei, der ei Kraftfahrzeug mit digitalem Kotrollgerät zur Persoebeförderug

Mehr

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden?

Zählterme (Seite 1) Aufgabe: Wie viele Nummernschilder kann es theoretisch im Raum Dresden geben? Wann müsste die 4.Ziffer eingeführt werden? Bemerkug: I Mathematik sollte ma keie Fahrpläe verwede, i der Stochastik erst recht icht. Zitat vo S.L. Das Baumdiagramm ist aber fast immer ei geeigetes Hilfsmittel. Produktregel Aufgabe: Wie viele Nummerschilder

Mehr

betrieblichen Altersvorsorge

betrieblichen Altersvorsorge Reforme i der Alterssicherug 13 1. Basisiformatioe zur eue betriebliche Altersvorsorge 1.1 Reforme i der Alterssicherug Nach de große Reforme i der Alterssicherug der Jahre 2000/2001 u. a. mit dem Altersvermögesgesetz,

Mehr

1 Aussagenlogik und vollständige Induktion

1 Aussagenlogik und vollständige Induktion Dr. Siegfried Echterhoff Aalysis 1 Vorlesug WS 08 09 1 Aussagelogi ud vollstädige Idutio Die Mathemati basiert auf eier Reihe vo Axiome, d.h. auf mathematische Aussage, die als (offesichtlich? wahr ageomme

Mehr

Elektrostatische Lösungen für mehr Wirtschaftlichkeit

Elektrostatische Lösungen für mehr Wirtschaftlichkeit Elektrostatische Lösuge für mehr Wirtschaftlichkeit idustrie für igeieure, profis ud techiker i etwicklug, produktio ud motage. www.kerste.de Elektrostatische Lösuge kerste ist seit über 40 Jahre der führede

Mehr

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09

Musterlösung zu Blatt 8 der Vorlesung Analysis I WS08/09 Musterlösug zu Blatt 8 der Vorlesug Aalysis I WS08/09 Schriftliche Aufgabe Aufgabe. Voraussetzuge: Für alle N setze a : +2 ud b : ( 2. [Amerkug: I der Aufgabestellug heiÿe die Reihe beide gleich. Es steht

Mehr

Lernhilfe in Form eines ebooks

Lernhilfe in Form eines ebooks Ziseszisrechug Lerhilfe i Form eies ebooks apitel Thema Seite 1 Vorwort ud Eiführug 2 2 Theorie der Ziseszisrechug 5 3 Beispiele ud Beispielrechuge 12 4 Testaufgabe mit Lösuge 18 Zis-Ziseszis.de 212 Seite

Mehr

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3

AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2. Datenfluß und Programmablauf 2. Vorbedingung 3. Nachbedingung 3. Schleifeninvariante 3 INHALTSVERZEICHNIS AUFGABENSTELLUNG (ZUSAMMENFASSUNG) 2 SPEZIFIKATION 2 Datefluß ud Programmablauf 2 Vorbedigug 3 Nachbedigug 3 Schleifeivariate 3 KONSTRUKTION 4 ALTERNATIVE ENTWURFSMÖGLICHKEITEN 5 EFFEKTIVE

Mehr

Vorkurs Mathematik für Informatiker Folgen

Vorkurs Mathematik für Informatiker Folgen Vorkurs Mathematik ür Iormatiker -- 8 Folge -- 11.10.2015 1 Folge: Deiitio Eie (uedliche) Folge im herkömmliche Sie etsteht durch Hitereiaderschreibe vo Zahle 1,2,3,4,5, Dabei ist die Reiheolge wichtig,

Mehr

Beschreibende Statistik Kenngrößen in der Übersicht (Ac)

Beschreibende Statistik Kenngrößen in der Übersicht (Ac) Beschreibede Statistik Kegröße i der Übersicht (Ac) Im folgede wird die Berechugsweise des TI 83 (sowie vo SPSS, s. ute) verwedet. Diese geht auf eie Festlegug vo Moore ud McCabe (00) zurück. I der Literatur

Mehr

Informatik II Dynamische Programmierung

Informatik II Dynamische Programmierung lausthal Iformatik II Dyamische Programmierug. Zachma lausthal Uiversity, ermay zach@i.tu-clausthal.de Zweite Techik für de Algorithmeetwurf Zum Name: "Dyamische " hat ichts mit "Dyamik" zu tu, soder mit

Mehr

6. Übung - Differenzengleichungen

6. Übung - Differenzengleichungen 6. Übug - Differezegleichuge Beispiel 00 Gesucht sid alle Lösuge vo a) x + 3x + = 0 ud b) x + x + 7 = 0, jeweils für 0. Um diese lieare Differezegleichug erster Ordug zu löse, verwede wir die im Buch auf

