Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Counting - Sort [ [ ] [ [ ] 1. SS 2008 Datenstrukturen und Algorithmen Sortieren in linearer Zeit"

Transkript

1 Counting-Sort Counting - Sort ( A,B,k ). for i to k. do C[ i]. for j to length[ A]. do C[ A[ j ] C[ A[ j ] +. > C[ i] enthält Anzahl der Elemente in 6. for i to k. do C[ i] C[ i] + C[ i ]. > C[ i] enthält Anzahl der Elemente in 9. for j length[ A] downto. do B[ C[ A[ j ] A[ j]. C A j C A j [ [ ] [ [ ] A A mit Wert mit Wert i. i. SS -. Sortieren in linearer Zeit

2 Counting-Sort Nach Durchlauf der Schleife in Zeilen - gilt: C[i] enthält die Anzahl der Elemente in A mit Wert i Invariante: Vor dem Schleifendurchlauf mit Index j gilt: C[i] enthält die Anzahl der Elemente in A[ j-] mit Wert i SS -. Sortieren in linearer Zeit

3 Counting-Sort Sei C n das Array C vor dem Durchlauf der Schleife in Zeilen 9- mit Index n. Sei C i das Array C vor dem Durchlauf der Schleife in Zeilen 9- mit Index i. Nach Durchlauf der Schleife in Zeilen 9- gilt: Für C n [i-] < k C n [i] hat man B[k]=i (C[-]=) Invariante: Vor dem Schleifendurchlauf mit Index j gilt: Für C j [i] < k C n [i] hat man B[k]=i C j [i] - C n [i-] entspricht der Anzahl der Elemente in A[ j] mit Wert i C n [i] C j [i] C n [i-] die letzten n-j Elemente von A befinden sich in B SS -. Sortieren in linearer Zeit

4 Illustration für Counting-Sort () A 6 C B 6 C SS -. Sortieren in linearer Zeit

5 Illustration für Counting-Sort () A 6 C B 6 C SS -. Sortieren in linearer Zeit

6 Illustration für Counting-Sort () A 6 C B 6 C 6 SS -. Sortieren in linearer Zeit 6

7 Illustration für Counting-Sort () A 6 C 6 B 6 C 6 SS -. Sortieren in linearer Zeit

8 Illustration für Counting-Sort () A 6 C 6 B 6 C 6 6 SS -. Sortieren in linearer Zeit

9 Illustration für Counting-Sort () A 6 B 6 C 6 6 SS -. Sortieren in linearer Zeit 9

10 Illustration für Counting-Sort () A 6 B 6 C C SS -. Sortieren in linearer Zeit

11 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit

12 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit

13 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit

14 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit

15 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit

16 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit 6

17 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit

18 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit

19 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit 9

20 Illustration für Counting-Sort () A 6 B 6 C SS -. Sortieren in linearer Zeit

21 Illustration für Counting-Sort () A 6 B 6 C C SS -. Sortieren in linearer Zeit

22 . Elementare Datenstrukturen Definition.: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische Mengen werden auch abstrakte Datentypen (ADT) genannt. Definition.:. Werden auf einer Menge von Objekten die Operationen Einfügen, Entfernen und Suchen betrachtet, so spricht man von einem Wörterbuch.. Werden auf einer Menge von Objekten die Operationen Einfügen, Entfernen und Suchen des Maximums betrachtet, so spricht man von einer Warteschlange. SS.Elementare Datenstrukturen

23 Datenstrukturen Ein grundlegendes Datenbank-Problem Speicherung von Datensätzen Beispiel: Kundendaten (Name, Adresse, Wohnort, Kundennummer, offene Rechnungen, offene Bestellungen, ) Anforderungen: Schneller Zugriff Einfügen neuer Datensätze Löschen bestehender Datensätze SS.Elementare Datenstrukturen

24 Objekte in dynamischen Mengen () Objekte bestehen aus verschiedenen Feldern. Ein Feld speichert den Schlüssel des Objekts. Identifikation eines Objekts erfolgt über Schlüssel. Schlüssel von Objekten sind nicht notwendig paarweise verschieden. Falls Schlüssel paarweise verschieden sind, ist Menge von Objekten identisch zur Menge von Schlüsseln. SS.Elementare Datenstrukturen

25 Objekte in dynamischen Mengen () Weitere Felder relevant für Datenstruktur, z.b. Felder für Referenzen auf andere Objekte. Andere Felder nur relevant für Anwendung, nicht für Datenstruktur die Daten dieser Felder nennt man Satellitendaten. SS.Elementare Datenstrukturen

26 Zugriff auf Daten: Datenstrukturen Jedes Objekt hat einen Schlüssel Eingabe des Schlüssels liefert Datensatz Schlüssel sind vergleichbar (es gibt totale Ordnung der Schlüssel) Beispiel: Kundendaten (Name, Adresse, Kundennummer) Schlüssel: Name Totale Ordnung: Lexikographische Ordnung SS.Elementare Datenstrukturen 6

27 Zugriff auf Daten: Datenstrukturen Jedes Objekt hat einen Schlüssel Eingabe des Schlüssels liefert Datensatz Schlüssel sind vergleichbar (es gibt totale Ordnung der Schlüssel) Beispiel: Kundendaten (Name, Adresse, Kundennummer) Schlüssel: Kundennummer Totale Ordnung: SS.Elementare Datenstrukturen

28 Datenstrukturen Unsere erste Datenstruktur: Feld A[,,max] Integer n, n max n bezeichnet Anzahl Elemente in Datenstruktur A 6 nil nil nil n SS.Elementare Datenstrukturen

