Die Finite-Elemente-Methode. Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Die Finite-Elemente-Methode. Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit"

Transkript

1 Die Finite-Elemente-Methode Anwendungsbereiche Soft- und Hardwarevoraussetzungen Programmierbarkeit

2 Inhalt Die Finite-Elemente-Methode Was ist das und wofür? Die Idee mit den Elementen Anwendung der FEM Mathematische Vorgehensweise FE-Software und Anwenderprogrammierung ABAQUS 2

3 Inhalt Die Finite-Elemente-Methode Was ist das und wofür? 3

4 Was ist die Finite-Elemente-Methode und wofür wird sie verwendet? Ein numerisches Verfahren Vereinfacht komplexe Problemstellungen Zu Berechnendes Gebiet wird in endliche (finite) Teilgebiete (Elemente) unterteilt Elemente lassen sich mit Hilfe einer endlichen Zahl von Parametern beschreiben 4

5 Inhalt Die Finite-Elemente-Methode Was ist das und wofür? Die Idee mit den Elementen 5

6 Die Idee mit den Elementen 6

7 Die Idee mit den Elementen 7

8 Die Idee mit den Elementen Körper verformt sich wegen äußerer Kräfte FEM wird zur Berechnung herangezogen FE-Software kommt zum Einsatz Anhand von Geometrie und Eckdaten wird ein Modell für den Rechner erstellt Aufgrund von Symmetrie nur Viertellochplatte 8

9 Die Idee mit den Elementen Lochplatte wird vernetzt (Diskretisierung) 9

10 Die Idee mit den Elementen 10

11 Die Idee mit den Elementen 11

12 Verschiedene Elementtypen Eindimensional Zweidimensional Dreidimensional 12

13 Spannungen 13

14 Verschiebungen 14

15 Verschiebungen 15

16 Inhalt Die Finite-Elemente-Methode Was ist das und wofür? Die Idee mit den Elementen Anwendung der FEM 16

17 Bauingenieurwesen Ursprung der FEM und deren Weiterentwicklung Tragwerkberechnungen und Bauwerkaerodynamik Fachwerke Flächentragwerke Fundamente Boden- und Felsmechanik Ziel: Einsparen von Material unter Beibehaltung der statischen Eigenschaften und Sicherheiten 17

18 Bauingenieurwesen - Brücken 18

19 Bauingenieurwesen Olympiastadion München 19

20 Maschinenbau Konstruktion und Produktion von Maschinen Analysieren von Bauteilen Insbesondere die Automobilindustrie Bauteilfestigkeiten Karosserieberechnung insbesondere Crashverhalten Aerodynamik Optimierung 20

21 Elektrotechnik Feldberechnungen Elektrische Felder Magnetische Felder Thermische Felder Verhinderung von teuren, zeitaufwendigen und ungenauen Messungen Elektromotoren und Batterien 21

22 Biomechanik Analyse der Bewegungen von biologischen Systemen Maximale Belastungen Minimieren von Versuchen an Lebewesen 22

23 Inhalt Die Finite-Elemente-Methode Was ist das und wofür? Die Idee mit den Elementen Anwendung der FEM Mathematische Vorgehensweise 23

24 Übersicht 24

25 Beispiel ü 0und ist 0 25

26 Elementansatz - Ansatzfunktionen Ein problemgerechter Ansatz muss gewählt werden 0 0 Polynome Vom Übergang zu einem anderen Elemente bestimmte Stetigkeitsbedingungen zu erfüllen Näherungsfunktion! 26

27 Galerkin-Verfahren Residuum Abweichung der gewünschten Ergebnisse Entstehung durch einsetzen von Näherungsfunktionen in die Gleichung " Wichtungsgleichung Minimieren des Residuum ' # $ % " & 0 Bei Galerkin ist $ % %, um die Symmetrie beizubehalten ' # % " & 0=> ()0 27

28 Formfunktionen Formfunktionen! 1 * und + * Elementmatrix ( %, -. / 1 Lastenvektor. 0 & ), 3 % # % & (,! 3 ), ! +! 2 + Für alle Elemente gilt die Summe der Ausdrücke 28

29 Gesamtmatrix für alle Elemente Assemblieren Mit den Rändern 5! gilt für die Temperatur 7 ' : ' 7;

30 Gesamtmatrix für alle Elemente Assemblieren Mit den Rändern 5! gilt für die Temperatur 7 ' : ' 7;

31 Vergleich FEM und analytische Lösung 31

32 Materialeigenschaften und Randbedingungen Werkstoffkennwerte Je nach Berechnungsziel verschiedene Eigenschaften Randbedingungen Belastungen und Fixierungen Gelten am Rand des Definitionsbereiches (Knotenpunkte) 2 Arten von Randbedingungen Dirichletrandbedingungen und Neumannrandbedingungen 32

33 Lösen des Gleichungssystems Direkte Verfahren Freiheitsgrade bis ungefähr Z.B. Gauß FE-Gleichungsysteme eher dünnbesetzt Iterative Verfahren Ab c.a Rechenaufwand und Speicherbedarf wird zu hoch für direkte Verfahren Schrittweises Verbessern Oftmals kommen Parallelrechner zum Einsatz 33

34 Inhalt Die Finite-Elemente-Methode Was ist das und wofür? Die Idee mit den Elementen Anwendung der FEM Mathematische Vorgehensweise FE-Software und Anwenderprogrammierung 34

35 Software Kommerziell: Mehr als 40 verschiedene Programme Darunter ANSYS und ABAQUS als Marktführer Freier Code: Viele verschiedene Open-Source-Programme 35

36 Vorgehensweise Geometrie in einem CAD-Programm erstellen und mittels Schnittstelle in den Präprozessor übermitteln Präprozessor Solver Postprozessor 36

37 Präprozessor (Preprocessing) Verfügbarkeit von Variablen, festlegen von Elementgrößen festlegen von Elementtypen Erzeugung durch Vernetzungsalgorithmus Eingabe des Materialverhalten 37

