Logik für Informatiker

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1

2 Semantische Bäume Eine klassische Beweistechnik Semantische Bäume Logik für Informatiker, SS 06 p.2

3 Semantische Bäume Definition: Semantischer Baum Gegeben: p 0, p 1,... beliebige Aufzählung einer aussagenl. Signatur Σ Ein semantischer Baum über Σ ist markierter, binärer Baum mit: Logik für Informatiker, SS 06 p.3

4 Semantische Bäume Definition: Semantischer Baum Gegeben: p 0, p 1,... beliebige Aufzählung einer aussagenl. Signatur Σ Ein semantischer Baum über Σ ist markierter, binärer Baum mit: 1. Wurzel ist unmarkiert 2. Nachfolgerknoten der Wurzel mit p 0 und p 0 markiert 3. Ist Knoten mit p i oder p i markiert, sind Nachfolgerknoten mit p i+1 und p i+1 markiert Logik für Informatiker, SS 06 p.3

5 Semantische Bäume Definition: Semantischer Baum Gegeben: p 0, p 1,... beliebige Aufzählung einer aussagenl. Signatur Σ Ein semantischer Baum über Σ ist markierter, binärer Baum mit: 1. Wurzel ist unmarkiert 2. Nachfolgerknoten der Wurzel mit p 0 und p 0 markiert 3. Ist Knoten mit p i oder p i markiert, sind Nachfolgerknoten mit p i+1 und p i+1 markiert Bemerkung Semantische Bäume repräsentieren alle möglichen Σ-Interpretationen Logik für Informatiker, SS 06 p.3

6 Semantische Bäume Beispiel Σ = {p, q, r, s} Logik für Informatiker, SS 06 p.4

7 Semantische Bäume Beispiel Σ = {p, q, r, s} p p q q q q r r r r r r r r s s s s s s s s s s s s s s s s Logik für Informatiker, SS 06 p.4

8 Semantische Bäume Definition: Widerlegungsmenge Widerlegungsmenge eines Knotens ν eines semantischen Baums: Alle Markierungen oberhalb und einschließlich von ν Logik für Informatiker, SS 06 p.5

9 Semantische Bäume Definition: Widerlegungsmenge Widerlegungsmenge eines Knotens ν eines semantischen Baums: Alle Markierungen oberhalb und einschließlich von ν Definition: Fehlschlagsknoten Eine Klausel C schlägt fehl bei ν, falls für alle Literale L C Markierung L in Widerlegungsmenge von ν Logik für Informatiker, SS 06 p.5

10 Semantische Bäume Definition: Inferenzknoten Ein Inferenzknoten ist ein Knoten, dessen beide Nachfolger Fehlschlagsknoten sind. Logik für Informatiker, SS 06 p.6

11 Semantische Bäume Definition: Inferenzknoten Ein Inferenzknoten ist ein Knoten, dessen beide Nachfolger Fehlschlagsknoten sind. Definition: geschlossener semantischer Baum Ein semantischer Baum ist geschlossen für S, falls jeder Pfad Fehlschlagsknoten für S enthält Logik für Informatiker, SS 06 p.6

12 Semantische Bäume Beispiel Σ = {p, q, r, s} S = {{p}, {r, p, q}, {s, q}, { q, s}, { q, r}, { r, q}} Logik für Informatiker, SS 06 p.7

13 Semantische Bäume Beispiel Σ = {p, q, r, s} S = {{p}, {r, p, q}, {s, q}, { q, s}, { q, r}, { r, q}} p p q q q q r r r r r r r r s s s s s s s s s s s s s s s s Fehlschlagsknoten gerahmt Inferenzknoten unterstrichen Logik für Informatiker, SS 06 p.7

14 Semantische Bäume Bemerkung Die Pfade ohne Fehlschlagsknoten repräsentieren die Modelle von S Lemma Ist Klauselmenge S über Σ unerfüllbar, so ist jeder semantische Baum über Σ geschlossen für S Logik für Informatiker, SS 06 p.8

15 Semantische Bäume Beweis Annahme: Es gibt semantischen Baum, der nicht für S geschlossen ist Sei π beliebiger Pfad ohne Fehlschlagsknoten für S Jedes p Σ genau einmal entweder positiv oder negativ unter den Markierungen M von π M induziert Modell I von S vermittels I(p) = Widerspruch zur Unerfüllbarkeit W F p M sonst Logik für Informatiker, SS 06 p.9

16 Semantische Bäume Theorem (Vollständigkeit aussagenlogischer Rosolution) Ist S eine unerfüllbare AL Klauselmenge, dann gilt S RA Logik für Informatiker, SS 06 p.10

17 Semantische Bäume (Alternativer) Beweis mit semantischen Bäumen Sei ST geschlossener semantischer Baum für S nach Lemma Jeder geschlossene semantische Baum hat Inferenzknoten Sei ν ein Inferenzknoten maximaler Tiefe in ST Nachfolger von ν sind Fehlschlagsknoten; seien mit p und p markiert C, D S die Klauseln, die bei Nachfolgern von ν fehlschlagen C = { p} C und D = {p} D C und D resolvieren zu E = C D E schlägt bei ν fehl, da Komplemente aller Literale in C D außer p und p schon in Widerlegungsmenge von ν S {E} hat geschlossenen semantischen Baum mit weniger Fehlschlagsknoten als ST Logik für Informatiker, SS 06 p.11