29 Datenstrukturen Einfügen(s). if n=max then return Fehler: Kein Platz in Datenstruktur. else. n n+. A[n] s A 6 nil nil nil n SS.Elementare Datenstrukturen 9

30 Datenstrukturen Einfügen(s). if n=max then return Fehler: Kein Platz in Datenstruktur. else. n n+. A[n] s A 6 nil nil nil Einfügen() n SS.Elementare Datenstrukturen

31 Datenstrukturen Einfügen(s). if n=max then return Fehler: Kein Platz in Datenstruktur. else. n n+. A[n] s A 6 nil nil nil Einfügen() n SS.Elementare Datenstrukturen

32 Datenstrukturen Einfügen(s). if n=max then return Fehler: Kein Platz in Datenstruktur. else. n n+. A[n] s A 6 nil nil nil Einfügen() n SS.Elementare Datenstrukturen

33 Datenstrukturen Einfügen(s). if n=max then return Fehler: Kein Platz in Datenstruktur. else. n n+. A[n] s A 6 nil nil Einfügen() n SS.Elementare Datenstrukturen

34 Datenstrukturen Einfügen(s). if n=max then return Fehler: Kein Platz in Datenstruktur. else. n n+. A[n] s A 6 nil nil Laufzeit: Θ() n SS.Elementare Datenstrukturen

35 Datenstrukturen Suche(x). for i to n do. if A[i] = x then return i. return nil A 6 nil nil n SS.Elementare Datenstrukturen

36 Datenstrukturen Suche(x). for i to n do. if A[i] = x then return i. return nil A 6 nil nil Suche() SS n.elementare Datenstrukturen 6

37 Datenstrukturen Suche(x). for i to n do. if A[i] = x then return i. return nil i A 6 nil nil Suche() SS n.elementare Datenstrukturen

38 Datenstrukturen Suche(x). for i to n do. if A[i] = x then return i. return nil i A 6 nil nil Suche() SS n.elementare Datenstrukturen

39 Datenstrukturen Suche(x). for i to n do. if A[i] = x then return i. return nil i A 6 nil nil Suche() SS n.elementare Datenstrukturen 9

40 Datenstrukturen Suche(x). for i to n do. if A[i] = x then return i. return nil i= A 6 nil nil Suche() SS n.elementare Datenstrukturen

41 Datenstrukturen Suche(x). for i to n do. if A[i] = x then return i. return nil A 6 nil nil Laufzeit: Θ(n) n SS.Elementare Datenstrukturen

42 Datenstrukturen Löschen(i). A[i] A[n]. A[n] nil. n n- A 6 nil nil n SS.Elementare Datenstrukturen

43 Datenstrukturen Löschen(i). A[i] A[n]. A[n] nil. n n- Annahme: Wir bekommen Index i des zu löschenden Objekts A 6 nil nil n SS.Elementare Datenstrukturen

44 Datenstrukturen Löschen(i). A[i] A[n]. A[n] nil. n n- A 6 nil nil Löschen() SS n.elementare Datenstrukturen

45 Datenstrukturen Löschen(i). A[i] A[n]. A[n] nil. n n- A 6 nil nil Löschen() SS n.elementare Datenstrukturen

46 Datenstrukturen Löschen(i). A[i] A[n]. A[n] nil. n n- A 6 nil nil Löschen() SS n.elementare Datenstrukturen 6

47 Datenstrukturen Löschen(i). A[i] A[n]. A[n] nil. n n- A 6 nil nil nil Löschen() SS n.elementare Datenstrukturen

48 Datenstrukturen Löschen(i). A[i] A[n]. A[n] nil. n n- A 6 nil nil nil Löschen() SS n.elementare Datenstrukturen

49 Datenstrukturen Löschen(i). A[i] A[n]. A[n] nil. n n- A 6 nil nil nil Laufzeit: Θ() n SS 9.Elementare Datenstrukturen

50 Datenstrukturen Datenstruktur Feld: Platzbedarf Θ(max) Laufzeit Suche: Θ(n) Laufzeit Einfügen/Löschen: Θ() Vorteile: Schnelles Einfügen und Löschen Nachteile: Speicherbedarf abhängig von max (nicht vorhersagbar) Hohe Laufzeit für Suche SS.Elementare Datenstrukturen

51 Objekte, Referenzen, Zeiger Zugriff auf Objekte erfolgt in der Regel durch Referenzen oder Verweise auf Objekte wie in Java. In Sprachen wie C und C++ realisiert durch Zeiger, engl. Pointer. Zeiger/Pointer Notation aus Introduction to Algorithms. Verwenden Referenzen, Zeiger, Verweise synonym. Verweise zeigen oder verweisen oder referenzieren auf Objekte. SS.Elementare Datenstrukturen

52 Operationen in dynamischen Mengen Insert(S,x): Füge Objekt x in Menge S ein. Search(S,k): Finde Objekt x mit Schlüssel k. Falls kein solches Objekt vorhanden Ausgabe NIL Delete(S,x): Entferne Objekt x aus Menge S. Minimum(S): Finde Objekt mit minimalem Schlüssel in S (es muss eine Ordnung auf Schlüsseln existieren). Maximum(S): Finde Objekt mit maximalem Schlüssel in S (es muss eine Ordnung auf Schlüsseln existieren). SS.Elementare Datenstrukturen