Mehr

Korrelationsanalyse zwischen kategorischen Merkmalen. Kontingenztabellen. Chi-Quadrat-Test

Korrelationsanalyse zwischen kategorischen Merkmalen. Kontingenztabellen. Chi-Quadrat-Test Kotigeztabelle. Chi-Quadrat-Test Korrelatiosaalyse zwische kategorische Merkmale Beispiel 1 ohe Frau 8 75 1 Ma 48 49 97 76 14? Häufigkeitstabelle (Kotigeztabelle): eie tabellarische Darstellug der gemeisame

Mehr

Investitionsrechnungen in der Wohnungswirtschaft

Investitionsrechnungen in der Wohnungswirtschaft Wohugswirschafliche Theorie I Vorlesug vom 28. 1. 24 Folie Ivesiiosrechuge i der Wohugswirschaf Dr. Joachim Kircher Isiu Wohe ud Umwel GmbH (IWU) Theoreische Grudlage Eiführug 1. Ivesoregruppe 2. Besoderheie

Mehr

Kapitel 4: Stationäre Prozesse

Kapitel 4: Stationäre Prozesse Kapitel 4: Statioäre Prozesse M. Scheutzow Jauary 6, 2010 4.1 Maßerhaltede Trasformatioe I diesem Kapitel führe wir zuächst de Begriff der maßerhaltede Trasformatio auf eiem Wahrscheilichkeitsraum ei ud

Mehr

Finanzwirtschaft. Investitionsentscheidung: langfristige Verwendung von Finanzmitteln

Finanzwirtschaft. Investitionsentscheidung: langfristige Verwendung von Finanzmitteln I. Fiazierugsetscheiduge. Kurzfristige Liquiditätspositio fiazwirtschaftliche Etscheiduge Fiazierugsetscheidug: über Beschaffug, Umschichtug ud Verwedug vo Fiazmittel auf de Bestadskote Ivestitiosetscheidug:

Mehr

Ergebnisse in einer technologisch-wissenschaftlich orientierten Lohngalvanik

Ergebnisse in einer technologisch-wissenschaftlich orientierten Lohngalvanik Ergebisse i eier techologisch-wisseschaftlich orietierte Lohgalvaik 1. TZO-Zielstellug Dr. rer. at. Berhard Egema, Taucha Dr.-Ig. Fraz Krümmlig, Leipzig Im Rahme des BMBF-erbudvorhabes (PT Umwelttechik,

Mehr

2. Diophantische Gleichungen

2. Diophantische Gleichungen 2. Diophatische Gleichuge [Teschl05, S. 91f] 2.1. Was ist eie diophatische Gleichug ud wozu braucht ma sie? Def D2-1: Eie diophatische Gleichug ist eie Polyomfuktio i x,y,z,, bei der als Lösuge ur gaze

Mehr

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen

Bestimmte Gegenstände können drei Jahre lang mit einem festen Wert angesetzt werden, wenn folgende Voraussetzungen 2.1 Ivetur 2.1.4 Bewertug der Vermögesgegestäde 2.1.4.1 Eizelbewertug Grudsätzlich sid bei eier Ivetur die Vermögesgegestäde eizel zu erfasse ud etspreched zu bewerte.esgibtzweiausahme vomgrudsatz dereizelbewertug.

Mehr

Formeln. für Betriebswirtschaftslehre/Rechnungswesen. Volkswirtschaftslehre. an Beruflichen Gymnasien und Fachoberschulen

Formeln. für Betriebswirtschaftslehre/Rechnungswesen. Volkswirtschaftslehre. an Beruflichen Gymnasien und Fachoberschulen Formel für Betriebswirtschaftslehre/Rechugswese Volkswirtschaftslehre a Berufliche Gymasie ud Fachoberschule Erfurt, de 0.0.20 2 Ihaltsverzeichis Marketig 3 2 Ivestitioe 4 3 Fiazierug 6 4 Rechugswese 8

Mehr

Bereichsleitung Fitness und GroupFitness (IST)

Bereichsleitung Fitness und GroupFitness (IST) Leseprobe Bereichsleitug Fitess ud GroupFitess (IST) Studieheft Persoalmaagemet Autori Corelia Trikaus Corelia Trikaus ist Diplom-Ökoomi ud arbeitet als wisseschaftliche ud pädagogische Mitarbeiteri bei

Mehr

Zahlenfolgen, Grenzwerte und Zahlenreihen

Zahlenfolgen, Grenzwerte und Zahlenreihen KAPITEL 5 Zahlefolge, Grezwerte ud Zahlereihe. Folge Defiitio 5.. Uter eier Folge reeller Zahle (oder eier reelle Zahlefolge) versteht ma eie auf N 0 erlarte reellwertige Futio, die jedem N 0 ei a R zuordet:

Mehr