$Id: gruppen.tex,v /04/19 12:20:27 hk Exp $

Größe: px
Ab Seite anzeigen:

Download "$Id: gruppen.tex,v /04/19 12:20:27 hk Exp $"

Transkript

1 $Id: gruppen.tex,v /04/19 12:20:27 hk Exp $ 2 Gruppen 2.1 Isomorphe Gruppen In der letzten Sitzung hatten unter anderen den Begriff einer Gruppe eingeführt und auch schon einige Beispiele von Gruppen vorgeführt. Wir wollen diese Untersuchungen jetzt noch etwas weiter fortführen und als nächsten Begriff die Isomorphie, oder strukturelle Gleichheit, von Gruppen einführen. Um zu sehen, was dies bedeutet betrachten wir erst einmal die folgenden beiden Gruppen und a b a a b b b a Diese beiden Gruppen sind sicherlich nicht gleich, sie haben ja nicht einmal dieselben Elemente. So richtig verschieden sind sie aber auch nicht, die rechte Tafel entsteht aus der linken indem man einfach a statt 0 und b statt 1 schreibt, es liegt also nur eine Umbenennung der Elemente vor. Man spricht in solchen Situationen davon, dass die beiden Gruppen isomorph sind. Für eine exakte Definition müssen wir den Begriff nun formal genau erfassen. Seien also zwei Gruppen (G, ) und (H, ) gegeben. Die Umbenennung bedeutet das jedem Element von G ein eindeutiges Element von H entspricht und umgekehrt, dass wir also in anderen Worten eine bijektive Abbildung f : G H haben. Was bedeutet jetzt, dass sich die Gruppentafeln dabei ineinander übertragen? In der Zeile x G und Spalte y G der Gruppentafel von (G, ) steht das Produkt x y. Die x und y entsprechenden Elemente von H sind f(x) und f(y), also muss in Zeile f(x) und Spalte f(y) der Gruppentafel von (H, ) das x y entsprechende Element stehen, und dieses ist f(x y). Andererseits steht dort f(x) f(y), wir benötigen also die Bedingung f(x y) = f(x) f(y). Es stellt sich als sinnvoll heraus, diese Eigenschaft von f auch für allgemeine, nicht notwendig bijektive, Abbildungen f von G nach H zu untersuchen. Definition 2.5: Eine Abbildung f : G 1 G 2 zwischen zwei Gruppen (G 1, ) und (G 2, ) heißt Homomorphismus (oder ausführlicher Gruppenhomomorphismus), wenn f(a b) = f(a) f(b) für alle a, b G 1 gilt. Ist f dabei bijektiv, so heißt f ein Isomorphismus, beziehungsweise Gruppenisomorphismus, und G 1 und G 2 werden isomorph genannt. Wir wollen einige Beispiele durchgehen. 4-1

2 1. Die Funktion f : (Z, +) (Z, +); x 2x ist ein Gruppenhomomorphismus, denn für alle x, y Z gilt f(x + y) = 2(x + y) = 2x + 2y = f(x) + f(y). 2. Die Funktion f : (Z, +) (Z, +); x x 2 ist dagegen kein Gruppenhomomorphismus, denn im allgemeinen ist f(x +y) = (x +y) 2 = x 2 +2xy +y 2 x 2 +y 2 = f(x) + f(y). 3. Sei n N. Dann ist die Funktion f : (Z, +) (Z n, ); x [x], die jede ganze Zahl auf ihre Restklasse modulo n abbildet, ein Gruppenhomomorphismus. Die Homomorphiebedingung f(x + y) = [x + y]! = [x] [y] = f(x) + f(y) für x, y Z ist dabei direkt die Definition der Addition von Restklassen modulo n. 4. Die Abbildung f : (Z, +) (Z, +); x x ist ein Gruppenisomorphismus, denn bijektiv ist sie allemal und für x, y Z gilt stets f(x + y) = (x + y) = x y = f(x) + f(y). 5. Zum Abschluß noch ein etwas komplizierteres Beispiel. Die Exponentialabbildung f : (R, +) (R >0, ); x e x ist ein Gruppenisomorphismus. Dabei werden wir e x eigentlich erst etwas später in diesem Semester behandeln, daher verlasse ich mich hier auf Ihre Erinnerungen aus der Schulzeit. Dort haben Sie gelernt das f die reellen Zahlen bijektiv auf die positiven reellen Zahlen abbildet. Die Homomorphiebedingung besagt f(x + y) = e x+y! = e x e y = f(x) f(y) und dies ist gerade die Haupteigenschaft der e-funktion, ihre Funktionalgleichung. 6. Wir wollen jetzt auch noch ein letztes Beispiel betrachten, das die Gruppentafeln der beiden betrachteten Gruppen verwendet. Wir wollen die beiden folgenden Gruppen auf vier Elementen 0, 1, 2, 3 betrachten: und Wir behaupten, dass diese beiden Gruppen isomorph sind wobei der Isomorphismus durch Vertauschen von 2 und 3 gegeben ist. Diese Behauptung wollen wir 4-2