53 Stacks (Stapel) und Queues (Schlangen) Definition.:. Stacks (Stapel) sind eine Datenstruktur, die die dynamische Menge LIFO (last-in-first-out) implementiert. In LIFOs sollen beliebige Objekte eingefügt und das zuletzt eingefügte Objekt ernfernt werden können.. Queues (Schlangen) sind eine Datenstruktur, die die dynamische Menge FIFO (first-in-first-out) implementiert. In FIFOs sollen beliebige Objekte eingefügt und das am längsten in der Menge befindliche Objekt ernfernt werden können. SS.Elementare Datenstrukturen

54 Stacks Einfügen eines Objekts wird bei Stacks Push genannt. Entfernen des zuletzt eingefügten Objekts wird Pop genannt. Zusätzliche Hilfsoperation ist Stack-Empty, die überprüft, ob ein Stack leer ist. Stack mit maximal n Objekten wird realisiert durch ein Array S[ n] mit einem zusätzlichen Feld top[s], das den Index des zuletzt eingefügten Objekts speichert. SS.Elementare Datenstrukturen

55 Stack - Beispiel Objekte sind hier natürliche Zahlen. Stack kann dann wie folgt aussehen: 6 9 top S [ ] = SS.Elementare Datenstrukturen

56 Stack - Operationen ( S) Stack - Empty. if top[ S] =. then return TRUE. else return FALSE ( S,x) [ ] top[ S] S[ top[ S ] x Push. top S. + Pop. if... ( S) Stack Empty then error "underflow" else top S return [ ] top[ S] S[ top[ S] + ] Satz.: Mit Stacks können die Operationen einer LIFO in Zeit O() ausgeführt werden. SS.Elementare Datenstrukturen 6

57 Illustration der Stackoperationen 6 9 top[ S] = Nach Push(S,), Push(S,): 6 9 top[ S] = 6 Nach Pop(S): SS.Elementare Datenstrukturen 6 9 top[ S] =

11. Elementare Datenstrukturen

11. Elementare Datenstrukturen 11. Elementare Datenstrukturen Definition 11.1: Eine dynamische Menge ist gegeben durch eine oder mehrer Mengen von Objekten sowie Operationen auf diesen Mengen und den Objekten der Mengen. Dynamische

Mehr

12. Dynamische Datenstrukturen

12. Dynamische Datenstrukturen Motivation: Stapel. Dynamische Datenstrukturen Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange, Implementationsvarianten der verketteten Liste 0 04 Motivation: Stapel ( push, pop, top, empty

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2017/18 Pro f. Dr. Sán do r Fe k e te 1 4.1 Grundoperationen Aufgabenstellung: 3 4.1 Grundoperationen Aufgabenstellung: Verwalten

Mehr

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken.

Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Abstrakte Datentypen und Datenstrukturen/ Einfache Beispiele Abstrakter Datentyp (ADT): Besteht aus einer Menge von Objekten, sowie Operationen, die auf diesen Objekten wirken. Datenstruktur (DS): Realisierung

Mehr

Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing

Algorithmen I. Tutorium 1-3. Sitzung. Dennis Felsing Algorithmen I Tutorium 1-3. Sitzung Dennis Felsing dennis.felsing@student.kit.edu www.stud.uni-karlsruhe.de/~ubcqr/algo 2011-05-02 Überblick 1 Sortieren und Suchen 2 Mastertheorem 3 Datenstrukturen 4 Kreativaufgabe

Mehr

8 Elementare Datenstrukturen

8 Elementare Datenstrukturen Algorithmen und Datenstrukturen 186 8 Elementare Datenstrukturen In diesem und dem folgenden Kapitel werden grundlegende Techniken der Darstellung und Manipulation dynamischer Mengen auf Computern vorgestellt.

Mehr

13. Dynamische Datenstrukturen

13. Dynamische Datenstrukturen Motivation: Stapel. Dynamische Datenstrukturen Verkettete Listen, Abstrakte Datentypen Stapel, Warteschlange, Sortierte Liste 40 40 Motivation: Stapel ( push, pop, top, empty ) Wir brauchen einen neuen

Mehr

ALP II Dynamische Datenmengen Datenabstraktion

ALP II Dynamische Datenmengen Datenabstraktion ALP II Dynamische Datenmengen Datenabstraktion O1 O2 O3 O4 SS 2012 Prof Dr Margarita Esponda M Esponda-Argüero 1 Dynamische Datenmengen Dynamische Datenmengen können durch verschiedene Datenstrukturen

Mehr

Wiederholung: Zusammenfassung Felder. Algorithmen und Datenstrukturen (für ET/IT) Definition Abstrakter Datentyp. Programm heute

Wiederholung: Zusammenfassung Felder. Algorithmen und Datenstrukturen (für ET/IT) Definition Abstrakter Datentyp. Programm heute Wiederholung: Zusammenfassung Felder Algorithmen und Datenstrukturen (für ET/IT) Wintersemester / Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Ein Feld A kann repräsentiert

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Sortierte Listen 2. Stacks & Queues 3. Teile und Herrsche Nächste Woche: Vorrechnen (first-come-first-served)

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2016 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Programm heute 1 Einführung 2 Grundlagen von Algorithmen

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 2014 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München 2 Programm heute 1 Einführung 2 Grundlagen von Algorithmen

Mehr

Wintersemester 2004/ Dezember 2004

Wintersemester 2004/ Dezember 2004 Lehrstuhl für Praktische Informatik III Norman May B6, 29, Raum C0.05 68131 Mannheim Telefon: (0621) 181 2517 Email: norman@pi3.informatik.uni-mannheim.de Matthias Brantner B6, 29, Raum C0.05 68131 Mannheim