38 Gleichungslöser (Solver) 2 verschiedene Gleichungslöser je nach Problem Implizit Explizit Implizit: Können direkte und iterative Verfahren sein Explizite Solver Hochdynamische Problemstellungen 38

39 Postprozessor (Postprocessing) Ergebnisse des Gleichungslöser ausgewertet verglichen bewertet In vielen Fällen können Verformungen und Spannungen durch farbliche Kennzeichnung hervorgehoben werden 39

40 Inhalt Die Finite-Elemente-Methode Was ist das und wofür? Die Idee mit den Elementen Anwendung der FEM Mathematische Vorgehensweise FE-Software und Anwenderprogrammierung ABAQUS 40

41 Schnittstellen Möglichkeit für eigene Erweiterungen Elemente Material Auswerteverfahren Meistens FORTRAN ABAQUS-Version angepasster FORTRAN-Compiler Vorgegebene Parameterlisten 41

42 UMAT Mechanisches und thermisches Verhalten eines Werkstoffes anhand von eigenen physikalischen Beschreibungen zum Materialverhalten Gebunden an vorgegebene Variablen Dokumentation gibt Informationen dazu 42

43 UMAT 43

44 UMAT 44

45 Vielen Dank für die Aufmerksamkeit! 45

Die Finite-Elemente-Methode

Die Finite-Elemente-Methode Die Finite-Elemente-Methode Anwendungsbereiche, Soft- und Hardwarevoraussetzungen, Programmierbarkeit Seminararbeit Im Studiengang Scientific Programming Fachhochschule Aachen, Standort Jülich Fachbereich

Mehr

CAE. Inhalt der Vorlesung CAE. Kap. 2.1 Das Prinzip der FEM

CAE. Inhalt der Vorlesung CAE. Kap. 2.1 Das Prinzip der FEM 1 Einleitung und Übersicht 1.1 Begrüßung 1.2 Aktuelle Marktstudie PLM-, CAD-, -Systeme 1.3 Übersicht (Computerunterstützte Produktentwicklung) 1 2 Die Finite Elemente Methode 2.1 2.2 Linear elastisches

Mehr

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode

Prof. Dr.-Ing. Christopher Bode. Finite-Elemente-Methode Prof. Dr.-Ing. Christopher Bode Finite-Elemente-Methode Kapitel 1: Einleitung BEUTH Hochschule für Technik Berlin Prof. Dr.-Ing. C. Bode 2 Was ist FEM? Die FEM ist ein mathematisches Verfahren zur Lösung

Mehr

4. Der Berechnungsprozess

4. Der Berechnungsprozess Idealisierung Bauteil / Entwurf Preprocessor Mathematisches Modell Diskretisierung Finite-Elemente- Modell Solver Rechnung Ergebnisse Postprocessor Bewertung Prof. Dr. Wandinger 1. Fachwerke FEM 1.4-1

Mehr

CAE, 1.3 Übersicht Computerunterstützte Produktentwicklung

CAE, 1.3 Übersicht Computerunterstützte Produktentwicklung 1 Einleitung und Übersicht 1.1 Begrüßung 1.2 Aktuelle Marktstudie PLM-, CAD-, CAE-Systeme 1.3 Übersicht CAE (Computerunterstützte Produktentwicklung) 1 2 Die Finite Elemente Methode 2.1 Das Prinzip der

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Validierung des Kontaktmoduls der Freeware Z88Aurora anhand analytischer Beispiele und kommerzieller FE-Systeme

Validierung des Kontaktmoduls der Freeware Z88Aurora anhand analytischer Beispiele und kommerzieller FE-Systeme Validierung des Kontaktmoduls der Freeware Z88Aurora anhand analytischer Beispiele und kommerzieller FE-Systeme SAXSIM 2017 28.03.2017 Chemnitz Daniel Goller, Daniel Billenstein, Florian Nützel, Christian

Mehr

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12 Bernd Klein FEM Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau 8., verbesserte und erweiterte Auflage Mit 230 Abbildungen, 12 Fallstudien und 20 Übungsaufgaben STUDIUM

Mehr

Bernd Klein STUDIUM/ TEUBNER

Bernd Klein STUDIUM/ TEUBNER Bernd Klein FE Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau: ' 8., verbesserte und erweiterte Auflage Mit 230Abbildungen, 12 Fallstudien und 20 Übungsaufgaben.. /,

Mehr

4. Das Verfahren von Galerkin

4. Das Verfahren von Galerkin 4. Das Verfahren von Galerkin 4.1 Grundlagen 4.2 Methode der finiten Elemente 4.3 Beispiel: Stab mit Volumenkraft Prof. Dr. Wandinger 3. Prinzip der virtuellen Arbeit FEM 3.4-1 4.1 Grundlagen Das Verfahren

Mehr

Integration externer PDE-Löser in Mathcad

Integration externer PDE-Löser in Mathcad in Mathcad Cathleen Seidel Dipl.-Wirtschaftsmath. GmbH Nürnberg Überblick 1. Erweiterung bestehender Software Warum? 2. inuech GmbH & Diffpack 3. Wärmeleitungsgleichung mit Diffpack 4. Erstellen einer

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Inhaltsverzeichnis Einleitung Mathematische Grundlagen

Inhaltsverzeichnis Einleitung Mathematische Grundlagen Inhaltsverzeichnis 1 Einleitung 1.1 Vorgehensweise bei der FEM... 3 1.2 Verschiedene Elementtypen... 5 1.3 Beispiele zur Finite-Elemente-Methode... 10 1.3.1 Beispiel zu nichtlinearen Problemen... 10 1.3.2

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers)

Finite Elemente Methoden (aus der Sicht des Mathematikers) Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn

Mehr

Fragen und Antworten zum Webinar

Fragen und Antworten zum Webinar Fragen und Antworten zum Webinar 27. Oktober 2017 Wie ist generell die Vorgehensweise zur Durchführung einer Simulation mit CATIA FEM? Vereinfacht dargestellt (siehe auch Video) https://youtu.be/p3cy8sk_2g8