3 nun verifizieren. Wir müssen in der linken Tafel die dritte und die vierte Zeile sowie Spalte jeweils miteinander vertauschen. Beachte das dies im linken, unteren 2 2-Kästchen zum Vertauschen der beiden Zeilen führt, im rechten, oberen 2 2-Kästchen zum Vertauschen der beiden Spalten und im rechten, unteren 2 2- Kästchen muss beides zugleich gemacht werden, d.h. die Einträge werden über Kreuz ausgetauscht. Anschließend müssen dann noch in den Tafeleinträgen die 2 und die 3 miteinander vertauscht werden. Der Übersichtlichkeit halber führen wir dies hier in zwei Schritten durch Vertauschen Umbenennen Insgesamt ist also die durch f(0) = 0, f(1) = 1, f(2) = 3 und f(3) = 2 gegebene Abbildung ein Gruppenisomorphismus. Bevor wir fortfahren wollen wir noch eine Grundeigenschaft von Gruppenisomorphismen und allgemeiner von Gruppenhomomorphismen festhalten. Lemma 2.6: Seien (G 1, ) und (G 2, ) Gruppen mit neutralen Elementen e 1 G 1 und e 2 G 2. Dann gilt für jeden Homomorphismus f : G 1 G 2 stets für alle a G 1. Beweis: Zunächst gilt und damit ist auch f(e 1 ) = e 2 und f(inv(a)) = inv(f(a)) f(e 1 ) = f(e 1 e 1 ) = f(e 1 ) f(e 1 ), f(e 1 ) = f(e 1 ) e 2 = f(e 1 ) f(e 1 ) inv(f(e 1 )) = f(e 1 ) inv(f(e 1 )) = e 2. Dies zeigt die erste Behauptung. Nun sei a G gegeben. Die Eindeutigkeit inverser Elemente nach Lemma 4 ergibt, dass wir nur zeigen müssen das f(inv(a)) G 2 die definierende Eigenschaft eines inversen Elements zu f(a) G 2 hat. Dies ergibt sich aus f(a) f(inv(a)) = f(a inv(a)) = f(e 1 ) = e

4 2.2 Klassifikation von Gruppen Unter der Klassifikation von Gruppen versteht man die Beschreibung der möglichen Isomorphietypen von Gruppen, beziehungsweise spezieller Klassen von Gruppen. Was dabei genau unter einer Beschreibung zu verstehen ist, ist nicht ganz eindeutig festgelegt, sondern hängt immer von den gerade verfolgten Zielen beziehungsweise von dem was für die betrachtete Sorte von Gruppen überhaupt möglich ist, ab. Die einfachste Art von Klassifikation ist eine vollständige Auflistung, also die Angabe einer Liste in der jede der betrachteten Gruppen bis auf Isomorphie an genau einer Stelle auftaucht. Für die ganz kleinen Gruppen werden wir dies hier vorführen Klassifikation der Gruppen mit einem Element Eine solche Gruppe besteht nur aus ihrem neutralen Element, und je zwei gehen durch Umbenennung eben dieses neutralen Elements auseinander hervor. Bis auf Isomorphie gibt es also nur eine Gruppe mit einem Element Klassifikation der Gruppen mit zwei Elementen In einer solchen Gruppe haben wir das neutrale Element e und ein weiteres Element a. Die Gruppentafel hat also die Gestalt e a e e a a a Nach Aufgabe (10) taucht in jeder Zeile und in jeder Spalte einer Gruppentafel jedes Element genau einmal auf, die Tafel läßt sich also nur auf eine einzige Weise auffüllen e a e e a a a e Schreiben wir 0 statt e und 1 statt a, so erkennen wir hier die Gruppentafel von (Z 2, ). Bis auf Isomorphie gibt es also auch genau eine Gruppe mit zwei Elementen, nämlich (Z 2, ) Klassifikation der Gruppen mit drei Elementen Eine Gruppe mit drei Elementen hat ihr neutrales Element e und zwei weitere Elemente a, b. Die Verknüpfungstafel ist e a b e e a b a a b b 4-4

5 Starten wir mit dem markierten Eintrag. Dieser ist e oder b, aber würden wir e nehmen, so müsste rechts daneben b stehen, was nicht geht. Wir sind also gezwungen die markierte Stelle mit b zu belegen. Für die restlichen drei Einträge gibt es dann überhaupt keine Wahlfreiheiten mehr, und wir erhalten die Tafel e a b e e a b a a b e b b e a Bis auf Isomorphie gibt es also höchstens eine Gruppe mit drei Elementen, nämlich die mit der oben stehenden Tafel. Andererseits kennen wir schon die Gruppe (Z 3, ) mit drei Elementen, und damit gibt es bis auf Isomorphie genau eine Gruppe mit drei Elementen, nämlich (Z 3, ) Klassifikation der Gruppen mit vier Elementen (teilweise) Die Gruppen mit vier Elementen stellen sich als etwas komplizierter als diejenigen mit 1, 2, 3 Elementen heraus. Hier gibt es erstmals echte Wahlmöglichkeiten in der Gruppentafel und es gibt auch nicht isomorphe Gruppen. Wir wollen diesen Fall hier nicht vollständig vorführen, aber zumindest zeigen was so getan werden muss. Man nennt das neutrale Element wieder e und die drei anderen Elemente seien a, b, c. Die erste frei Stelle in der Gruppentafel ist dann wieder a a, und dies könnte irgendein Gruppenelement ungleich a sein. Man beginnt dann damit einfach die verschiedenen Möglichkeiten durchzugehen, starten wir etwa mit a a = e. Durch diese Wahl werden sofort auch einige weitere Einträge festgelegt, und wir kommen bis zur folgenden Tafel e a b c e e a b c a a e c b b b c c c b An der markierten Stelle können wir jetzt e oder a eintragen. Nachdem wir uns für eine der Möglichkeiten entschieden haben ist alles weitere festgelegt. Dies führt auf e a b c e e a b c a a e c b b b c e a c c b a e und e a b c e e a b c a a e c b b b c a e c c b e a Dies sind beides Kandidaten für Gruppen mit vier Elementen, und wir müssten jetzt überprüfen ob es sich um Gruppen handelt. Für die zweite Tafel führen wir eine kleine 4-5