Mehr

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5

Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 Robert Elsässer Paderborn, den 15. Mai 2008 u.v.a. Beispiellösung zu den Übungen Datenstrukturen und Algorithmen SS 2008 Blatt 5 AUFGABE 1 (6 Punkte): Nehmen wir an, Anfang bezeichne in einer normalen

Mehr

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Definition Feld. Feld als sequentielle Liste

Programm heute. Algorithmen und Datenstrukturen (für ET/IT) Definition Feld. Feld als sequentielle Liste Programm heute Algorithmen und Datenstrukturen (für ET/IT) Sommersemester 204 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Einführung 2 Grundlagen von Algorithmen

Mehr

Abstrakte Datentypen und Datenstrukturen

Abstrakte Datentypen und Datenstrukturen Abstrakte Datentypen und Datenstrukturen Professor Dr. Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 3. VO DAP2 SS 2009 21. April 2009 1 Praktikum zu DAP 2 Beginn: Mittwoch

Mehr

Datenstrukturen und Algorithmen

Datenstrukturen und Algorithmen Datenstrukturen und Algorithmen VO 708.031 27.10.2011 stefan.klampfl@tugraz.at 1 Wiederholung Wir vergleichen Algorithmen anhand des ordnungsmäßigen Wachstums von T(n), S(n), Asymptotische Schranken: O-Notation:

Mehr

1 Abstrakte Datentypen

1 Abstrakte Datentypen 1 Abstrakte Datentypen Spezifiziere nur die Operationen! Verberge Details der Datenstruktur; der Implementierung der Operationen. == Information Hiding 1 Sinn: Verhindern illegaler Zugriffe auf die Datenstruktur;

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Wintersemester 2012/13 13. Vorlesung Elementare Datenstrukturen: Stapel + Schlange + Liste Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2. Test Termin: (voraussichtlich)

Mehr

Aufgabe 8. 1 Arbeitsweise illustrieren. 2 Korrektheitsbeweis führen. 3 Laufzeitanalyse durchführen.

Aufgabe 8. 1 Arbeitsweise illustrieren. 2 Korrektheitsbeweis führen. 3 Laufzeitanalyse durchführen. Aufgabe 8 Betrachten Sie den folgenden Algorithmus namens Bubble-Sort. Bubble-Sort(A[1..n]): 1 for i 1 to length(a) 1 2 do for j length(a) downto i + 1 3 do if A[j 1] > A[j] 4 then A[j 1] A[j] 1 Arbeitsweise

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 9.6.2017 Giuseppe Accaputo g@accaputo.ch 1 Aufbau des PVK Tag 1: Java Teil 1 Tag 2: Java Teil 2 Tag 3: Algorithmen & Komplexität Tag 4: Dynamische Datenstrukturen,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 11. Vorlesung Elementare Datenstrukturen: Stapel + Schlange + Liste Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2-4 Zur Erinnerung Datenstruktur:

Mehr

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. 2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum

Mehr

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können.

8. A & D - Heapsort. Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. 8. A & D - Heapsort Werden sehen, wie wir durch geschicktes Organsieren von Daten effiziente Algorithmen entwerfen können. Genauer werden wir immer wieder benötigte Operationen durch Datenstrukturen unterstützen.

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 6 (6.5.2016) Abstrakte Datentypen, Einfache Datenstrukturen Algorithmen und Komplexität Abstrakte Datentypen : Beispiele Dictionary: (auch:

Mehr

13. Binäre Suchbäume

13. Binäre Suchbäume 1. Binäre Suchbäume Binäre Suchbäume realiesieren Wörterbücher. Sie unterstützen die Operationen 1. Einfügen (Insert) 2. Entfernen (Delete). Suchen (Search) 4. Maximum/Minimum-Suche 5. Vorgänger (Predecessor),

Mehr

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen. Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf

Mehr

Algorithmen und Datenstrukturen 1-3. Seminar -

Algorithmen und Datenstrukturen 1-3. Seminar - Algorithmen und Datenstrukturen 1-3. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Outline Spezielle Listen: Stacks, Queues Sortierverfahren 3. Übungsserie Wiederholung:

Mehr

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen

Schwerpunkte. Verkettete Listen. Verkettete Listen: 7. Verkettete Strukturen: Listen. Überblick und Grundprinzip. Vergleich: Arrays verkettete Listen Schwerpunkte 7. Verkettete Strukturen: Listen Java-Beispiele: IntList.java List.java Stack1.java Vergleich: Arrays verkettete Listen Listenarten Implementation: - Pascal (C, C++): über Datenstrukturen

Mehr

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n)

13. Hashing. AVL-Bäume: Frage: Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) AVL-Bäume: Ausgabe aller Elemente in O(n) Suche, Minimum, Maximum, Nachfolger in O(log n) Einfügen, Löschen in O(log n) Frage: Kann man Einfügen, Löschen und Suchen in O(1) Zeit? 1 Hashing einfache Methode

Mehr

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete.