Mehr

Methode der f initen Elemente

Methode der f initen Elemente r Methode der f initen Elemente Eine Einführung unter besonderer Berücksichtigung der Rechenpraxis Von Dr. sc. math. Hans Rudolf Schwarz ord. Professor an der Universität Zürich 3., neubearbeitete Auflage

Mehr

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1

Ausblick. 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen. Prof. Dr. Wandinger 5. Ausblick FEM 5-1 Ausblick 1. Lineare dynamische Analysen 2. Nichtlineare Analysen 3. Weitere Anwendungen Prof. Dr. Wandinger 5. Ausblick FEM 5-1 1. Lineare dynamische Analysen Beschleunigungen: Bei linearen dynamischen

Mehr

SolidLine-Launch-Day , Rodgau. Thema: virtuelle Produktentwicklung am Beispiel der KIESER AG, Zürich. daskernteam GbR, Modautal Start

SolidLine-Launch-Day , Rodgau. Thema: virtuelle Produktentwicklung am Beispiel der KIESER AG, Zürich. daskernteam GbR, Modautal Start SolidLine-Launch-Day 08.10.2009, Rodgau Vortrag: Fit für Fitness Thema: virtuelle Produktentwicklung am Beispiel der KIESER AG, Zürich Autor: daskernteam GbR, Modautal Start Fit für Fitness virtuelle Produktentwicklung

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: Markus.Kaestner@tu-dresden.de Dresden, 06.0.206 Zusammenfassung 8. Vorlesung. Schiefwinklige Scheibenelemente Numerischer

Mehr

Kosten- und Zeitersparnis durch konstruktionsbegleitende Simulation mit CATIA V5 Die numerische Simulation ist mittlerweile ein fester und nicht mehr

Kosten- und Zeitersparnis durch konstruktionsbegleitende Simulation mit CATIA V5 Die numerische Simulation ist mittlerweile ein fester und nicht mehr Kosten- und Zeitersparnis durch konstruktionsbegleitende Simulation mit CATIA V5 Die numerische Simulation ist mittlerweile ein fester und nicht mehr wegzudenkender Bestandteil des Produktionsprozesses.

Mehr

Mechanisches Verhalten und numerische Simulationen von TPE im Vergleich zu Elastomeren

Mechanisches Verhalten und numerische Simulationen von TPE im Vergleich zu Elastomeren Mechanisches Verhalten und numerische Simulationen von TPE im Vergleich zu Elastomeren O. Haeusler & H. Baaser Computer Aided Engineering TPE@DKT / Nürnberg, 3. Juli 2012 Agenda Materialverhalten aus Ingenieur-Sicht

Mehr

FEM zur Berechnung von Kunststoff- und Elastomerbauteilen

FEM zur Berechnung von Kunststoff- und Elastomerbauteilen FEM zur Berechnung von Kunststoff- und Elastomerbauteilen Bearbeitet von Markus Stommel, Marcus Stojek, Wolfgang Korte 1. Auflage 2011. Buch. X, 316 S. Hardcover ISBN 978 3 446 42124 0 Format (B x L):

Mehr

Einführung FEM, 1D - Beispiel

Einführung FEM, 1D - Beispiel Einführung FEM, D - Beispiel home/eichel/lehre/mhs/fem_intro/deckblatt.tex. p./6 Inhaltsverzeichnis D Beispiel - Finite Elemente Methode. D Aufbau Geometrie 2. Bilanzgleichungen 3. Herleitung der Finiten

Mehr

Parameterabhängigkeiten bei Topologieoptimierungsalgorithmen und die Auswirkung auf den Konstruktionsprozess

Parameterabhängigkeiten bei Topologieoptimierungsalgorithmen und die Auswirkung auf den Konstruktionsprozess Parameterabhängigkeiten bei Topologieoptimierungsalgorithmen und die Auswirkung auf den Konstruktionsprozess 15. Bayreuther 3D-Konstrukteurstag 18. September 2013 Überblick Gliederung Theoretischer und

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen

Mehr

Teil I Physikalische Grundlagen...1. Lernziel...1

Teil I Physikalische Grundlagen...1. Lernziel...1 Inhaltsverzeichnis Teil I Physikalische Grundlagen...1 Lernziel...1 1 Temperaturfelder und Wärmeübertragung...1 1.1 Einleitung... 1 1.2 Stationäre und instationäre Wärmeübertragung...2 1.3 Lineare und

Mehr

Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame 567830 Bachelorstudiengang Produktentwicklung und Produktion WS 2015 / 2016

Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame 567830 Bachelorstudiengang Produktentwicklung und Produktion WS 2015 / 2016 Strukturanalyse einer mittels Rapid-Prototyping gefertigten Pelton-Turbinenschaufel - grundlegende Festigkeitsanalysen sowie Überlegungen zu Materialkennwerten Kolloquium zur Bachelorarbeit Alain-B. Nsiama-Leyame

Mehr

2 BAUELEMENTE SPANENDER WERKZEUGMASCHINEN 2.1 Verhalten und Analyse von Werkzeugmaschinen

2 BAUELEMENTE SPANENDER WERKZEUGMASCHINEN 2.1 Verhalten und Analyse von Werkzeugmaschinen 2 BAUELEMENTE SPANENDER WERKZEUGMASCHINEN 2.1 Verhalten und Analyse von Werkzeugmaschinen 2.1.1 Statisches Verhalten 2.1.2 Dynamisches Verhalten 2.1.3 Modalanalyse 2.1.4 Thermisches Verhalten 2.1.5 Beschreibung

Mehr

Hochschule München. Studiengang Maschinenbau. Schwerpunkt Konstruktion. Prof. C. Maurer