6 Umbenennung durch e a b c e e a b c a a e c b b b c a e c c b e a e = 0, a = 2, b = 1, c = und sehen das es sich um die Gruppe (Z 4, ) handelt. Auch die erste Tafel ist die Tafel einer Gruppe. Bezeichnen wir die mit Verknüpfung mit, so ist x x = e für alle x, und sind x y und x, y e, so ist x y das dritte von e verschiedene Element. Hieraus ergibt sich leicht das Assoziativgesetz. Sind etwa x, y, z e paarweise verschieden, so ist x y = z und (x y) z = z z = e und y z = x, x (y z) = x x = e. Die anderen Fälle für x, y, z sind leichter und sollen jetzt nicht mehr vorgeführt werden. Die beiden obigen Tafeln hatten wir durch die Wahl a a = e erhalten. Jetzt kann man so fortfahren und auch die anderen möglichen Tafeln bestimmen. Dies werden wir jetzt nicht mehr tun, es kommen zwar noch einige neue Tafeln hinzu, aber diese führen alle auf Gruppen, die zu einer der beiden obigen Gruppen isomorph sind. Wenn Sie Aufgabe (11) bearbeit haben, wissen Sie das noch zwei weitere Kandidatentafeln auftauchen, die beides Gruppentafeln sind. Damit gibt es bis auf Isomorphie höchstens zwei Gruppen mit vier Elementen. Um zu sehen, dass es genau zwei sind, muss man sich noch überlegen, dass die beiden gefundenen Gruppen nicht isomorph sind. Dies kann man entweder durch Durchprobieren aller möglichen Isomorphismen machen, das sind ja nur sechs Stück, oder sich überlegen das bei isomorphen Gruppen auf der Diagonale der Gruppentafel das neutrale Element gleich häufig auftauchen muss. Weil es in der linken Tafel vier mal, in der rechten Tafel aber nur zweimal auftaucht, können die beiden Gruppen damit nicht isomorph sein. Gruppen mit noch mehr Elementen lassen sich immer schlechter durch die bisher benutzte Methode des Auflistens möglicher Gruppentafeln behandeln. Was man anstelle dessen macht gehört aber nicht mehr zum Stoff dieser Vorlesung. Als Anzahl von Isomorphietypen ergeben sich n Für die Zahl der Isomorphietypen ist die numerische Größe von n gar nicht so wichtig, entscheidend ist vielmehr die Primzerlegung von n. Ist n beispielsweise eine Primzahl, so gibt es bis auf Isomorphie immer nur eine eindeutige Gruppe. Besonders viele Typen gibt es für n = 8 = 2 3 und n = 16 = 2 4, hier sind eben die Exponenten in der Primzerlegung schon etwas größer. 4-6

7 2.3 Zyklische Gruppen Sei (G, ) eine Gruppe mit neutralen Element e. Wir können dann Potenzen von Elementen von G einführen, indem für a G, n N a n := a a a }{{} n mal definiert wird. Diese Operation erfüllt dann die üblichen Potenzrechenregeln a n a m = a n+m und (a n ) m = a nm für alle a G, n, m N. Die erste Regel ergibt sich dabei als a n a m = a} a {{ a} n mal und für die zweite Regel rechnen wir (a n ) m = a n a n a n }{{} m mal a a a }{{} m mal = a} a {{ a} = a n+m n + m mal = a} a {{ a} a} a {{ a} n mal n mal } {{ } m mal = a} a {{ a} = a nm. nm mal Die Potenzen von Gruppenelementen kann man auch noch auf ganzzahlige Exponenten ausdehnen, indem für a G, n N zusätzlich a 0 := e und a n := inv(a n ) definiert wird. Beispielsweise ist dann a 1 = inv(a). Als eine Übungsaufgabe kann man sich überlegen, dass die Potenzrechenregeln auch bei beliebigen ganzzahligen Exponenten n, m Z gültig bleiben. Am Ende der letzten Sitzung hatten wir die Potenzen a n eines Elements a einer Gruppe G eingeführt, und nachgewiesen das diese die Potenzrechenregeln a n a m = a n+m, (a n ) m = a nm für alle n, m Z erfüllen. Diese Potenzen erlauben es uns jetzt eine wichtige spezielle Sorte von Gruppen einzuführen, die sogenannten zyklischen Gruppen. Wenn man jedes Element einer Gruppe durch eine geeignete Potenz ein und desselben Elements darstellen kann, so spricht man von einer solchen zyklischen Gruppe. Die genaue Definition einer lautet: Definition 2.7: Eine Gruppe G heißt zyklisch, wenn es ein a G gibt so, dass G = {a k k Z} 4-7

8 gilt. Dieses Element a heißt dann ein erzeugendes Element der Gruppe G, oder auch ein Erzeuger von G. Wir kennen auch schon einige Beispiele zyklischer Gruppen. Ist beispielsweise m N, so ist die Gruppe (Z m, ) zyklisch mit dem Erzeuger a = [1]. Ist nämlich k {0, 1,..., m 1} gegeben so ist [k] = [1] [1] = k[1] }{{} k mal die k-te Potenz von a. Wir schreiben hier k[1] statt [1] k da dies bei additiv geschriebener Verknüpfung üblich ist, man spricht dann meist auch von Vielfachen statt von Potenzen. Eine weiteres Beispiel einer zyklischen Gruppe ist die Gruppe (Z, +) mit dem Erzeuger a = 1, hier gilt direkt k = ka für jedes k Z. Ein weniger offensichtliches Beispiel, das wir hier auch nicht beweisen wollen, ist die multiplikative Gruppe (Z p, ) wenn p eine Primzahl ist. Dieses Beispiel wird in einer Übungsaufgabe näher untersucht werden. Wir kommen nun zu einer allgemeinen Aussage über endliche zyklische Gruppen. Lemma 2.8 (Endliche zyklische Gruppen) Sei (G, ) eine endliche zyklische Gruppe mit n N Elementen und bezeichne e das neutrale Element von G. Dann gilt a n = e für jedes erzeugende Element a G. Beweis: Da G zyklisch mit erzeugenden Element a ist, gilt G = {a k k Z}. Da G endlich ist, können die Elemente e, a, a 2, a 3,... von G nicht alle verschieden sein, es gibt also m, i Z mit 0 i < m und a i = a m. Dabei wählen wir i und m der Reihe nach minimal. Die Potenzrechenregeln ergeben a m i = a m a i = a m inv(a i ) = a i inv(a i ) = e = a 0, und die minimale Wahl von i ergibt i = 0. Damit ist auch a m = a i = a 0 = e und die Minimalität von m besagt a j e für alle 1 j < m. Die Elemente e, a, a 2,..., a m 1 sind paarweise verschieden, denn andernfalls gäbe es 0 j < k < m mit a j = a k, und wie oben folgt a k j = e mit 0 < k j k < m, im Widerspruch zur Minimalität von m. Weiter sind dies überhaupt alle Elemente von G, ist nämlich k Z beliebig, so liefert die Division mit Rest 1.Lemma 1 zwei ganze Zahlen q, r Z mit 0 r < m und k = qm + r, und die Potenzrechenregeln ergeben a k = a qm+r = a qm a r = (a m ) q a r = e q a r = e a r = a r {e, a,..., a m 1 }, und es folgt G = {a k k Z} = {a k 0 k < m}. Insbesondere ist n = m die Anzahl der Elemente von G, und damit ist a n = a m = e. 4-8