18 Semantische Bäume (Alternativer) Beweis mit semantischen Bäumen (Forts.) Geschlossener semantischer Baum hat endlich viele Fehlschlagsknoten Also erreicht man nach endlich vielen Schritten eine Klauselmenge mit einzigem Fehlschlagsknoten Wurzel Nur kann für diesen semantischen Baum fehlschlagen Also in dieser Klauselmenge enthalten Logik für Informatiker, SS 06 p.12

19 Semantische Bäume Bemerkungen Beweis ist konstruktiv Logik für Informatiker, SS 06 p.13

20 Semantische Bäume Bemerkungen Beweis ist konstruktiv Resolutionsableitung aus Beweis aber i.a. nicht der kürzeste Logik für Informatiker, SS 06 p.13

21 Semantische Bäume Bemerkungen Beweis ist konstruktiv Resolutionsableitung aus Beweis aber i.a. nicht der kürzeste Länge abhängig von gewählter Ordnung auf Σ Logik für Informatiker, SS 06 p.13

22 Semantische Bäume Bemerkungen Beweis ist konstruktiv Resolutionsableitung aus Beweis aber i.a. nicht der kürzeste Länge abhängig von gewählter Ordnung auf Σ Kann sogar exponentiell länger werden als bei günstiger Ordnung Logik für Informatiker, SS 06 p.13

23 Herbrand-Modelle Ab jetzt wieder Prädikatenlogik... Logik für Informatiker, SS 06 p.14

24 Herbrand-Modelle Ab jetzt wieder Prädikatenlogik... Annahme Es gibt mindestens einen variablenfreien Term, d.h. es gibt mindestens eine Konstante Logik für Informatiker, SS 06 p.14

25 Herbrand-Modelle Ab jetzt wieder Prädikatenlogik... Annahme Es gibt mindestens einen variablenfreien Term, d.h. es gibt mindestens eine Konstante Definition: Herbrand-Modell Modell M = U, I mit U die Menge aller Grundterme (variablenfreie Terme) I( f )(t 1,..., t n ) = f (t 1,..., t n ) für alle Funktionssymbole f, Grundterme t 1,..., t n Logik für Informatiker, SS 06 p.14

26 Herbrand-Modelle Bemerkung Für feste Signatur sind alle Herbrand-Modelle gleich bis auf Interpretation der Prädikate Logik für Informatiker, SS 06 p.15

27 Herbrand-Modelle Theorem Jede erfüllbare Klauselmenge hat ein Herbrand-Modell Logik für Informatiker, SS 06 p.16

28 Herbrand-Modelle Theorem Jede erfüllbare Klauselmenge hat ein Herbrand-Modell Zum Beweis Konstruiere aus beliebigem Modell ein Herbrand-Modell vermittels I (p)(t) = I(p)(I(t)) Logik für Informatiker, SS 06 p.16

29 Prädikatenlogische semantische Bäume Definition: prädikatenlogischer Semantischer Baum Semantischer Baum für prädikatenlogische Signatur Σ ist (aussangenlogischer) semantischer Baum über Σ AL = Menge aller Grund-Atome über Σ Logik für Informatiker, SS 06 p.17

30 Prädikatenlogische semantische Bäume Definition: prädikatenlogischer Semantischer Baum Semantischer Baum für prädikatenlogische Signatur Σ ist (aussangenlogischer) semantischer Baum über Σ AL = Menge aller Grund-Atome über Σ Definition: Fehlschlagsknoten (prädikatenlogisch) Eine prädikatenlogische Klausel C schlägt fehl bei ν, falls es eine Grundinstanz von C gibt, die (aussagenlogisch) bei ν fehlschlägt Logik für Informatiker, SS 06 p.17

31 Prädikatenlogische semantische Bäume Auch dann gilt immer noch (Beweis wie in der aussagenlogischen Variante): Lemma Ist Klauselmenge S über Σ unerfüllbar, so ist jeder semantische Baum über Σ geschlossen für S Logik für Informatiker, SS 06 p.18

32 Prädikatenlogische semantische Bäume Lemma Ein geschlossener semantischer Baum hat einen endlichen geschlossenen Teilbaum Logik für Informatiker, SS 06 p.19

33 Prädikatenlogische semantische Bäume Lemma Ein geschlossener semantischer Baum hat einen endlichen geschlossenen Teilbaum Beweis: Mit Königs Lemma: Jeder endlich verzweigende Baum, in dem jeder Ast endliche Länge hat, ist endlich. Logik für Informatiker, SS 06 p.19

34 Satz von Herbrand Aus den beiden Lemmas folgt: Satz von Herbrand Ist C eine unerfüllbare (prädikatenlogische) Klauselmenge, dann gibt es eine endliche Menge von Grund-Instanzen von Klauseln in C, die unerfüllbar ist. Logik für Informatiker, SS 06 p.20