Hochschule München. Studiengang Maschinenbau. Schwerpunkt Konstruktion. Prof. C. Maurer Hochschule München Studiengang Maschinenbau Schwerpunkt Konstruktion Prof. C. Maurer Schwerpunkt Konstruktion: Lehrveranstaltungen Rechnergestütztes Entwickeln Produktentwicklungs- und Innovationsmethoden

Mehr

Praktikum Nichtlineare FEM

Praktikum Nichtlineare FEM Praktikum Nichtlineare FEM Einführung FEM II - Einführung 1 Mario.Lindner@MB.TU-Chemnitz.DE Ziele des Praktikums Überblick über die Berechnung nichtlinearer Strukturen Umgang mit der kommerziellen FEM-Software

Mehr

Grundlagen und Grundgleichungen der Strömungsmechanik

Grundlagen und Grundgleichungen der Strömungsmechanik Inhalt Teil I Grundlagen und Grundgleichungen der Strömungsmechanik 1 Einführung... 3 2 Hydromechanische Grundlagen... 7 2.1 Transportbilanz am Raumelement... 7 2.1.1 Allgemeine Transportbilanz... 7 2.1.2

Mehr

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh

Numerische Akustik. Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh Numerische Akustik Ennes Sarradj, Gesellschaft für Akustikforschung Dresden mbh 1 Einleitung Akustischen Messungen und Berechnungen sind mittlerweile in vielen Fällen nicht ohne Einsatz eines Computers

Mehr

CAD-FEM-MKS, CAD FEM MKS. von der dreidimensionalen Konstruktionszeichnung zum guten mechanischen Simulationsmodell

CAD-FEM-MKS, CAD FEM MKS. von der dreidimensionalen Konstruktionszeichnung zum guten mechanischen Simulationsmodell CAD-FEM-MKS, 24.11.16 CAD FEM MKS von der dreidimensionalen Konstruktionszeichnung zum guten mechanischen Simulationsmodell der erste Schritt zum digitalen Zwilling im Rahmen von Industrie 4.0 Bocholt,

Mehr

Bildkorrelation zur Validierung der Finite-Elemente-Analyse mit Z88Aurora anhand einer Windkraftflügelstruktur

Bildkorrelation zur Validierung der Finite-Elemente-Analyse mit Z88Aurora anhand einer Windkraftflügelstruktur Bildkorrelation zur Validierung der Finite-Elemente-Analyse mit ZAurora anhand einer Windkraftflügelstruktur 15. Bayreuther 3D-Konstruktuerstag 1. September 13 Dipl.-Ing. Christoph Wehmann Prof. Dr.-Ing.

Mehr

3 FEM-Anwendungspraxis 3.1 Modellierungstechniken

3 FEM-Anwendungspraxis 3.1 Modellierungstechniken 3 FEM-Anwendungspraxis 3.1 Modellierungstechniken 1 Arten der Modellgenerierung Direkte (manuelle) Generierung (Direct modeling): Der Anwender selbst erzeugt die Knoten und Elemente ohne zuvor die Geometrie

Mehr

Mehrkörper-Simulation Theorie und Praxis

Mehrkörper-Simulation Theorie und Praxis Mehrkörper-Simulation Theorie und Praxis Josef Althaus NTB Buchs 4. Swiss VPE Symposium, 24. April 2013, Hochschule für Technik Rapperswil 1 Inhalt Was ist ein Mehrkörpersystem (MKS)? Grundlagen des Modellaufbaus

Mehr

Finite Elemente am Beispiel der Poissongleichung

Finite Elemente am Beispiel der Poissongleichung am Beispiel der Poissongleichung Roland Tomasi 11.12.2013 Inhalt 1 2 3 Poissongleichung Sei R n ein Gebiet mit abschnittsweise glattem Rand und f L 2 (). Wir suchen u : R, so dass u = f in, u = 0 Physikalische

Mehr

5. Numerische Ergebnisse. 5.1. Vorbemerkungen

5. Numerische Ergebnisse. 5.1. Vorbemerkungen 5. Numerische Ergebnisse 52 5. Numerische Ergebnisse 5.1. Vorbemerkungen Soll das thermische Verhalten von Verglasungen simuliert werden, müssen alle das System beeinflussenden Wärmetransportmechanismen,

Mehr

Finite Element Analyse (FEA) (Solver & Post-Processing)

Finite Element Analyse (FEA) (Solver & Post-Processing) Finite Element Analyse (FEA) (Solver & Post-Processing) Vortrag im Rahmen des 3D Druck ProSeminars 2016 Lars Lamberti Gliederung Solver Zuverlässigkeit und Genauigkeit Genauigkeitssteigerung Post-Processing

Mehr

Simulation von Formgedächtnis Antrieben in der Robotik

Simulation von Formgedächtnis Antrieben in der Robotik Simulation von Formgedächtnis Antrieben in der Robotik Technische Universität München Simulation von Formgedächtnis-Legierungen Inhalt 1. Formgedächtnis - Effekte 2. Modellgleichungen 3. Numerisches Vorgehen

Mehr

Begriffe und Modellbildung. Explizite Finite Elemente Methode

Begriffe und Modellbildung. Explizite Finite Elemente Methode Explizite Finite Elemente Methode LV01: Masterkurs für MK-M, ME-M und PE-M Begriffe und Modellbildung zur numerischen Simulation Prof. Dr.-Ing. Hans-Dieter Kleinschrodt FB VIII: Maschinenbau, Veranstaltungstechnik,

Mehr

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1

2. Gauß-Integration. Prof. Dr. Wandinger 4. Scheibenelemente FEM 4.2-1 Die analytische Integration der Steifigkeitsmatrix für das Rechteckelement ist recht mühsam. Für Polynome gibt es eine einfachere Methode zur Berechnung von Integralen, ohne dass die Stammfunktion benötigt

Mehr

Aufgabe 2: Verifikation & Validierung

Aufgabe 2: Verifikation & Validierung Aufgabe 2: Verifikation & Validierung Ziel der Übung - Untersuchung des Einflusses der räumlichen Diskretisierung (Netzfeinheit, Elementtyp) auf das Ergebnis der Simulation - Vergleich der theoretischen