12. Hashing. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Hashing einfache Methode um Wörtebücher zu implementieren, d.h. Hashing unterstützt die Operationen Search, Insert, Delete. Worst-case Zeit für Search: Θ(n). In der Praxis jedoch sehr gut. Unter gewissen

Mehr

Datenstrukturen Teil 1. Arrays, Listen, Stapel und Warteschlange. Arrays. Arrays. Array

Datenstrukturen Teil 1. Arrays, Listen, Stapel und Warteschlange. Arrays. Arrays. Array Datenstrukturen Teil 1,, und Sammelbegriff für Anordnung, Aufstellung, Reihe von gleichen Elementen in festgelegter Art und Weise Werden unterschieden in Standardarrays und assoziative Können ein- oder

Mehr

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2)

ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) ALP II Dynamische Datenmengen Datenabstraktion (Teil 2) O1 O2 O3 O4 SS 2012 Prof. Dr. Margarita Esponda 49 Einfach verkettete Listen O1 O2 O3 50 Einführung Einfach verkettete Listen sind die einfachsten

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 7 (21.5.2014) Binäre Suche, Hashtabellen I Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary: (auch: Maps, assoziative

Mehr

Einführung in die Informatik I

Einführung in die Informatik I Einführung in die Informatik I Einige wichtige Datenstrukturen: Vektor, Matrix, Liste, Stapelspeicher, Warteschlange Prof. Dr. Nikolaus Wulff Datenstruktur / Datentyp Programme benötigen nicht nur effiziente

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2012/13. Prof. Dr. Sándor Fekete Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2012/13 Prof. Dr. Sándor Fekete 4.4 Binäre Suche Aufgabenstellung: Rate eine Zahl zwischen 100 und 114! Algorithmus 4.1 INPUT: OUTPUT:

Mehr

Algorithmen und Datenstrukturen Kapitel 4 Neue Datenstrukturen, besseres (?) Sortieren

Algorithmen und Datenstrukturen Kapitel 4 Neue Datenstrukturen, besseres (?) Sortieren Algorithmen und Datenstrukturen Kapitel 4 Neue Datenstrukturen, besseres (?) Sortieren Frank Heitmann heitmann@informatik.uni-hamburg.de 4. November 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de

Mehr

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te

Kapitel 4: Dynamische Datenstrukturen. Algorithmen und Datenstrukturen WS 2017/18. Pro f. Dr. Sán do r Fe k e te Kapitel 4: Dynamische Datenstrukturen Algorithmen und Datenstrukturen WS 2017/18 Pro f. Dr. Sán do r Fe k e te 1 Binärer Suchbaum Außerdem wichtig: Struktur der Schlüsselwerte! 2 Ordnungsstruktur Linker

Mehr

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny

Grundlagen der Informatik. Prof. Dr. Stefan Enderle NTA Isny Grundlagen der Informatik Prof. Dr. Stefan Enderle NTA Isny 2 Datenstrukturen 2.1 Einführung Syntax: Definition einer formalen Grammatik, um Regeln einer formalen Sprache (Programmiersprache) festzulegen.

Mehr

Listen. M. Jakob. 20. September Gymnasium Pegnitz

Listen. M. Jakob. 20. September Gymnasium Pegnitz Listen M. Jakob Gymnasium Pegnitz 20. September 2015 Inhaltsverzeichnis 1 Hinführung: Wartenschlangen (6 Std.) 2 Grundprinzip von Listen Rekursion (10 Std.) 3 Die einfach verkettete Liste als Kompositum

Mehr

Datenstrukturen und Algorithmen. Vorlesung 8

Datenstrukturen und Algorithmen. Vorlesung 8 Datenstrukturen und Algorithmen Vorlesung 8 Inhaltsverzeichnis Vorige Woche: ADT Stack ADT Queue Heute betrachten wir: ADT Deque ADT Prioritätsschlange Binomial-Heap Schriftliche Prüfung Informationen

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

Aufgabe (Schreibtischtest, lexikographische Ordnung)

Aufgabe (Schreibtischtest, lexikographische Ordnung) Aufgabe (Schreibtischtest, lexikographische Ordnung) Führen Sie einen Schreibtischtest für den Algorithmus Bubblesort aus der VL für die folgenden Eingabe-Arrays durch. Geben Sie das Array S nach jedem

Mehr

Informatik II Prüfungsvorbereitungskurs

Informatik II Prüfungsvorbereitungskurs Informatik II Prüfungsvorbereitungskurs Tag 4, 23.6.2016 Giuseppe Accaputo g@accaputo.ch 1 Programm für heute Repetition Datenstrukturen Unter anderem Fragen von gestern Point-in-Polygon Algorithmus Shortest

Mehr

Listen. M. Jakob. Gymnasium Pegnitz. 20. September Hinführung: Wartenschlangen. Grundprinzip von Listen Rekursion

Listen. M. Jakob. Gymnasium Pegnitz. 20. September Hinführung: Wartenschlangen. Grundprinzip von Listen Rekursion M. Jakob Gymnasium Pegnitz 20. September 2015 Inhaltsverzeichnis Grundprinzip von Rekursion (10 Std.) Die einfach verkettete Liste als Kompositum (10 Std.) Klasse LISTENELEMENT? Entwurfsmuster Kompositum

Mehr

Stacks, Queues & Bags. Datenstrukturen. Pushdown/Popup Stack. Ferd van Odenhoven. 19. September 2012

Stacks, Queues & Bags. Datenstrukturen. Pushdown/Popup Stack. Ferd van Odenhoven. 19. September 2012 , Queues & Ferd van Odenhoven Fontys Hogeschool voor Techniek en Logistiek Venlo Software Engineering 19. September 2012 ODE/FHTBM, Queues & 19. September 2012 1/42 Datenstrukturen Elementare Datenstrukturen

Mehr

Programmieren I. Kapitel 13. Listen

Programmieren I. Kapitel 13. Listen Programmieren I Kapitel 13. Listen Kapitel 13: Listen Ziel: eigene Datenstrukturen erstellen können und eine wichtige vordefinierte Datenstruktur( familie) kennenlernen zusammengehörige Elemente zusammenfassen