35 Satz von Herbrand Aus den beiden Lemmas folgt: Satz von Herbrand Ist C eine unerfüllbare (prädikatenlogische) Klauselmenge, dann gibt es eine endliche Menge von Grund-Instanzen von Klauseln in C, die unerfüllbar ist. Konsequenzen Unerfüllbarkeit kann in endlich vielen Schritten nachgewiesen werden Logik für Informatiker, SS 06 p.20

36 Satz von Herbrand Aus den beiden Lemmas folgt: Satz von Herbrand Ist C eine unerfüllbare (prädikatenlogische) Klauselmenge, dann gibt es eine endliche Menge von Grund-Instanzen von Klauseln in C, die unerfüllbar ist. Konsequenzen Unerfüllbarkeit kann in endlich vielen Schritten nachgewiesen werden Vollständigkeit der prädikatenlogischen Resolution Logik für Informatiker, SS 06 p.20

37 Satz von Herbrand Aus den beiden Lemmas folgt: Satz von Herbrand Ist C eine unerfüllbare (prädikatenlogische) Klauselmenge, dann gibt es eine endliche Menge von Grund-Instanzen von Klauseln in C, die unerfüllbar ist. Konsequenzen Unerfüllbarkeit kann in endlich vielen Schritten nachgewiesen werden Vollständigkeit der prädikatenlogischen Resolution Kompaktheitssatz für die Prädikatenlogik Logik für Informatiker, SS 06 p.20

38 Kompaktheitssatz Theorem (Kompaktheitssatz) Eine (unendliche) Menge prädikatenlogischer Formeln ist genau dann erfüllbar, wenn jede ihrer endlichen Teilmengen erfüllbar ist Logik für Informatiker, SS 06 p.21

39 Kompaktheitssatz Theorem (Kompaktheitssatz) Eine (unendliche) Menge prädikatenlogischer Formeln ist genau dann erfüllbar, wenn jede ihrer endlichen Teilmengen erfüllbar ist Korollar (beispielsweise) In Prädikatenlogik ist nicht formalisierbar: Endlichkeit des (Modell-)Universums Transitiver Abschluss einer Relation Logik für Informatiker, SS 06 p.21

40 Zusammenfassung: Der Satz von Herbrand Aussagenlogischer semantischer Baum Logik für Informatiker, SS 06 p.22

41 Zusammenfassung: Der Satz von Herbrand Aussagenlogischer semantischer Baum Widerlegungsmenge, Fehlschlagsknoten, Inferenzknoten Logik für Informatiker, SS 06 p.22

42 Zusammenfassung: Der Satz von Herbrand Aussagenlogischer semantischer Baum Widerlegungsmenge, Fehlschlagsknoten, Inferenzknoten Geschlossener semantischer Baum Logik für Informatiker, SS 06 p.22

43 Zusammenfassung: Der Satz von Herbrand Aussagenlogischer semantischer Baum Widerlegungsmenge, Fehlschlagsknoten, Inferenzknoten Geschlossener semantischer Baum Alternativer Beweis für Vollständigkeit aussagenlogischer Resolution Logik für Informatiker, SS 06 p.22

44 Zusammenfassung: Der Satz von Herbrand Aussagenlogischer semantischer Baum Widerlegungsmenge, Fehlschlagsknoten, Inferenzknoten Geschlossener semantischer Baum Alternativer Beweis für Vollständigkeit aussagenlogischer Resolution Herbrand-Modelle Logik für Informatiker, SS 06 p.22

45 Zusammenfassung: Der Satz von Herbrand Aussagenlogischer semantischer Baum Widerlegungsmenge, Fehlschlagsknoten, Inferenzknoten Geschlossener semantischer Baum Alternativer Beweis für Vollständigkeit aussagenlogischer Resolution Herbrand-Modelle Prädikatenlogischer semantischer Baum Logik für Informatiker, SS 06 p.22

46 Zusammenfassung: Der Satz von Herbrand Aussagenlogischer semantischer Baum Widerlegungsmenge, Fehlschlagsknoten, Inferenzknoten Geschlossener semantischer Baum Alternativer Beweis für Vollständigkeit aussagenlogischer Resolution Herbrand-Modelle Prädikatenlogischer semantischer Baum Satz von Herbrand Logik für Informatiker, SS 06 p.22

47 Zusammenfassung: Der Satz von Herbrand Aussagenlogischer semantischer Baum Widerlegungsmenge, Fehlschlagsknoten, Inferenzknoten Geschlossener semantischer Baum Alternativer Beweis für Vollständigkeit aussagenlogischer Resolution Herbrand-Modelle Prädikatenlogischer semantischer Baum Satz von Herbrand Kompaktheitssatz Logik für Informatiker, SS 06 p.22

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln

Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln Vorlesung Letz WS 2002/2003 TU München: Logikbasierte Entscheidungsverfahren Entscheidungsverfahren für Bernays/Schönfinkelbzw. Datenlogik-Formeln INHALTE Die Bernays-Schönfinkel-Klasse bzw. Datenlogik-Formeln

Mehr

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der Aussagenlogik:

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Probleme über Sprachen. Teil II. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 10. Prädikatenlogik Substitutionen und Unifikation Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Substitutionen Definition:

Mehr

Tableaukalkül für Aussagenlogik

Tableaukalkül für Aussagenlogik Tableaukalkül für Aussagenlogik Tableau: Test einer Formel auf Widersprüchlichkeit Fallunterscheidung baumförmig organisiert Keine Normalisierung, d.h. alle Formeln sind erlaubt Struktur der Formel wird