Mehr

Partielle Differentialgleichungen

Partielle Differentialgleichungen http://www.free background wallpaper.com/background wallpaper water.php Partielle Differentialgleichungen 1 E Partielle Differentialgleichungen Eine partielle Differentialgleichung (Abkürzung PDGL) ist

Mehr

Entwurf elektrischer Maschinen mit numerischer Feldberechnung

Entwurf elektrischer Maschinen mit numerischer Feldberechnung Entwurf elektrischer Maschinen mit numerischer Feldberechnung Erich Schmidt Institut für Elektrische Antriebe und Maschinen Technische Universität Wien Wien, Österreich Inhalt Einleitung Finite Elemente

Mehr

FEM-Anwendungen in der maritimen Branche

FEM-Anwendungen in der maritimen Branche Familie STRAK, 2009-10-15 FEM-Anwendungen in der maritimen Branche Ronald Horn - FEM GmbH Vita Dr. Ronald Horn seit 10/08 S.M.I.L.E.-FEM GmbH, Heikendorf Geschäftsführer 04/08-09/08 Lindenau GmbH, Schiffswerft

Mehr

Finite-Elemente-Methoden im Stahlbau

Finite-Elemente-Methoden im Stahlbau Rolf Kindmann Matthias Kraus Finite-Elemente-Methoden im Stahlbau ICENTENN Ernst & Sohn Inhaltsverzeichnis 1 Einleitung und Übersicht 1 1.1 Erforderliche Nachweise und Nachweisverfahren 1 1.2 Verfahren

Mehr

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel

- Numerik in der Physik - Simulationen, DGL und Co. Max Menzel - Numerik in der Physik - Simulationen, DGL und Co. Max Menzel 4.1.2011 1 Übersicht Differenzialgleichungen? Was ist das? Wo gibt es das? Lösen von Differenzialgleichungen Analytisch Numerisch Anwendungen

Mehr

Leseprobe. Werner Koehldorfer. Finite-Elemente-Methoden mit CATIA V5 / SIMULIA. Berechnung von Bauteilen und Baugruppen in der Konstruktion

Leseprobe. Werner Koehldorfer. Finite-Elemente-Methoden mit CATIA V5 / SIMULIA. Berechnung von Bauteilen und Baugruppen in der Konstruktion Leseprobe Werner Koehldorfer Finite-Elemente-Methoden mit CATIA V5 / SIMULIA Berechnung von Bauteilen und Baugruppen in der Konstruktion ISBN: 978-3-446-42095-3 Weitere Informationen oder Bestellungen

Mehr

FINITE ELEMENT METHODE ZUSAMMENFASSUNG MOTIVATION/GRUNDGEDANKE: ALLGEMEINES ZU FEM: AUFBAU EINER FEM STRUKTUR. Finite Element Methode Zusammenfassung

FINITE ELEMENT METHODE ZUSAMMENFASSUNG MOTIVATION/GRUNDGEDANKE: ALLGEMEINES ZU FEM: AUFBAU EINER FEM STRUKTUR. Finite Element Methode Zusammenfassung 1 von 5 FINITE ELEMENT METHODE ZUSAMMENFASSUNG MOTIVATION/GRUNDGEDANKE: Mathematisch: Ein numerisches Verfahren zur Lösung von partiellen Differentialgleichungen, welche in ein algebraisches Gleichungssystem

Mehr

Finite-Elemente-Methode

Finite-Elemente-Methode Finite-Elemente-Methode Rechnergestützte Einführung von Peter Steinke 1. Auflage Finite-Elemente-Methode Steinke schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG Springer 2012 Verlag

Mehr

Finite Elemente Analyse für Ingenieure

Finite Elemente Analyse für Ingenieure Frank Rieg Reinhard Hackenschmidt Finite Elemente Analyse für Ingenieure Eine leicht verständliche Einführung 3., vollständig überarbeitete Auflage HANSER IX Inhaltsverzeichnis Vorwort zur dritten Auflage

Mehr

Matlab. Alexandra Mehlhase & Felix Böckelmann. 26. Juni Analysetechniken in der Softwaretechnik Technische Universität Berlin SS 2008

Matlab. Alexandra Mehlhase & Felix Böckelmann. 26. Juni Analysetechniken in der Softwaretechnik Technische Universität Berlin SS 2008 Was ist /Simulink Modellierung mit Modellierung mit /Simulink Vergleich -Modelica Analysetechniken in der Softwaretechnik Technische Universität Berlin SS 2008 26. Juni 2008 Inhaltsverzeichnis Was ist

Mehr

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer-Verlag

Finite Elemente. Klaus Knothe Heribert Wessels. Eine Einführung für Ingenieure. Springer-Verlag Klaus Knothe Heribert Wessels Finite Elemente Eine Einführung für Ingenieure Mit 283 Abbildungen Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Inhaltsverzeichnis

Mehr

Universität Duisburg - Essen

Universität Duisburg - Essen 1 Universität Duisburg - Essen Campus Essen Fachgebiet Statik & Dynamik der Flächentragwerke Fachprüfung - Bauinformatik 1, Teil 1 SS 17 Mittwoch, den 09.08.2017 Prof. Dr.-Ing. Carolin Birk Name :... Matr.-

Mehr

Creo Simulation Überblick

Creo Simulation Überblick Creo Simulation Überblick Christoph Bruns INNEO Solutions GmbH Simulation mit Creo Simulation / Simulate FEM mal anders: einfach und extrem genau Christoph Bruns cbruns@inneo.com ; 07961-890-203 Bereichsleiter

Mehr

Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden. Frederik Rabe, Anja Hofmann, Ulrich Krause

Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden. Frederik Rabe, Anja Hofmann, Ulrich Krause Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden Frederik Rabe, Anja Hofmann, Ulrich Krause Gliederung Einleitung Grundlagen Grundlagen CFD NIST FDS