Mehr

Advanced Programming in C

Advanced Programming in C Advanced Programming in C Pointer und Listen Institut für Numerische Simulation Rheinische Friedrich-Wilhelms-Universität Bonn Oktober 2013 Überblick 1 Variablen vs. Pointer - Statischer und dynamischer

Mehr

Algorithmen & Komplexität

Algorithmen & Komplexität Algorithmen & Komplexität Angelika Steger Institut für Theoretische Informatik steger@inf.ethz.ch Breitensuche, Tiefensuche Wir besprechen nun zwei grundlegende Verfahren, alle Knoten eines Graphen zu

Mehr

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen

Gliederung. 5. Compiler. 6. Sortieren und Suchen. 7. Graphen Gliederung 5. Compiler 1. Struktur eines Compilers 2. Syntaxanalyse durch rekursiven Abstieg 3. Ausnahmebehandlung 4. Arrays und Strings 6. Sortieren und Suchen 1. Grundlegende Datenstrukturen 2. Bäume

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda 1. Vorstellen des vierten Übungsblatts 2. Vorbereitende Aufgaben für das vierte Übungsblatt

Mehr

Elementare Sortierverfahren

Elementare Sortierverfahren Algorithmen und Datenstrukturen I Elementare Sortierverfahren Fakultät für Informatik und Mathematik Hochschule München Letzte Änderung: 18.03.2018 18:16 Inhaltsverzeichnis Sortieren.......................................

Mehr

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen

Wiederholung ADT Menge Ziel: Verwaltung (Finden, Einfügen, Entfernen) einer Menge von Elementen Was bisher geschah abstrakter Datentyp : Signatur Σ und Axiome Φ z.b. ADT Menge zur Verwaltung (Finden, Einfügen, Entfernen) mehrerer Elemente desselben Typs Spezifikation einer Schnittstelle Konkreter

Mehr

Datenstrukturen und Algorithmen. Vorlesung 6

Datenstrukturen und Algorithmen. Vorlesung 6 Datenstrukturen und Algorithmen Vorlesung 6 Heap (auch Halde oder Haufen) Binäre Heaps sind eine einfache und effiziente Implementierung von Prioritätswarteschlangen (priority queues) Ein binären Heap

Mehr

Beispiele elementarer Datentypen Ganze Zahlen (integer) Unterbereiche Gleitkommazahlen Festkommazahlen

Beispiele elementarer Datentypen Ganze Zahlen (integer) Unterbereiche Gleitkommazahlen Festkommazahlen Beispiele elementarer Datentypen Ganze Zahlen (integer) - Werte sind ganze Zahlen in vorgegebenen Bereich (z. B. -2 31 bis 2 31-1) - Übliche Operationen: Arithmetik (z. B. +,-,*, Division mit Rest, Rest

Mehr

Graphdurchmusterung, Breiten- und Tiefensuche

Graphdurchmusterung, Breiten- und Tiefensuche Prof. Thomas Richter 18. Mai 2017 Institut für Analysis und Numerik Otto-von-Guericke-Universität Magdeburg thomas.richter@ovgu.de Material zur Vorlesung Algorithmische Mathematik II am 18.05.2017 Graphdurchmusterung,

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 6 (7.5.2018) Dictionaries, Binäre Suche, Hashtabellen I / Yannic Maus Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary:

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen

Kapitel 10. Komplexität von Algorithmen und Sortieralgorithmen Kapitel 10 Komplexität von Algorithmen und Sortieralgorithmen Arrays 1 Ziele Komplexität von Algorithmen bestimmen können (in Bezug auf Laufzeit und auf Speicherplatzbedarf) Sortieralgorithmen kennenlernen:

Mehr

Problem: Was ist, wenn der Stapel voll ist? Idee: Erzeuge dynamisch ein grösseres Array und kopiere um. Dynamische Anpassung der Größe

Problem: Was ist, wenn der Stapel voll ist? Idee: Erzeuge dynamisch ein grösseres Array und kopiere um. Dynamische Anpassung der Größe Maximale Größe?! Problem: Was ist, wenn der Stapel voll ist? Idee: Erzeuge dynamisch ein grösseres Array und kopiere um Dynamische Anpassung der Größe Praktische Informatik I, HWS 2009, Kapitel 10 Seite

Mehr

6. Verkettete Strukturen: Listen

6. Verkettete Strukturen: Listen 6. Verkettete Strukturen: Listen 5 K. Bothe, Inst. f ür Inf., HU Berlin, PI, WS 004/05, III.6 Verkettete Strukturen: Listen 53 Verkettete Listen : Aufgabe Vergleich: Arrays - verkettete Listen Listenarten

Mehr

Programmieren für Wirtschaftswissenschaftler SS 2015

Programmieren für Wirtschaftswissenschaftler SS 2015 DEPARTMENT WIRTSCHAFTSINFORMATIK FACHBEREICH WIRTSCHAFTSWISSENSCHAFT Programmieren für Wirtschaftswissenschaftler SS 2015 Lucian Ionescu Blockveranstaltung 16.03 27.3.2015 5. Arrays und Listen Agenda Arrays

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Elementare Datenstrukturen für dynamische Mengen Stapel & Warteschlangen Verkettete Listen Bäume Anwendungsbeispiel:

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Sortierverfahren 1. Schreibtischtest 2. Stabilität 3. Sortierung spezieller Arrays 4. Untere

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen Matthias Zwicker Universität Bern Frühling 2010 Übersicht Sortieralgorithmen Einleitung Heapsort Quicksort 2 Motivation Sortieren ist Voraussetzung für viele Anwendungen Nach