Mehr

Klausur zur Vorlesung Mathematische Logik

Klausur zur Vorlesung Mathematische Logik Universität Heidelberg 13. Februar 2014 Institut für Informatik Prof. Dr. Klaus Ambos-Spies Dipl.-Math. Thorsten Kräling Klausur zur Vorlesung Mathematische Logik Musterlösung Aufgabe 1 (Aussagenlogik

Mehr

Beweisen mit Semantischen Tableaux

Beweisen mit Semantischen Tableaux Beweisen mit Semantischen Tableaux Semantische Tableaux geben ein Beweisverfahren, mit dem ähnlich wie mit Resolution eine Formel dadurch bewiesen wird, dass ihre Negation als widersprüchlich abgeleitet

Mehr

Musterlösung der Klausur zur Vorlesung Logik für Informatiker

Musterlösung der Klausur zur Vorlesung Logik für Informatiker Musterlösung der Klausur zur Vorlesung Logik für Informatiker Bernhard Beckert Christoph Gladisch Claudia Obermaier Arbeitsgruppe Künstliche Intelligenz Fachbereich Informatik, Universität Koblenz-Landau

Mehr

Syntax der Prädikatenlogik: Komplexe Formeln

Syntax der Prädikatenlogik: Komplexe Formeln Syntax der Prädikatenlogik: Komplexe Formeln Σ = P, F eine prädikatenlogische Signatur Var eine Menge von Variablen Definition: Menge For Σ der Formeln über Σ Logik für Informatiker, SS 06 p.10 Syntax

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise:

Beispiel. Bsp.: Betrachte Schlussweise in: (3) folgt aus (1) und (2), siehe z.b. Resolutionsregel. was ist mit folgender Schlußweise: Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 5.4 Prädikatenlogik mit Gleichheit Resolution 192 Beispiel Bsp.: Betrachte Schlussweise in: 1 Wenn es regnet, dann wird die Straße nass. R N

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

De Morgan sche Regeln

De Morgan sche Regeln De Morgan sche Regeln Durch Auswerten der Wahrheitswertetabelle stellen wir fest, dass allgemeingültig ist; ebenso (p q) p q (p q) p q. Diese beiden Tautologien werden als die De Morgan schen Regeln bezeichnet,

Mehr

Resolutionsalgorithmus

Resolutionsalgorithmus 112 Resolutionskalkül Mit dem Begriff Kalkül bezeichnet man eine Menge von syntaktischen Umformungsregeln, mit denen man semantische Eigenschaften der Eingabeformel herleiten kann. Für den Resolutionskalkül:

Mehr

Einiges zu Resolutionen anhand der Aufgaben 6 und 7

Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Einiges zu Resolutionen anhand der Aufgaben 6 und 7 Es gibt eine Fülle von verschiedenen Resolutionen. Die bis jetzt behandelten möchte ich hier noch ein Mal kurz erläutern. Ferner möchte ich noch auf

Mehr

Logische und funktionale Programmierung

Logische und funktionale Programmierung Logische und funktionale Programmierung Vorlesung 2: Prädikatenkalkül erster Stufe Babeş-Bolyai Universität, Department für Informatik, Cluj-Napoca csacarea@cs.ubbcluj.ro 14. Oktober 2016 1/38 DIE INTERPRETATION

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Aussagenlogische Kalküle

Aussagenlogische Kalküle Aussagenlogische Kalküle Ziel: mit Hilfe von schematischen Regeln sollen alle aus einer Formel logisch folgerbaren Formeln durch (prinzipiell syntaktische) Umformungen abgeleitet werden können. Derartige

Mehr

Musterlösung 11.Übung Mathematische Logik

Musterlösung 11.Übung Mathematische Logik Lehr- und Forschungsgebiet Mathematische Grundlagen der Informatik RWTH Aachen Prof. Dr. E. Grädel, F. Reinhardt SS 2015 Aufgabe 2 Musterlösung 11.Übung Mathematische Logik Geben Sie für die folgenden

Mehr

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik

3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Deduktionssysteme der Aussagenlogik, Kap. 3: Tableaukalküle 38 3 Tableaukalküle 3.1 Klassische Aussagenlogik 3.1.1 Die Variante T1 und ein Entscheidungsverfahren für die Aussagenlogik Ein zweites Entscheidungsverfahren

Mehr

Logik Vorlesung 10: Herbrand-Theorie

Logik Vorlesung 10: Herbrand-Theorie Logik Vorlesung 10: Herbrand-Theorie Andreas Maletti 9. Januar 2015 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere Eigenschaften

Mehr

Fixpunktsemantik logischer Programme Pascal Hitzler Juli 1997 Kurzuberblick im Rahmen der Vorlesung Einfuhrung in Prolog von T. Cornell im Sommersemester 1997 an der Universitat Tubingen. Beweise sind

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik

4.1 Motivation. Theorie der Informatik. Theorie der Informatik. 4.1 Motivation. 4.2 Syntax der Prädikatenlogik. 4.3 Semantik der Prädikatenlogik Theorie der Informatik 3. März 2014 4. Prädikatenlogik I Theorie der Informatik 4. Prädikatenlogik I 4.1 Motivation Malte Helmert Gabriele Röger 4.2 Syntax der Prädikatenlogik Universität Basel 3. März