Mehr

Inhaltsverzeichnis 1 Einleitung 1 2 Elastische Mehrkörpersysteme Modellierung Kinematik elastischer Mehrkör

Inhaltsverzeichnis 1 Einleitung 1 2 Elastische Mehrkörpersysteme Modellierung Kinematik elastischer Mehrkör Studienarbeit STUD 185 Transiente Spannungssimulationen mit modalen Spannungsmatrizen von Michael Peić Betreuer: Prof. Dr. Ing. W. Schiehlen Dipl. Ing. H. Claus Universität Stuttgart Institut B für Mechanik

Mehr

Kontinuierliche Systeme und diskrete Systeme

Kontinuierliche Systeme und diskrete Systeme Kontinuierliche Systeme und diskrete Systeme home/lehre/vl-mhs-1/inhalt/folien/vorlesung/1_disk_kont_sys/deckblatt.tex Seite 1 von 24. p.1/24 Inhaltsverzeichnis Grundbegriffe ingenieurwissenschaftlicher

Mehr

V. Kobelev. Anwendung der Methoden der Sensitivitätsanalyse bei der Topologieoptimierung mit Hilfe des FE-Programms ANSYS

V. Kobelev. Anwendung der Methoden der Sensitivitätsanalyse bei der Topologieoptimierung mit Hilfe des FE-Programms ANSYS V. Kobelev Anwendung der Methoden der Sensitivitätsanalyse bei der Topologieoptimierung mit Hilfe des FE-Programms Sensitivitätsanalyse bei der Topologieoptimierung mit 1. Methoden der Gestaltsoptimierung

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik Von Prof. Dr. sc. math. Hans Rudolf Schwarz Universität Zürich Mit einem Beitrag von Prof. Dr. sc. math. Jörg Waldvogel Eidg. Technische Hochschule Zürich 4., überarbeitete und erweiterte

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

FEM für Praktiker - Band 3: Temperaturfelder

FEM für Praktiker - Band 3: Temperaturfelder Dipl.-Ing. Clemens Groth Dr.-Ing. Günter Müller A " Edition 4Э expert^ FEM für Praktiker - Band 3: Temperaturfelder Basiswissen und Arbeitsbeispiele zu FEM-Anwendungen der Temperaturfeldberechnung Lösungen

Mehr

1 Einleitung Historie Elemente der Mehrkörperdynamik Anwendungsgebiete... 3 Literatur... 4

1 Einleitung Historie Elemente der Mehrkörperdynamik Anwendungsgebiete... 3 Literatur... 4 Inhaltsverzeichnis 1 Einleitung... 1 1.1 Historie... 1 1.2 Elemente der Mehrkörperdynamik... 2 1.3 Anwendungsgebiete... 3 Literatur... 4 2 Dynamik des starren Körpers... 5 2.1 Lagebeschreibung... 6 2.1.1

Mehr

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele.

Inhalt. 1. Einführung in die Informatik. 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele. 1. Einführung in die Informatik Inhalt 2. Algorithmen Definition, Eigenschaften, Entwurf Darstellung von Algorithmen Beispiele Peter Sobe 1 Einführende Beispiele 2. Algorithmen Täglich werden Verarbeitungsvorschriften

Mehr

FE-Berechnungen in der Geotechnik (SS 2012)

FE-Berechnungen in der Geotechnik (SS 2012) FE-Berechnungen in der Geotechnik (SS 2012) Sickerströmung: ABAQUS 6.8-1 Beispiel (nach Abaqus 6.8-1; ABAQUS/Documentation) C. Grandas und A. Niemunis KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Parametrische Modellierung eines einlagigen Rundlitzenseils mit Kunststoffmantel

Parametrische Modellierung eines einlagigen Rundlitzenseils mit Kunststoffmantel IMW - Institutsmitteilung Nr. 35 (2010) 83 Parametrische Modellierung eines einlagigen Rundlitzenseils mit Kunststoffmantel Leng, M. Die Fähigkeit der Drahtseile, sehr große Zugkräfte übertragen und Seilscheiben

Mehr

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke.

FACHCURRICULUM KL. 9. Raum und Form Figuren zentrisch strecken Üben und Festigen. Strahlensätze. Rechtwinklige Dreiecke. MATHEMATIK Schönbuch-Gymnasium Holzgerlingen Seite 1/5 Ähnliche Figuren - Strahlensätze Figuren zentrisch strecken Eigenschaften der zentrischen Streckung kennen und Zentrische Streckung anwenden Strahlensätze

Mehr

Workshop Finite Elemente Methode

Workshop Finite Elemente Methode Workshop Finite Elemente Methode M.Sc. Bo Zhang Dipl.-Ing. Torsten Epskamp SS 2014-5 KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu

Mehr

Rechnerische Ermittlung des Zusammenhangs zwischen Sendeleistung und SAR-Wert. M. Schick. EM Software & Systems GmbH, Böblingen, Germany

Rechnerische Ermittlung des Zusammenhangs zwischen Sendeleistung und SAR-Wert. M. Schick. EM Software & Systems GmbH, Böblingen, Germany Rechnerische Ermittlung des Zusammenhangs zwischen Sendeleistung und SAR-Wert M. Schick EM Software & Systems GmbH, Böblingen, Germany, Neuherberg, Übersicht Anwendungsbeispiele aus der Praxis Voruntersuchung

Mehr

Dierentialgleichungen 2. Ordnung

Dierentialgleichungen 2. Ordnung Dierentialgleichungen 2. Ordnung haben die allgemeine Form x = F (x, x, t. Wir beschränken uns hier auf zwei Spezialfälle, in denen sich eine Lösung analytisch bestimmen lässt: 1. reduzible Dierentialgleichungen:

Mehr

Simulationsgestützte tzte Auslegung von Lineardirektantrieben mit MAXWELL, SIMPLORER und ANSYS. Matthias Ulmer, Universität Stuttgart