Halbgruppen, Gruppen, Ringe

Halbgruppen, Gruppen, Ringe Halbgruppen-1 Elementare Zahlentheorie Einige Bezeichnungen Halbgruppen, Gruppen, Ringe Die Menge N 0 der natürlichen Zahlen 0, 1, 2, Die Menge N = N 1 der von Null verschiedenen natürlichen Zahlen Die

Mehr

3 Vom Zählen zur Induktion

3 Vom Zählen zur Induktion 7 3 Vom Zählen zur Induktion 3.1 Natürliche Zahlen und Induktions-Prinzip Seit unserer Kindheit kennen wir die Zahlen 1,, 3, 4, usw. Diese Zahlen gebrauchen wir zum Zählen, und sie sind uns so vertraut,

Mehr

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.)

(Man sagt dafür auch, dass die Teilmenge U bezüglich der Gruppenoperationen abgeschlossen sein muss.) 3. Untergruppen 19 3. Untergruppen Nachdem wir nun einige grundlegende Gruppen kennengelernt haben, wollen wir in diesem Kapitel eine einfache Möglichkeit untersuchen, mit der man aus bereits bekannten

Mehr

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper

4 Einige Grundstrukturen. Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper 4 Einige Grundstrukturen Themen: Abbildungen und Relationen Gruppen Die natürlichen Zahlen Körper Abbildungen Seien X und Y Mengen. Eine (einstellige) Abbildung f : X Y ordnet jedem x X genau ein Element

Mehr

7. Ringe und Körper. 7. Ringe und Körper 49

7. Ringe und Körper. 7. Ringe und Körper 49 7. Ringe und Körper 49 7. Ringe und Körper In den bisherigen Kapiteln haben wir nur Gruppen, also insbesondere nur Mengen mit lediglich einer Verknüpfung, untersucht. In der Praxis gibt es aber natürlich

Mehr

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich.

3.5 Ringe und Körper. Diese Eigenschaften kann man nun auch. 1. (R, +) ist eine kommutative Gruppe. 2. Es gilt das Assoziativgesetz bezüglich. 3.5 Ringe und Körper Gehen wir noch mal zu den ganzen Zahlen zurück. Wir wissen: (Z, + ist eine Gruppe, es gibt aber als Verknüpfung noch die Multiplikation, es gibt ein neutrales Element bezüglich, es

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 13 Einheiten Definition 13.1. Ein Element u in einem Ring R heißt Einheit, wenn es ein Element v R gibt mit uv = vu = 1. DasElementv

Mehr

2 Mengen und Abbildungen

2 Mengen und Abbildungen 2.1 Mengen Unter einer Menge verstehen wir eine Zusammenfassung von Objekten zu einem Ganzen. Die Objekte heiÿen Elemente. Ist M eine Menge und x ein Element von M so schreiben wir x M. Wir sagen auch:

Mehr

GF(2 2 ) Beispiel eines Erweiterungskörpers (1)

GF(2 2 ) Beispiel eines Erweiterungskörpers (1) GF(2 2 ) Beispiel eines Erweiterungskörpers (1) Im Kapitel 2.1 wurde bereits gezeigt, dass die endliche Zahlenmenge {0, 1, 2, 3} q = 4 nicht die Eigenschaften eines Galoisfeldes GF(4) erfüllt. Vielmehr

Mehr

Mathematische Strukturen

Mathematische Strukturen Mathematische Strukturen Lineare Algebra I Kapitel 3 18. April 2012 Logistik Dozent: Olga Holtz, MA 378, Sprechstunden Freitag 14-16 Webseite: www.math.tu-berlin.de/ holtz Email: holtz@math.tu-berlin.de

Mehr

Einführung in die Algebra

Einführung in die Algebra Prof. Dr. H. Brenner Osnabrück SS 2009 Einführung in die Algebra Vorlesung 19 Algebraisch abgeschlossene Körper Wir haben zuletzt erwähnt, dass ein lineares Polynom X a über einem Körper stets irreduzibel

Mehr

4 Kongruenz und Modulorechnung

4 Kongruenz und Modulorechnung 1 4 Kongruenz und Modulorechnung In unserer Zeitrechnung haben wir uns daran gewöhnt, nur mit endlich vielen Zahlen zu rechnen. Es ist gerade 3 Uhr und in 50 Stunden muss ich abreisen. Wie spät ist es

Mehr

11. Primfaktorzerlegungen

11. Primfaktorzerlegungen 78 Andreas Gathmann 11 Primfaktorzerlegungen Euch ist sicher aus der Schule bekannt, dass sich jede positive ganze Zahl a als Produkt a = p 1 p n von Primzahlen schreiben lässt, und dass diese Darstellung

Mehr

5 Eigenwerte und die Jordansche Normalform

5 Eigenwerte und die Jordansche Normalform Mathematik für Physiker II, SS Mittwoch 8.6 $Id: jordan.tex,v.6 /6/7 8:5:3 hk Exp hk $ 5 Eigenwerte und die Jordansche Normalform 5.4 Die Jordansche Normalform Wir hatten bereits erwähnt, dass eine n n