Mehr

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011

Klausur Formale Systeme Fakultät für Informatik 2. Klausur zum WS 2010/2011 Fakultät für Informatik 2. Klausur zum WS 2010/2011 Prof. Dr. Bernhard Beckert 08. April 2011 Vorname: Matrikel-Nr.: Platz: Klausur-ID: **Platz** **Id** Die Bearbeitungszeit beträgt 60 Minuten. A1 (17)

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise)

Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) WS 2014/15 Diskrete Strukturen Kapitel 2: Grundlagen (Beweise) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_14

Mehr

Algorithmischer Aufbau der Aussagenlogik

Algorithmischer Aufbau der Aussagenlogik Algorithmischer Aufbau der Aussagenlogik In diesem Abschnitt betrachten wir Verfahren die bei gegebener endlichen Menge Σ und A-Form A entscheiden ob Σ = A gilt. Die bisher betrachteten Verfahren prüfen

Mehr

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich

Satz. Für jede Herbrand-Struktur A für F und alle t D(F ) gilt offensichtlich Herbrand-Strukturen und Herbrand-Modelle Sei F eine Aussage in Skolemform. Dann heißt jede zu F passende Struktur A =(U A, I A )eineherbrand-struktur für F, falls folgendes gilt: 1 U A = D(F ), 2 für jedes

Mehr

Prüfungsprotokoll Kurs 1825 Logik für Informatiker. Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015

Prüfungsprotokoll Kurs 1825 Logik für Informatiker. Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015 Prüfungsprotokoll Kurs 1825 Logik für Informatiker Studiengang: MSc. Informatik Prüfer: Prof. Dr. Heinemann Termin: Januar 2015 1. Aussagenlogik Alphabet und AS gegeben, wie sind die Aussagenlogischen

Mehr

Der Sequenzenkalkül. Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül für die Prädikatenlogik

Der Sequenzenkalkül. Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül für die Prädikatenlogik Theoretische Informatik: Logik, M. Lange, FB16, Uni Kassel: 4.6 Prädikatenlogik ohne Gleichheit Der Sequenzenkalkül 138 Der Sequenzenkalkül Charakterisierung der logischen Schlussfolgerung: Sequenzenkalkül

Mehr

Normalformen der Prädikatenlogik

Normalformen der Prädikatenlogik Normalformen der Prädikatenlogik prädikatenlogische Ausdrücke können in äquivalente Ausdrücke umgeformt werden Beispiel "X (mensch(x) Æ sterblich(x)) "X (ÿ mensch(x) sterblich(x)) "X (ÿ (mensch(x) Ÿ ÿ

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 9.06.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

Grundlagen der Künstlichen Intelligenz

Grundlagen der Künstlichen Intelligenz Grundlagen der Künstlichen Intelligenz 27. Aussagenlogik: Logisches Schliessen und Resolution Malte Helmert Universität Basel 28. April 2014 Aussagenlogik: Überblick Kapitelüberblick Aussagenlogik: 26.

Mehr

Logik für Informatiker Musterlösung Aufgabenblatt 8

Logik für Informatiker Musterlösung Aufgabenblatt 8 Universität Koblenz-Landau SS 06 Institut für Informatik Bernhard Beckert www.uni-koblenz.de/~beckert Claudia Obermaier www.uni-koblenz.de/~obermaie Cristoph Gladisch www.uni-koblenz.de/~gladisch Übung

Mehr

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1

Terme. Dann ist auch f(t 1. Terme. Dann ist P (t 1 Prädikatenlogik 1. Syntax und Semantik Man kann die Prädikatenlogik unter einem syntaktischen und einem semantischen Gesichtspunkt sehen. Bei der Behandlung syntaktischer Aspekte macht man sich Gedanken

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik FH Wedel Prof. Dr. Sebastian Iwanowski GTI22 Folie 1 Grundlagen der Theoretischen Informatik Sebastian Iwanowski FH Wedel Kap. 2: Logik, Teil 2.2: Prädikatenlogik FH Wedel Prof. Dr. Sebastian Iwanowski

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen

Mehr

Logik-Grundlagen. Syntax der Prädikatenlogik

Logik-Grundlagen. Syntax der Prädikatenlogik Logik-Grundlagen X 1 :...: X k : ( A 1 A 2... A m B 1 B 2... B n ) Logische und funktionale Programmierung - Universität Potsdam - M. Thomas - Prädikatenlogik III.1 Syntax der Prädikatenlogik Prädikat:

Mehr

Substitution. Unifikation. Komposition der Substitution. Ausführung der Substitution

Substitution. Unifikation. Komposition der Substitution. Ausführung der Substitution Substitution Unifikation Ziel eines Widerspruchsbeweis: Widerspruch ja/nein Variablenbindung im Falle eines Widerspruchs Eine Substitution θ ist eine endliche Menge der Form {v 1 /t 1 v n /t n }, wobei