Simulationsgestützte tzte Auslegung von Lineardirektantrieben mit MAXWELL, SIMPLORER und ANSYS. Matthias Ulmer, Universität Stuttgart Simulationsgestützte tzte Auslegung von Lineardirektantrieben mit MAXWELL, SIMPLORER und ANSYS Matthias Ulmer, Universität Stuttgart Gliederung 1. Motivation und Zielsetzung 2. Elektrodynamische Lineardirektantriebe

Mehr

Einführung in die Finite Elemente Methode für Bauingenieure

Einführung in die Finite Elemente Methode für Bauingenieure Diethard Thieme Einführung in die Finite Elemente Methode für Bauingenieure 3., überarbeitete Auflage mit 145 Abbildungen, 71 Tafeln und 53 Berechnungsbeispielen Shaker Verlag Aachen 2008 Bibliografische

Mehr

Thermische und schalltechnische Analysen von Klimazentralgeräten

Thermische und schalltechnische Analysen von Klimazentralgeräten Thermische und schalltechnische Analysen von Klimazentralgeräten von Dipl. Wirt.-Ing. Marco Fischbach Gliederung Einleitung Normative Anforderungen an Klimazentralgeräte Aufgabenstellung Thermische Analysen

Mehr

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009

Einführung. Vita Rutka. Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Einführung Vita Rutka Universität Konstanz Fachbereich Mathematik & Statistik AG Numerik SS 2009 Was ist FEM? Die Finite-Elemente-Methode (FEM) ist ein numerisches Verfahren zur näherungsweisen Lösung,

Mehr

Finite Elemente Analysen zur Berechnung von Maschinenelementen mit nichtlinearem Verhalten

Finite Elemente Analysen zur Berechnung von Maschinenelementen mit nichtlinearem Verhalten 8. Gemeinsames Kolloquium Konstruktionstechnik 2010 Finite Elemente Analysen zur Berechnung von Maschinenelementen mit nichtlinearem Verhalten Christoph Wehmann, Martin Neidnicht, Florian Nützel, Bernd

Mehr

FEM - Zusammenfassung

FEM - Zusammenfassung FEM - Zusammenfassung home/lehre/vl-mhs-1-e/deckblatt.tex. p.1/12 Inhaltsverzeichnis 1. Bedingungen an die Ansatzfunktion 2. Randbedingungen (Allgemeines) 3. FEM - Randbedingungen home/lehre/vl-mhs-1-e/deckblatt.tex.

Mehr

Kurvenanpassung mit dem SOLVER

Kurvenanpassung mit dem SOLVER 1 Iterative Verfahren (SOLVER) Bei einem iterativen Verfahren wird eine Lösung durch schrittweise Annäherung gefunden. Der Vorteil liegt in der Verwendung einfacher Rechenoperationen und darin, dass der

Mehr

BAUMECHANIK I Prof. Dr.-Ing. Christian Barth

BAUMECHANIK I Prof. Dr.-Ing. Christian Barth BAUMECHANIK I Umfang V/Ü/P (ECTS) 2/2/0 (5) 2/2/0 2/2/0 2/2/0-2*/2*/0 - Diplom 5. 6. 7. 8. 9. 10. Definitionen und Klassifizierungen Kräfte und Kraftarten, Vektor, Vektorsysteme Darstellung vektorieller

Mehr

Stoffverteilung Mathematik Klasse 9 auf Basis der Bildungsstandards 2004

Stoffverteilung Mathematik Klasse 9 auf Basis der Bildungsstandards 2004 Umgang mit Hilfsmitteln wie elsammlung, grafikfähigem Taschenrechner, Rechner mit geeigneter Software, elektronische Medien, Internet Alle Kapitel Vernetzung In allen Lerneinheiten sollten die folgenden

Mehr

Aeroelastische Untersuchungen an einem Nurflügel mittels Abaqus

Aeroelastische Untersuchungen an einem Nurflügel mittels Abaqus Aeroelastische Untersuchungen an einem Nurflügel mittels Abaqus N. Friedl CAE Simulation & Solutions GmbH First World Conference on T. Daxner et al. CAE Affairs Seite 1 Überblick Überblick Motivation Fluid-Struktur-Interaktion

Mehr

Werner Koehldorfer. Berechnung von Bauteilen und Baugruppen in der Konstruktion. 3., überarbeitete und erweiterte Auflage HANSER

Werner Koehldorfer. Berechnung von Bauteilen und Baugruppen in der Konstruktion. 3., überarbeitete und erweiterte Auflage HANSER Werner Koehldorfer U Berechnung von Bauteilen und Baugruppen in der Konstruktion 3., überarbeitete und erweiterte Auflage HANSER 1 Einleitung 1 1.1 Arbeitsumgebungen 1 1.2 Aufbau des Buches 2 1.3 Internet-Link

Mehr

Fakultät Maschinenwesen, Institut für Fertigungstechnik, Professur Formgebende Fertigungsverfahren. Umformtechnische Verfahrensgestaltung.

Fakultät Maschinenwesen, Institut für Fertigungstechnik, Professur Formgebende Fertigungsverfahren. Umformtechnische Verfahrensgestaltung. Fakultät Maschinenwesen, Institut für Fertigungstechnik, Professur Formgebende Fertigungserfahren Umformtechnische Verfahrensgestaltung Einführung Prof. Dr.-Ing. Alexander Brosius 15. April 2015 Zielsetzung

Mehr

Physik für Ingenieure

Physik für Ingenieure Physik für Ingenieure von Prof. Dr. Ulrich Hahn OldenbourgVerlag München Wien 1 Einführung 1 1.1 Wie wird das Wissen gewonnen? 2 1.1.1 Gültigkeitsbereiche physikalischer Gesetze 4 1.1.2 Prinzipien der

Mehr

Numerische Methoden I FEM/REM

Numerische Methoden I FEM/REM Numerische Methoden I FEM/REM Dr.-Ing. Markus Kästner ZEU 353 Tel.: 035 463 32656 E-Mail: Markus.Kaestner@tu-dresden.de Dresden, 27.0.206 Klausur Datum: 2.3.206 Numerische Methoden RES, SM, MT (DPO 203),