Mehr

Karlsruher Institut für Technologie Institut für Algebra und Geometrie

Karlsruher Institut für Technologie Institut für Algebra und Geometrie Karlsruher Institut für Technologie Institut für Algebra und Geometrie PD Dr. Stefan Kühnlein Dipl.-Math. Jochen Schröder Einführung in Algebra und Zahlentheorie Übungsblatt 2 Aufgabe 1 (4 Punkte) Seien

Mehr

4 Kongruenz und Modulorechnung

4 Kongruenz und Modulorechnung 4 Kongruenz und Modulorechnung 39 4 Kongruenz und Modulorechnung In unserer Zeitrechnung haben wir uns daran gewöhnt, nur mit endlich vielen Zahlen zu rechnen. Es ist gerade 3 Uhr und in 50 Stunden muss

Mehr

Wir starten mit der Entwicklung einer algebraischen Struktur, welche u.a. gut zur Kennzeichnung von Geometrien geeignet ist.

Wir starten mit der Entwicklung einer algebraischen Struktur, welche u.a. gut zur Kennzeichnung von Geometrien geeignet ist. 2 Verbände Wir starten mit der Entwicklung einer algebraischen Struktur, welche u.a. gut zur Kennzeichnung von Geometrien geeignet ist. 2.1 Verbandsdefinition. Beispiele 2.1.1 Definition (Verband): Sei

Mehr

Axiomatische Beschreibung der ganzen Zahlen

Axiomatische Beschreibung der ganzen Zahlen Axiomatische Beschreibung der ganzen Zahlen Peter Feigl JKU Linz peter.feigl@students.jku.at 0055282 Claudia Hemmelmeir JKU Linz darja@gmx.at 0355147 Zusammenfassung Wir möchten in diesem Artikel die ganzen

Mehr

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte

1 Mengen. 1.1 Elementare Definitionen. Einige mathematische Konzepte Einige mathematische Konzepte 1 Mengen 1.1 Elementare Definitionen Mengendefinition Die elementarsten mathematischen Objekte sind Mengen. Für unsere Zwecke ausreichend ist die ursprüngliche Mengendefinition

Mehr

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich)

Technische Universität München. Lösung Montag WS 2013/14. (Einheitskreis, ohne Rechnung ersichtlich) (Einheitskreis, ohne Rechnung ersichtlich) Technische Universität München Andreas Wörfel Ferienkurs Analysis 1 für Physiker Lösung Montag WS 01/1 Aufgabe 1 Zum warm werden: Komplexe Zahlen - Lehrling Bestimmen Sie das komplex Konjugierte, den Betrag

Mehr

Algebra I. Zwischenprüfung. 19. Februar 2016

Algebra I. Zwischenprüfung. 19. Februar 2016 Name: Vorname: Studiengang: Legi-Nr.: Algebra I D-MATH, HS 2015 Prof. Richard Pink Algebra I Zwischenprüfung Wichtig: 19. Februar 2016 Die Prüfung dauert 120 Minuten. Bitte legen Sie Ihre Legi (Studierendenausweis)

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Christian Serpé Universität Münster 14. September 2011 Christian Serpé (Universität Münster) 14. September 2011 1 / 56 Gliederung 1 Motivation Beispiele Allgemeines Vorgehen 2 Der Vektorraum R n 3 Lineare

Mehr

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe

Kapitel 4. Euklidische Ringe und die Jordansche Normalform. 4.1 Euklidische Ringe Kapitel 4 Euklidische Ringe und die Jordansche Normalform 4.1 Euklidische Ringe Die Ringe der ganzen Zahlen, Z, sowie Polynomringe über Körpern, K[X], wobei K ein Körper ist, haben die folgenden Gemeinsamheiten:

Mehr

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56

5.1 Drei wichtige Beweistechniken... 55 5.2 Erklärungen zu den Beweistechniken... 56 5 Beweistechniken Übersicht 5.1 Drei wichtige Beweistechniken................................. 55 5. Erklärungen zu den Beweistechniken............................ 56 Dieses Kapitel ist den drei wichtigsten

Mehr

Lösungen zum 2. Aufgabenblatt

Lösungen zum 2. Aufgabenblatt SS 2012, Lineare Algebra 1 Onlineversion, es werden keine Namen angezeigt. Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar. Insgesamt 3255 Wörter

Mehr

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09

Lineare Algebra I. HP Butzmann. Vorlesung im HWS 09 Lineare Algebra I HP Butzmann Vorlesung im HWS 09 Inhaltsverzeichnis 1 Mengen und Abbildungen 2 2 Körper 15 3 Vektorräume 40 4 Basis und Dimension 53 5 Lineare Abbildungen 67 6 Matrizen 80 7 Lineare Gleichungssysteme

Mehr

Leitfaden Lineare Algebra: Determinanten

Leitfaden Lineare Algebra: Determinanten Leitfaden Lineare Algebra: Determinanten Die symmetrische Gruppe S n. Eine Permutation σ der Menge S ist eine bijektive Abbildung σ : S S. Ist S eine endliche Menge, so reicht es zu verlangen, dass σ injektiv

Mehr

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543

Stetigkeit. Kapitel 4. Stetigkeit. Peter Becker (H-BRS) Analysis Sommersemester / 543 Kapitel 4 Stetigkeit Peter Becker (H-BRS) Analysis Sommersemester 2016 254 / 543 Inhalt Inhalt 4 Stetigkeit Eigenschaften stetiger Funktionen Funktionenfolgen und gleichmäßige Konvergenz Umkehrfunktionen

Mehr

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe

7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe 7 Untergruppen, Faktorgruppen, Ideale, Restklassenringe und Homomorfismen Wir verallgemeinern den Übergang von Z zu Z/m. Sei im folgenden G eine (additiv geschriebene) abelsche Gruppe, H eine Untergruppe.