Mehr

Datenstrukturen & Algorithmen

Datenstrukturen & Algorithmen Datenstrukturen & Algorithmen VO 708.031 Um was geht es? Datenstrukturen Algorithmen Algorithmus Versuch einer Erklärung: Ein Algorithmus nimmt bestimmte Daten als Input und transformiert diese nach festen

Mehr

Datenstrukturen und Algorithmen D-INFK

Datenstrukturen und Algorithmen D-INFK Eidgenössische Technische Hochschule Zürich Ecole polytechnique fédérale de Zurich Politecnico federale di Zurigo Federal Institute of Technology at Zurich Institut für Theoretische Informatik Peter Widmayer

Mehr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr

3. Binäre Suchbäume. 3.1 Natürliche binäre Suchbäume. EADS 3.1 Natürliche binäre Suchbäume 78/598 ľernst W. Mayr 3. Binäre Suchbäume 3.1 Natürliche binäre Suchbäume Definition 18 Ein natürlicher binärer Suchbaum über einem durch total geordneten Universum U ist ein als interner Suchbaum organisierter Binärbaum (also:

Mehr

1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen

1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen 1 Datenstrukturen 1.1 Abstrakte Datentypen 1.2 Lineare Strukturen 1.3 Bäume 1.4 Prioritätsschlangen 1.5 Graphen 1 1.3 Bäume Hierarchische Datenstruktur Zusammenfassung von Gruppen (z.b. Bund / Länder /

Mehr

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke

Theoretische Informatik 1 WS 2007/2008. Prof. Dr. Rainer Lütticke Theoretische Informatik 1 WS 2007/2008 Prof. Dr. Rainer Lütticke Inhalt der Vorlesung Grundlagen - Mengen, Relationen, Abbildungen/Funktionen - Datenstrukturen - Aussagenlogik Automatentheorie Formale

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2017 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Kürzeste Wege, Heaps, Hashing Heute: Kürzeste Wege: Dijkstra Heaps: Binäre Min-Heaps Hashing:

Mehr

Informatik 1 ( ) D-MAVT F2010. Schleifen, Felder. Yves Brise Übungsstunde 5

Informatik 1 ( ) D-MAVT F2010. Schleifen, Felder. Yves Brise Übungsstunde 5 Informatik 1 (251-0832-00) D-MAVT F2010 Schleifen, Felder Nachbesprechung Blatt 3 Aufgabe 1 ASCII... A > a Vorsicht: Lösen Sie sich von intuitiven Schlussfolgerungen. A ist nicht grösser als a, denn in

Mehr

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen

Datenstrukturen Teil 2. Bäume. Definition. Definition. Definition. Bäume sind verallgemeinerte Listen. Sie sind weiter spezielle Graphen Bäume sind verallgemeinerte Listen Datenstrukturen Teil 2 Bäume Jeder Knoten kann mehrere Nachfolger haben Sie sind weiter spezielle Graphen Graphen bestehen aus Knoten und Kanten Kanten können gerichtet

Mehr

ContainerDatenstrukturen. Große Übung 4

ContainerDatenstrukturen. Große Übung 4 ContainerDatenstrukturen Große Übung 4 Aufgabenstellung Verwalte Kollektion S von n Objekten Grundaufgaben: Iterieren/Auflistung Suche nach Objekt x mit Wert/Schlüssel k Füge ein Objekt x hinzu Entferne

Mehr

Logische Datenstrukturen

Logische Datenstrukturen Lineare Listen Stapel, Warteschlangen Binärbäume Seite 1 Lineare Liste Begriffe first Funktion: sequentielle Verkettung von Datensätzen Ordnungsprinzip: Schlüssel Begriffe: first - Anker, Wurzel; Adresse

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 11 (4.6.2014) Binäre Suchbäume II Algorithmen und Komplexität Binäre Suchbäume Binäre Suchbäume müssen nicht immer so schön symmetrisch sein

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

11.1 Grundlagen - Denitionen

11.1 Grundlagen - Denitionen 11 Binärbäume 11.1 Grundlagen - Denitionen Denition: Ein Baum ist eine Menge, die durch eine sog. Nachfolgerrelation strukturiert ist. In einem Baum gilt: (I) (II) 1 Knoten w ohne VATER(w), das ist die

Mehr

Algorithmen und Datenstrukturen (für ET/IT) Wiederholung: Ziele der Vorlesung. Wintersemester 2012/13. Dr. Tobias Lasser

Algorithmen und Datenstrukturen (für ET/IT) Wiederholung: Ziele der Vorlesung. Wintersemester 2012/13. Dr. Tobias Lasser Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Wiederholung: Ziele der Vorlesung Wissen: Algorithmische

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Binärbaum Suchbaum Dr. Frank Seifert Vorlesung Datenstrukturen - Sommersemester 2016 Folie 356 Datenstruktur Binärbaum Strukturrepräsentation des mathematischen Konzepts Binärbaum

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 211 Heapsort Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

Algorithmen und Datenstrukturen (für ET/IT)

Algorithmen und Datenstrukturen (für ET/IT) Algorithmen und Datenstrukturen (für ET/IT) Wintersemester 2012/13 Dr. Tobias Lasser Computer Aided Medical Procedures Technische Universität München Wiederholung: Ziele der Vorlesung Wissen: Algorithmische

Mehr

14. Rot-Schwarz-Bäume

14. Rot-Schwarz-Bäume Bislang: Wörterbuchoperationen bei binären Suchbäume effizient durchführbar, falls Höhe des Baums klein. Rot-Schwarz-Bäume spezielle Suchbäume. Rot-Schwarz-Baum mit n Knoten hat Höhe höchstens 2 log(n+1).