Mehr

Simulationen mit NX. Reiner Anderl Peter Binde. Kinematik, FEM, CFD, EM und Datenmanagement. Mit zahlreichen Beispielen für NX 9

Simulationen mit NX. Reiner Anderl Peter Binde. Kinematik, FEM, CFD, EM und Datenmanagement. Mit zahlreichen Beispielen für NX 9 Reiner Anderl Peter Binde CAD- und Berechnungsdaten sämtlicher Übungsbeispiele auf DVD Simulationen mit NX Kinematik, FEM, CFD, EM und Datenmanagement. Mit zahlreichen Beispielen für NX 9 3., aktualisierte

Mehr

Eine Welt aus Zahlen. Wie funktionieren Computersimulationen?

Eine Welt aus Zahlen. Wie funktionieren Computersimulationen? Eine Welt aus Zahlen. Wie funktionieren Computersimulationen? Steffen Börm Christian-Albrechts-Universität zu Kiel Night of the Profs 2016 S. Börm (CAU Kiel) Computersimulationen 18. November 2016 1 /

Mehr

Finite Elemente Programmsystem MEANS V10 für Windows

Finite Elemente Programmsystem MEANS V10 für Windows Finite Elemente Programmsystem MEANS V10 für Windows Statik Dynamik Formoptimierung Beulen und Temperatur Geometrisch nichtlineare und plastische Verformungen Kontaktbedingungen mit Aufprall Umfangreiche

Mehr

Finite Elemente in der Baustatik

Finite Elemente in der Baustatik Horst Werkle Finite Elemente in der Baustatik Statik und Dynamik der Stab- und Flächentragwerke Mit 208 Abbildungen, 36 Tabellen und zahlreichen Beispielen 2., überarbeitete und erweiterte Auflage vieweg

Mehr

Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8

Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8 Bildungsplan Gymnasium Physik Kompetenzen und (verbindliche) Inhalte Klasse 8 1. Physik als Naturbeobachtung unter bestimmten Aspekten a) zwischen Beobachtung und physikalischer Erklärung unterscheiden

Mehr

Akustische Berechnung einer schwingenden Platte mit piezoelektrischer Anregung und Vergleich mit Messungen

Akustische Berechnung einer schwingenden Platte mit piezoelektrischer Anregung und Vergleich mit Messungen Akustische Berechnung einer schwingenden Platte mit piezoelektrischer Anregung und Vergleich mit Messungen Inhalt 1. Motivation 2. Platte und Einspannung a) Experimentelle Modalanalyse der freien Platte

Mehr

Verifizierung des Kopplungsalgorithmus analytisches Schrumpfkraftmodell mit numerischer FE-Berechnung

Verifizierung des Kopplungsalgorithmus analytisches Schrumpfkraftmodell mit numerischer FE-Berechnung Erweiterung eines analytisch-numerischen Hybridmodells für die Verzugssimulation von Großstrukturen Verifizierung des Kopplungsalgorithmus analytisches Schrumpfkraftmodell mit numerischer FE-Berechnung

Mehr

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.

Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz

Mehr

Informatik 1. Teil 1 - Wintersemester 2012/2013. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik

Informatik 1. Teil 1 - Wintersemester 2012/2013. Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Informatik 1 Teil 1 - Wintersemester 2012/2013 Prof. Dr.-Ing. habil. Peter Sobe Fachkultät Informatik / Mathematik Dieser Foliensatz wurde z.t. von Herrn Prof. Grossmann übernommen 0. Rechner und Programmierung

Mehr

Herzlich willkommen. Einsatz von CATIA V5-FEM in der täglichen Konstruktion

Herzlich willkommen. Einsatz von CATIA V5-FEM in der täglichen Konstruktion Herzlich willkommen Einsatz von CATIA V5-FEM in der täglichen Konstruktion Vortagender: Dipl.Ing.(FH) Daniel Metz Firma: csi Entwicklungstechnik GmbH, Neckarsulm Funktion: Projektleiter und CATIA V5-Beauftragter

Mehr

Strömungen in Wasser und Luft

Strömungen in Wasser und Luft Strömungen in Wasser und Luft Strömungssimulationen im UZWR Daniel Nolte März 2009 Mathematische Strömungsmodelle Navier Stokes Gleichungen (Massenerhaltung, Impulserhaltung, Energieerhaltung) ρ + (ρ U)

Mehr

STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München. Übersicht Vorstudium

STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München. Übersicht Vorstudium STUDIENPLAN FÜR DEN DIPLOM-STUDIENGANG TECHNOMATHEMATIK an der Technischen Universität München Übersicht Vorstudium Das erste Anwendungsgebiet im Grundstudium ist Physik (1. und 2. Sem.) Im 3. und 4. Sem.

Mehr

Numerische Qualität von FEM-Analysen Vergleich der h- und p-methode

Numerische Qualität von FEM-Analysen Vergleich der h- und p-methode Numerische Qualität von FEM-Analysen Vergleich der h- und p-methode Dr. Stefan Reul, PRETECH GmbH 2. Norddeutsches Simulationsforum 27. Mai 2010 All rights reserved Copyright per DIN 34 Seite 1 Diskussionspunkte»

Mehr

Lehrplan. Physik. Fachoberschule. Fachbereiche: Design Ernährung und Hauswirtschaft Sozialwesen Wirtschaft

Lehrplan. Physik. Fachoberschule. Fachbereiche: Design Ernährung und Hauswirtschaft Sozialwesen Wirtschaft Lehrplan Physik Fachoberschule Fachbereiche: Design Ernährung und Hauswirtschaft Sozialwesen Wirtschaft Ministerium für Bildung, Kultur und Wissenschaft Hohenzollernstraße 60, 66117 Saarbrücken Postfach

Mehr