Mehr

Algebra. Patrik Hubschmid. 8. Oktober 2013

Algebra. Patrik Hubschmid. 8. Oktober 2013 Algebra Patrik Hubschmid 8. Oktober 2013 Inhaltsverzeichnis 1 Fortführung der Gruppentheorie 7 1.1 Sylowsätze.................................... 7 3 Vorwort Dieses Skript zur Vorlesung Algebra im Wintersemester

Mehr

Vorlesung. Funktionen/Abbildungen 1

Vorlesung. Funktionen/Abbildungen 1 Vorlesung Funktionen/Abbildungen 1 1 Grundlagen Hinweis: In dieser Vorlesung werden Funktionen und Abbildungen synonym verwendet. In der Schule wird eine Funktion häufig als eindeutige Zuordnung definiert.

Mehr

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen

Algebra und Diskrete Mathematik, PS3. Sommersemester Prüfungsfragen Algebra und Diskrete Mathematik, PS3 Sommersemester 2016 Prüfungsfragen Erläutern Sie die Sätze über die Division mit Rest für ganze Zahlen und für Polynome (mit Koeffizienten in einem Körper). Wodurch

Mehr

18 Höhere Ableitungen und Taylorformel

18 Höhere Ableitungen und Taylorformel 8 HÖHERE ABLEITUNGEN UND TAYLORFORMEL 98 8 Höhere Ableitungen und Taylorformel Definition. Sei f : D R eine Funktion, a D. Falls f in einer Umgebung von a (geschnitten mit D) differenzierbar und f in a

Mehr

Wie beweise ich etwas? 9. Juli 2012

Wie beweise ich etwas? 9. Juli 2012 Schülerzirkel Mathematik Fakultät für Mathematik. Universität Regensburg Wie beweise ich etwas? 9. Juli 2012 1 Was ist ein Beweis? 1.1 Ein Beispiel Nimm einen Stift und ein Blatt Papier und zeichne fünf

Mehr

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse

Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14. Auswahl vorausgesetzter Vorkenntnisse UNIVERSITÄT DES SAARLANDES FACHRICHTUNG 6.1 MATHEMATIK Dipl.-Math. Kevin Everard Mathematik für Studierende der Biologie und des Lehramtes Chemie Wintersemester 2013/14 Auswahl vorausgesetzter Vorkenntnisse

Mehr

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens

Mathematische Grundlagen der Kryptographie. 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe. Stefan Brandstädter Jennifer Karstens Mathematische Grundlagen der Kryptographie 1. Ganze Zahlen 2. Kongruenzen und Restklassenringe Stefan Brandstädter Jennifer Karstens 18. Januar 2005 Inhaltsverzeichnis 1 Ganze Zahlen 1 1.1 Grundlagen............................

Mehr

2. Universelle Algebra

2. Universelle Algebra 2. Universelle Algebra Die Theorie der universellen Algebra verallgemeinert die Theorien der klassischen Algebren. Obwohl ursprünglich nur eine Sorte betrachtet wurde, werden wir hier gleich den mehrsortigen

Mehr

Oberstufe (11, 12, 13)

Oberstufe (11, 12, 13) Department Mathematik Tag der Mathematik 1. Oktober 009 Oberstufe (11, 1, 1) Aufgabe 1 (8+7 Punkte). (a) Die dänische Flagge besteht aus einem weißen Kreuz auf rotem Untergrund, vgl. die (nicht maßstabsgerechte)

Mehr

Lösungen zum 3. Aufgabenblatt

Lösungen zum 3. Aufgabenblatt SS, Lineare Algebra Die Lösungen wurden erstellt von: Isabel Voigt, Vanessa Lamm und Matthias Rehder Hinweis: Eine Liste der zur Bearbeitung verwendeten Literatur ist unter www.mathematiwelt.com aufrufbar.

Mehr

Brückenkurs Mathematik

Brückenkurs Mathematik Brückenkurs Mathematik 6.10. - 17.10. Vorlesung 1 Logik,, Doris Bohnet Universität Hamburg - Department Mathematik Mo 6.10.2008 Zeitplan Tagesablauf: 9:15-11:45 Vorlesung Audimax I 13:00-14:30 Übung Übungsräume

Mehr

10. Teilbarkeit in Ringen

10. Teilbarkeit in Ringen 10. Teilbarkeit in Ringen 67 10. Teilbarkeit in Ringen Ein wichtiges Konzept in Ringen, das ihr für den Fall des Ringes Z bereits aus der Schule kennt, ist das von Teilern also der Frage, wann und wie

Mehr

Kap 5: Rang, Koordinatentransformationen

Kap 5: Rang, Koordinatentransformationen Kap 5: Rang, Koordinatentransformationen Sei F : V W eine lineare Abbildung. Dann ist der Rang von F erklärt durch: rang F =dim ImF. Stets gilt rang F dimv, und ist dimv

Mehr

Lineare Algebra II 5. Übungsblatt

Lineare Algebra II 5. Übungsblatt Lineare Algebra II Übungsblatt Fachbereich Mathematik SS Prof Dr Kollross / Mai Susanne Kürsten Tristan Alex Gruppenübung Aufgabe G (Algebraisch abgeschlossener Körper) Ein Körper heißt algebraisch abgeschlossen,

Mehr

11. Folgen und Reihen.

11. Folgen und Reihen. - Funktionen Folgen und Reihen Folgen Eine Folge reeller Zahlen ist eine Abbildung a: N R Statt a(n) für n N schreibt man meist a n ; es handelt sich also bei einer Folge um die Angabe der Zahlen a, a

Mehr

34 Lineare Abbildungen

34 Lineare Abbildungen 34 Lineare Abbildungen 34 Motivation Wir haben wichtige Eigenschaften von Vektorräumen kennen gelernt Damit ist es sinnvoll zu untersuchen, wie Abbildungen zwischen Vektorräumen aussehen können Die wichtigsten

Mehr

Endliche Körper Seminar: Diskrete Mathematik Leitung: Prof. Dr. Rainer Lang Von: Steffen Lohrke (ii5105) SS2005