Mehr

Aufgabe - Fortsetzung

Aufgabe - Fortsetzung Aufgabe - Fortsetzung NF: Nicht-Formel F: Formel A: Aussage x :( y : Q(x, y) R(x, y)) z :(Q(z, x) R(y, z)) y :(R(x, y) Q(x, z)) x :( P(x) P(f (a))) P(x) x : P(x) x y :((P(y) Q(x, y)) P(x)) x x : Q(x, x)

Mehr

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation

5.1 Inferenz. Theorie der Informatik. Theorie der Informatik. 5.1 Inferenz. 5.2 Resolutionskalkül. 5.3 Zusammenfassung. Inferenz: Motivation Theorie der Informatik 9. März 2015 5. Aussagenlogik III Theorie der Informatik 5. Aussagenlogik III 5.1 Inferenz Malte Helmert Gabriele Röger 5.2 Resolutionskalkül Universität Basel 9. März 2015 5.3 Zusammenfassung

Mehr

Weitere Beweistechniken und aussagenlogische Modellierung

Weitere Beweistechniken und aussagenlogische Modellierung Weitere Beweistechniken und aussagenlogische Modellierung Vorlesung Logik in der Informatik, HU Berlin 2. Übungsstunde Aussagenlogische Modellierung Die Mensa versucht ständig, ihr Angebot an die Wünsche

Mehr

Lösungsvorschläge Blatt 4

Lösungsvorschläge Blatt 4 Theoretische Informatik Departement Informatik Prof. Dr. Juraj Hromkovič http://www.ita.inf.ethz.ch/theoinf16 Lösungsvorschläge Blatt 4 Zürich, 21. Oktober 2016 Lösung zu Aufgabe 10 (a) Wir zeigen mit

Mehr

MafI I: Logik & Diskrete Mathematik (F. Hoffmann)

MafI I: Logik & Diskrete Mathematik (F. Hoffmann) Lösungen zum 14. und letzten Aufgabenblatt zur Vorlesung MafI I: Logik & Diskrete Mathematik (F. Hoffmann) 1. Ungerichtete Graphen (a) Beschreiben Sie einen Algorithmus, der algorithmisch feststellt, ob

Mehr

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau

Logik für Informatiker. 1. Grundlegende Beweisstrategien. Viorica Sofronie-Stokkermans Universität Koblenz-Landau Logik für Informatiker 1. Grundlegende Beweisstrategien Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Mathematisches Beweisen Mathematische ussagen - haben oft

Mehr

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen

Fakultät für Informatik Universität Magdeburg Jürgen Dassow. Vorbemerkungen Vorbemerkungen if (x > y) z = x; else z = y; Wenn es blaue Tiger regnet, dann fressen alle Kirschbäume schwarze Tomaten. q(1) = 1, q(i) = q(i 1) + 2i 1 für i 2 Welchen Wert hat q(6)? 24 ist durch 2 teilbar.

Mehr

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I

Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Institut für Informatik Sommersemester 2007 B. Beckert Grundlagen d. Theoretischen Informatik:

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie.

Dank. Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I. Teil VI. Komplexitätstheorie. Dank Vorlesung Grundlagen der Theoretischen Informatik / Einführung in die Theoretische Informatik I Bernhard Beckert Diese Vorlesungsmaterialien basieren ganz wesentlich auf den Folien zu den Vorlesungen

Mehr

Binäre Suchbäume (binary search trees, kurz: bst)

Binäre Suchbäume (binary search trees, kurz: bst) Binäre Suchbäume (binary search trees, kurz: bst) Datenstruktur zum Speichern einer endlichen Menge M von Zahlen. Genauer: Binärbaum T mit n := M Knoten Jeder Knoten v von T ist mit einer Zahl m v M markiert.

Mehr

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik

Aussagenlogik Prädikatenlogik erster Stufe. Logik. Logik Grundzeichen Aussagenlogik Aussagenvariablen P, Q, R,... Junktoren nicht und oder Runde Klammern (, ) Formeln Aussagenlogik Formeln sind spezielle Zeichenreihen aus Grundzeichen, und zwar 1 Jede Aussagenvariable

Mehr

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle

Aussagenlogik. Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Aussagenlogik Syntax und Semantik Boolesche Algebra Erfüllbarkeit SAT-Solver Kompaktheit Beweiskalküle Logik für Informatiker, M. Lange, IFI/LMU: Aussagenlogik Syntax und Semantik 26 Einführendes Beispiel

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

6. Induktives Beweisen - Themenübersicht

6. Induktives Beweisen - Themenübersicht 6. Induktives Beweisen - Themenübersicht Ordnungsrelationen Partielle Ordnungen Quasiordnungen Totale Ordnungen Striktordnungen Ordnungen und Teilstrukturen Noethersche Induktion Anwendung: Terminierungsbeweise

Mehr

Abschnitt 18: Effizientes Suchen in Mengen

Abschnitt 18: Effizientes Suchen in Mengen Abschnitt 18: Effizientes Suchen in Mengen 18. Effizientes Suchen in Mengen 18.1 Vollständig ausgeglichene binäre Suchbäume 18.2 AVL-Bäume 18.3 Operationen auf AVL-Bäumen 18.4 Zusammenfassung 18 Effizientes

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Normalformen boolescher Funktionen