Mehr

12.3 Ein Datenmodell für Listen

12.3 Ein Datenmodell für Listen Zweiter Versuch: Wir modellieren ein Element der Liste zunächst als eigenständiges Objekt. Dieses Objekt hält das gespeicherte Element. Andererseits hält das Element- Objekt einen Verweis auf das nächste

Mehr

Schnittstellen, Stack und Queue

Schnittstellen, Stack und Queue Schnittstellen, Stack und Queue Schnittstelle Stack Realisierungen des Stacks Anwendungen von Stacks Schnittstelle Queue Realisierungen der Queue Anwendungen von Queues Hinweise zum Üben Anmerkung: In

Mehr

Teil VII. Hashverfahren

Teil VII. Hashverfahren Teil VII Hashverfahren Überblick 1 Hashverfahren: Prinzip 2 Hashfunktionen 3 Kollisionsstrategien 4 Aufwand 5 Hashen in Java Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 7 1 Hashverfahren:

Mehr

Konkatenation zweier Listen mit concat

Konkatenation zweier Listen mit concat Ein Datenmodell für Listen Konkatenation zweier Listen mit concat Was ist an der Konkatenation etwas unschön? Man muss die vordere Liste einmal durchgehen, um den letzten Nachfolger (urspr. null zu erhalten,

Mehr

Einführung in die STL

Einführung in die STL Einführung in die STL Fimberger Lucia lfimberg@cosy.sbg.ac.at Nidetzky Marion mnidetzk@cosy.sbg.ac.at Was ist die STL? Abkürzung für Standard Template Library Eine generische Bibliothek Ist kaum objektorientiert,

Mehr

Informatik II, SS 2016

Informatik II, SS 2016 Informatik II - SS 2016 (Algorithmen & Datenstrukturen) Vorlesung 10 (27.5.2016) Binäre Suchbäume II Algorithmen und Komplexität Zusätzliche Dictionary Operationen Dictionary: Zusätzliche mögliche Operationen:

Mehr

Einfache Liste: Ein Stapel (Stack) Ansatz. Schaubild. Vorlesung 1. Handout S. 2. Die einfachste Form einer Liste ist ein Stapel (stack).

Einfache Liste: Ein Stapel (Stack) Ansatz. Schaubild. Vorlesung 1. Handout S. 2. Die einfachste Form einer Liste ist ein Stapel (stack). Programmieren I Martin Schultheiß Hochschule Darmstadt Sommersemester 2011 1 / 64 2 / 64 Motivation Hauptteil dieser Vorlesung sind die so genannten. Zur Motivation (und als Vorbereitung der Datencontainer-Klassen

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Dynamische Datenobjekte Pointer/Zeiger, Verkettete Liste Eigene Typdefinitionen 1 Zeigeroperatoren & und * Ein Zeiger ist die Speicheradresse irgendeines Objektes. Eine

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 217 Patrick Schäfer, Humboldt-Universität zu Berlin Agenda: Graphen, Suchbäume, AVL Bäume Heute: Graphen und Bäume Binäre Suchbäume AVL-Bäume Nächste

Mehr

Aufgabe (Schreibtischtest, Algorithmenanalyse)

Aufgabe (Schreibtischtest, Algorithmenanalyse) Aufgabe (Schreibtischtest, Algorithmenanalyse) Führen Sie einen Schreibtischtest für den Algorithmus Positionsort für das folgende Eingabe-Array durch. Geben Sie nach jedem Durchlauf der for-schleife mit

Mehr

Datenstrukturen und Algorithmen. 7. Suchen in linearen Feldern

Datenstrukturen und Algorithmen. 7. Suchen in linearen Feldern Datenstrukturen und Algorithmen 7. Suchen in linearen Feldern VO 708.031 Suchen in linearen Feldern robert.legenstein@igi.tugraz.at 1 Inhalt der Vorlesung 1. Motivation, Einführung, Grundlagen 2. Algorithmische

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen A3. Sortieren: Selection- und Insertionsort Marcel Lüthi and Gabriele Röger Universität Basel 1. März 2018 Sortieralgorithmen Inhalt dieser Veranstaltung A&D Sortieren Komplexitätsanalyse

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

5. Januar Universität Bielefeld AG Praktische Informatik. Programmieren in Haskell. Stefan Janssen. Abstrakte Datentypen.

5. Januar Universität Bielefeld AG Praktische Informatik. Programmieren in Haskell. Stefan Janssen. Abstrakte Datentypen. Universität Bielefeld AG Praktische Informatik 5. Januar 2015 Themen-Vorschau Module In der Software-Entwicklung unterscheidet zwei Arten von : konkrete beziehen sich auf eine konkrete Repräsentation in

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 01/13 6. Vorlesung Prioritäten setzen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Guten Morgen! Tipps für unseren ersten Test am 0. November: Lesen

Mehr

Schein-/Bachelorklausur Teil 2 am Zulassung: Mindestens 14 Punkte in Teilklausur 1 und 50% der Übungspunkte aus dem 2. Übungsblock.

Schein-/Bachelorklausur Teil 2 am Zulassung: Mindestens 14 Punkte in Teilklausur 1 und 50% der Übungspunkte aus dem 2. Übungsblock. Schein-/Bachelorklausur Teil 2 am 13.02.2007 Zulassung: Mindestens 14 Punkte in Teilklausur 1 und 50% der Übungspunkte aus dem 2. Übungsblock. Alle Studiengänge außer Bachelor melden sich über die Lehrstuhlwebseite

Mehr