Endliche Körper Seminar: Diskrete Mathematik Leitung: Prof. Dr. Rainer Lang Von: Steffen Lohrke (ii5105) SS2005 Endliche Körper Seminar: Diskrete Mathematik Leitung: Prof. Dr. Rainer Lang Von: Steffen Lohrke (ii5105) SS2005 Inhaltsverzeichnis Abelsche Gruppe 3 Kommutativer Ring 5 Körper 6 Endliche Körper 7 Endliche

Mehr

2.2 Nebenklassen, Normalteiler und Faktorgruppen

2.2 Nebenklassen, Normalteiler und Faktorgruppen Algebra I c Rudolf Scharlau, 2002 2012 61 2.2 Nebenklassen, Normalteiler und Faktorgruppen Bei der Konstruktion der Restklassengruppe Z/mZ hatten wir auf der Gruppe Z mit Hilfe einer Untergruppe mz eine

Mehr

Stetige Funktionen, Binomischer Lehrsatz

Stetige Funktionen, Binomischer Lehrsatz Vorlesung 13 Stetige Funktionen, Binomischer Lehrsatz 13.1 Funktionenfolgen Wir verbinden nun den Grenzwertbegriff mit dem Funktionsbegriff. Es seien (a n ) n N eine reelle Folge und f : R R eine Funktion.

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Linearkombinationen, Basen, Lineare Abbildungen 2.1 Lineare Unabhängigkeit Sind die folgenden Vektoren linear unabhängig? (a) 1, 2, 3 im Q Vektorraum R (b)

Mehr

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität

Algebraische Kurven. Vorlesung 26. Die Schnittmultiplizität Prof. Dr. H. Brenner Osnabrück SS 2012 Algebraische Kurven Vorlesung 26 Die Schnittmultiplizität Es seien zwei ebene algebraische Kurven C,D A 2 K gegeben, die keine Komponente gemeinsam haben. Dann besteht

Mehr

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus

Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Proseminar: Primzahlen 1. Vortrag Der erweiterte euklidische Algorithmus Max Zoller 14. April 8 1 Der klassische euklidische Algorithmus Beispiel: ggt 15, 56? 15 = 1 56 + 49 56 = 1 49 + 7 49 = 7 7 + =

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln

Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Seminarvortrag aus Reiner Mathematik Existenz von Primitivwurzeln Michael Kniely November 2009 1 Vorbemerkungen Definition. Sei n N +, ϕ(n) := {d [0, n 1] ggt (d, n) = 1}. Die Abbildung ϕ : N + N + heißt

Mehr

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05

Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 02.03.05 Prof. Dr. Duco van Straten Oliver Weilandt Klausur zur Elementaren Algebra und Zahlentheorie Mittwoch, 0.03.05 Bitte tragen Sie hier gut lesbar Ihren Namen und Ihre Matrikelnummer ein. Name, Vorname Matrikelnummer

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

Analysis I - Stetige Funktionen

Analysis I - Stetige Funktionen Kompaktheit und January 13, 2009 Kompaktheit und Funktionengrenzwert Definition Seien X, d X ) und Y, d Y ) metrische Räume. Desweiteren seien E eine Teilmenge von X, f : E Y eine Funktion und p ein Häufungspunkt

Mehr

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt

Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik. Weihnachtsblatt Technische Universität München Zentrum Mathematik Propädeutikum Diskrete Mathematik Prof. Dr. A. Taraz, Dipl-Math. A. Würfl, Dipl-Math. S. König Weihnachtsblatt Aufgabe W.1 Untersuchen Sie nachstehenden

Mehr

lim Der Zwischenwertsatz besagt folgendes:

lim Der Zwischenwertsatz besagt folgendes: 2.3. Grenzwerte von Funktionen und Stetigkeit 35 Wir stellen nun die wichtigsten Sätze über stetige Funktionen auf abgeschlossenen Intervallen zusammen. Wenn man sagt, eine Funktion f:[a,b] R, definiert

Mehr

Hackenbusch und Spieltheorie

Hackenbusch und Spieltheorie Hackenbusch und Spieltheorie Was sind Spiele? Definition. Ein Spiel besteht für uns aus zwei Spielern, Positionen oder Stellungen, in welchen sich das Spiel befinden kann (insbesondere eine besondere Startposition)

Mehr

Theoretische Informatik

Theoretische Informatik Theoretische Informatik für die Studiengänge Ingenieur-Informatik berufsbegleitendes Studium Lehramt Informatik (Sekundar- und Berufsschule) http://theo.cs.uni-magdeburg.de/lehre04s/ Lehrbeauftragter:

Mehr

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund

Lineare Algebra 1. Detlev W. Hoffmann. WS 2013/14, TU Dortmund Lineare Algebra 1 Detlev W. Hoffmann WS 2013/14, TU Dortmund 1 Mengen und Zahlen 1.1 Mengen und Abbildungen Eine Menge ist eine Zusammenfassung wohlunterscheidbarer Objekte unserer Anschauung/unseres Denkens/unserer

Mehr

Codierungstheorie Rudolf Scharlau, SoSe 2006 9

Codierungstheorie Rudolf Scharlau, SoSe 2006 9 Codierungstheorie Rudolf Scharlau, SoSe 2006 9 2 Optimale Codes Optimalität bezieht sich auf eine gegebene Quelle, d.h. eine Wahrscheinlichkeitsverteilung auf den Symbolen s 1,..., s q des Quellalphabets

Mehr

Brückenkurs Elementarmathematik

Brückenkurs Elementarmathematik Brückenkurs Elementarmathematik IV. Ungleichungen November 13, 2013 Inhalt 1 Ungleichungen 2 Umformungen von Ungleichungen 2.1 Äquivalenzumformungen 2.2 Addition und Multiplikation von Ungleichungen 3

Mehr

Angewandte Diskrete Mathematik

Angewandte Diskrete Mathematik Vorabskript zur Vorlesung Angewandte Diskrete Mathematik Wintersemester 2010/ 11 Prof. Dr. Helmut Maier Dipl.-Math. Hans- Peter Reck Institut für Zahlentheorie und Wahrscheinlichkeitstheorie Universität

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7

Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Vorbereitungskurs Mathematik zum Sommersemester 2011 Tag 7 Timo Stöcker Erstsemestereinführung Informatik TU Dortmund 22. März 2011 Heute Themen Lineare Gleichungssysteme Matrizen Timo Stöcker https://fsinfo.cs.tu-dortmund.de/studis/ese/vorkurse/mathe

Mehr

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln...