Normalformen boolescher Funktionen Normalformen boolescher Funktionen Jeder boolesche Ausdruck kann durch (äquivalente) Umformungen in gewisse Normalformen gebracht werden! Disjunktive Normalform (DNF) und Vollkonjunktion: Eine Vollkonjunktion

Mehr

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4

Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt 4 Karlsruher Institut für Technologie Institut für Theoretische Informatik Prof. Dr. Peter H. Schmitt David Farago, Christoph Scheben, Mattias Ulbrich Formale Systeme, WS 2012/2013 Lösungen zu Übungsblatt

Mehr

Sudoku ist NP-vollständig

Sudoku ist NP-vollständig Sudoku ist NP-vollständig Seminar über Algorithmen und Komplexität Freie Universität Berlin Institut für Informatik SS 007 Sarah Will 8.07.007 Einführung Sudoku ist ein japanisches Logikrätsel und hat

Mehr

Vorlesung Logiksysteme

Vorlesung Logiksysteme Vorlesung Logiksysteme Teil 1 - Aussagenlogik Martin Mundhenk Univ. Jena, Institut für Informatik 15. Mai 2014 Formalien zur Vorlesung/Übung Termine: dienstags 16:15 17:45 Uhr freitags 10:15 11:45 Uhr

Mehr

Einführung in die Informatik 2

Einführung in die Informatik 2 Einführung in die Informatik 2 NP-Vollständigkeit Sven Kosub AG Algorithmik/Theorie komplexer Systeme Universität Konstanz E 202 Sven.Kosub@uni-konstanz.de Sprechstunde: Freitag, 12:30-14:00 Uhr, o.n.v.

Mehr

Klauseltableau: Einschränkungen des Suchraums

Klauseltableau: Einschränkungen des Suchraums Klauseltableau: Einschränkungen des Suchraums Regularität Kein Literal darf auf einem Ast mehr als einmal vorkommen Schwache Konnektionsbedingung Bei Erweiterung von Ast B muss mindestens eines der neuen

Mehr

Theorie der Informatik

Theorie der Informatik Theorie der Informatik 8. Reguläre Sprachen II Malte Helmert Gabriele Röger Universität Basel 24. März 24 Pumping Lemma Pumping Lemma: Motivation Man kann zeigen, dass eine Sprache regulär ist, indem man

Mehr

Theoretische Informatik SS 03 Übung 11

Theoretische Informatik SS 03 Übung 11 Theoretische Informatik SS 03 Übung 11 Aufgabe 1 Zeigen Sie, dass es eine einfachere Reduktion (als die in der Vorlesung durchgeführte) von SAT auf 3KNF-SAT gibt, wenn man annimmt, dass die Formel des

Mehr

Schlussregeln aus anderen Kalkülen

Schlussregeln aus anderen Kalkülen Was bisher geschah Klassische Aussagenlogik: Syntax Semantik semantische Äquivalenz und Folgern syntaktisches Ableiten (Resolution) Modellierung in Aussagenlogik: Wissensrepräsentation, Schaltungslogik,

Mehr

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)).

Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). 8. Untere Schranken für Sortieren Alle bislang betrachteten Sortieralgorithmen hatten (worst-case) Laufzeit Ω(nlog(n)). Werden nun gemeinsame Eigenschaften dieser Algorithmen untersuchen. Fassen gemeinsame

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung Universität Koblenz-Landau FB 4 Informatik Prof. Dr. Viorica Sofronie-Stokkermans 23.07.2012 Dipl.-Inform. Markus Bender Hauptklausur zur Vorlesung Logik für Informatiker im Sommersemester 2012 Lösung

Mehr

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen

Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Einführung in die Logik - 4 Aussagenlogische Widerlegungsverfahren zum Nachweis logischer Eigenschaften und Beziehungen Widerlegungsverfahren zum Aufwärmen: Bestimmung von Tautologien mittels Quick Falsification

Mehr

Grundlagen der Theoretischen Informatik

Grundlagen der Theoretischen Informatik Grundlagen der Theoretischen Informatik Sommersemester 2015 29.04.2015 Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Bis jetzt 1. Motivation 2. Terminologie 3. Endliche Automaten und reguläre

Mehr

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren)

Wissensrepräsentation und -verarbeitung in Logiken. bereinigt Pränex Skolem ( -Eliminierung) Klausel (Menge von Klauseln, Notation ohne Quantoren) Was bisher geschah Wissensrepräsentation und -verarbeitung in Logiken klassische Aussagenlogik klassische Prädikatenlogik: Wiederholung Syntax, Semantik Normalformen: bereinigt Pränex Skolem ( -Eliminierung)

Mehr

Proseminar Logik für Informatiker Thema: Prädikatenlogik (1.Teil)

Proseminar Logik für Informatiker Thema: Prädikatenlogik (1.Teil) Proseminar Logik für Informatiker Thema: Prädikatenlogik (1.Teil) Inhaltsverzeichnis 1. Warum eine mächtigere Sprache? 1.1. Einleitung 1.2. Definitionen 2. Prädikatenlogik als formale Sprache 2.1. Terme

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C

3. Prädikatenlogik. Im Sinne der Aussagenlogik sind das verschiedene Sätze, repräsentiert etwa durch A, B, C. Natürlich gilt nicht: A B = C 3. Prädikatenlogik 3.1 Motivation In der Aussagenlogik interessiert Struktur der Sätze nur, insofern sie durch "und", "oder", "wenn... dann", "nicht", "genau dann... wenn" entsteht. Für viele logische

Mehr

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie

Theorie der Informatik. Theorie der Informatik. 6.1 Einführung. 6.2 Alphabete und formale Sprachen. 6.3 Grammatiken. 6.4 Chomsky-Hierarchie Theorie der Informatik 17. März 2014 6. Formale Sprachen und Grammatiken Theorie der Informatik 6. Formale Sprachen und Grammatiken Malte Helmert Gabriele Röger Universität Basel 17. März 2014 6.1 Einführung

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 9: Prädikatenlogik schulz@eprover.org Rückblick 2 Rückblick: Vor- und Nachteile von Aussagenlogik Aussagenlogik ist deklarativ: Syntaxelemente entsprechen

Mehr

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Sequenzenkalkül. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen

Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen Was bisher geschah Wissensrepräsentation und -verarbeitung in Zustandsübergangssystemen Constraint-Systemen Logiken Repräsentation von Mengen aussagenlogischer Regeln: Wissensbasis (Kontextwissen): Formelmenge,

Mehr

Neuronalen Netzen. Jens Lehmann. 1. März Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden

Neuronalen Netzen. Jens Lehmann. 1. März Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden Institut für Künstliche Intelligenz Fakultät Informatik Technische Universität Dresden 1. März 2005 Neurosymbolische Integration versucht künstliche neuronale Netze und Logikprogrammierung zu vereinen

Mehr

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18

Formale Methoden 1. Gerhard Jäger 23. Januar Uni Bielefeld, WS 2007/2008 1/18 1/18 Formale Methoden 1 Gerhard Jäger Gerhard.Jaeger@uni-bielefeld.de Uni Bielefeld, WS 2007/2008 23. Januar 2008 2/18 Das Pumping-Lemma Sein L eine unendliche reguläre Sprache über ein endliches Alphabet

Mehr

Modelltheorie. Zunächst fixieren wir die Notation, die wir im Folgenden verwenden werden.

Modelltheorie. Zunächst fixieren wir die Notation, die wir im Folgenden verwenden werden. 1 Modelltheorie Die Modelltheorie beschäftigt sich mit der Klassifikation mathematischer Strukturen und Abbildungen mit Hilfe von logischen Formeln sowie dem Zusammenhang zwischen rein syntaktischen und

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen)

Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Mengen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,

Mehr

Die Folgerungsbeziehung

Die Folgerungsbeziehung Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation

Mehr

Informatik II, SS 2014

Informatik II, SS 2014 Informatik II SS 2014 (Algorithmen & Datenstrukturen) Vorlesung 13 (18.6.2014) Binäre Suchbäume IV (Rot Schwarz Bäume) Algorithmen und Komplexität Rot Schwarz Bäume Ziel: Binäre Suchbäume, welche immer

Mehr

4. Alternative Temporallogiken

4. Alternative Temporallogiken 4. Alternative Temporallogiken Benutzung unterschiedlicher Temporallogiken entsprechend den verschiedenen Zeitbegriffen LTL: Linear Time Logic Ähnlich der CTL, aber jetzt einem linearen Zeitbegriff entspechend

Mehr

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe

Syntax der Prädikatenlogik: Variablen, Terme. Formeln. Freie und gebundene Variablen, Aussagen. Aufgabe Syntax der Prädikatenlogik: Variablen, Terme Formeln Eine Variable hat die Form x i mit i = 1, 2, 3.... Ein Prädikatensymbol hat die Form Pi k und ein Funktionssymbol hat die Form fi k mit i = 1, 2, 3...

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte

Mehr

Logik Teil 3: Mehr zur Prädikatenlogik erster Stufe. Vorlesung im Wintersemester 2010

Logik Teil 3: Mehr zur Prädikatenlogik erster Stufe. Vorlesung im Wintersemester 2010 Logik Teil 3: Mehr zur Prädikatenlogik erster Stufe Vorlesung im Wintersemester 2010 Übersicht Teil 3 Kapitel 3.1: Sequenzenkalkül Kapitel 3.2: Rekursive Aufzählbarkeit, Kompaktheit und Löwenheim-Skolem

Mehr

Einführung in die Künstliche Intelligenz

Einführung in die Künstliche Intelligenz Übungsblatt zur Lehrveranstaltung Einführung in die Künstliche Intelligenz Dr. Sebastian Rudolph Sommersemester 2009 http://semantic-web-grundlagen.de Übungsblatt 4: Logik Hinweis zur nächsten Aufgabe:

Mehr

9. Übung Formale Grundlagen der Informatik

9. Übung Formale Grundlagen der Informatik Institut für Informatik Sommersemester 2001 Universität Zürich 9. Übung Formale Grundlagen der Informatik Norbert E. Fuchs (fuchs@ifi.unizh.ch) Reinhard Riedl (riedl@ifi.unizh.ch) Nadine Korolnik (korolnik@ifi.unizh.ch)

Mehr

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen)

Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) WS 2016/17 Diskrete Strukturen Kapitel 2: Grundlagen (Relationen) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_16

Mehr