Kongruenzrechnung. 2 Kongruenzrechnung 7 2.1 Rechnenregeln Addition und Multiplikation... 7 2.2 Rechenregeln bzgl. verschiedener Moduln... Kongruenzrechnung Inhaltsverzeichnis 1 Einführung und Definitionen 2 1.1 Einige Beispiele aus dem Alltag..................... 2 1.2 Kongruenzrechnung im Alltag und Rechenproben........... 3 1.3 Kongruenzen

Mehr

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013

Übung zu Grundbegriffe der Informatik. Simon Wacker. 15. November 2013 Übung zu Grundbegriffe der Informatik Simon Wacker 15. November 2013 Vollständige Induktion über die Wortlänge Es sei B ein Alphabet. Dann ist B = n N 0 B n. Für jedes Wort w B sei A w eine Aussage, die

Mehr

Beispiellösungen zu Blatt 111

Beispiellösungen zu Blatt 111 µ κ Mathematisches Institut Georg-August-Universität Göttingen Beispiellösungen zu Blatt 111 Aufgabe 1 Ludwigshafen hat einen Bahnhof in Dreiecksform. Markus, Sabine und Wilhelm beobachten den Zugverkehr

Mehr

Wie kann man beweisen, dass (H, ) eine Gruppe ist?

Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? Wie kann man beweisen, dass (H, ) eine Gruppe ist? (zb wenn die Multiplikation mit Hilfe einer Tabelle gegeben ist) Wie kann man beweisen, dass (H, )

Mehr

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre

Vorlesung. Einführung in die mathematische Sprache und naive Mengenlehre Vorlesung Einführung in die mathematische Sprache und naive Mengenlehre Allgemeines RUD26 Erwin-Schrödinger-Zentrum (ESZ) RUD25 Johann-von-Neumann-Haus Fachschaft Menge aller Studenten eines Institutes

Mehr

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik

2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Stefan Lucks Diskrete Strukturen (WS 2009/10) 57 2: Zahlentheorie / Restklassen 2.1: Modulare Arithmetik Uhr: Stunden mod 24, Minuten mod 60, Sekunden mod 60,... Rechnerarithmetik: mod 2 w, w {8, 16, 32,

Mehr

Der Zwei-Quadrate-Satz von Fermat

Der Zwei-Quadrate-Satz von Fermat Der Zwei-Quadrate-Satz von Fermat Proseminar: Das BUCH der Beweise Fridtjof Schulte Steinberg Institut für Informatik Humboldt-Universität zu Berlin 29.November 2012 1 / 20 Allgemeines Pierre de Fermat

Mehr

Ergänzungen zur Analysis I

Ergänzungen zur Analysis I 537. Ergänzungsstunde Logik, Mengen Ergänzungen zur Analysis I Die Behauptungen in Satz 0.2 über die Verknüpfung von Mengen werden auf die entsprechenden Regelnfür die Verknüpfung von Aussagen zurückgeführt.

Mehr

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen

Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Lösungen zum Aufgabenblatt Nr. 1: Konstruktion der reellen Zahlen Aufgabe 1: Es sei D die Menge aller rationalen Dedekind-Mengen, also D := { M 2 Q M is Dedekind-Menge }. Auf der Menge D definieren wir

Mehr

2. Vorlesung. Die Theorie der schwarz-weissen Ketten.

2. Vorlesung. Die Theorie der schwarz-weissen Ketten. 2. Vorlesung. Die Theorie der schwarz-weissen Ketten. Die Theorie der schwarzen Steinchen haben wir jetzt halbwegs vertanden. Statt mit schwarzen Steinen wie die Griechen, wollen wir jetzt mit schwarzen

Mehr

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27

DLP. Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de ALZAGK SEMINAR. Bremen, den 18. Januar 2011. Fachbereich Mathematik und Informatik 1 / 27 DLP Adolphe Kankeu Tamghe papibobo@informatik.uni-bremen.de Fachbereich Mathematik und Informatik ALZAGK SEMINAR Bremen, den 18. Januar 2011 1 / 27 Inhaltsverzeichnis 1 Der diskrete Logarithmus Definition

Mehr

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen.

Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Jeweils am Montag um 18:30 treffen sich Studenten in Seminarraum 3 zum gemeinsamen Lernen. Betrachtungen zu Sprache, Logik und Beweisen Sprache Wir gehen von unserem Alphabet einigen Zusatzsymbolen aus.

Mehr

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt

Höhere Mathematik I für die Fachrichtung Informatik. Lösungsvorschläge zum 2. Übungsblatt KARLSRUHER INSTITUT FÜR TECHNOLOGIE INSTITUT FÜR ANALYSIS Dr. Christoph Schmoeger Heio Hoffmann WS 2013/14 Höhere Mathemati I für die Fachrichtung Informati Lösungsvorschläge zum 2. Übungsblatt Aufgabe

Mehr

Vektorgeometrie Layout: Tibor Stolz

Vektorgeometrie Layout: Tibor Stolz Hanspeter Horlacher Vektorgeometrie Layout: Tibor Stolz 1. Einführung Eine Grösse, zu deren Festlegung ausser einer Zahl auch noch die Angabe einer Richtung nötig ist, heisst VEKTOR. P 2 P 1 P 1 P 2 P

Mehr

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum

Fachschaft Mathematik und Informatik (FIM) LA I VORKURS. Herbstsemester 2015. gehalten von Harald Baum Fachschaft Mathematik und Informatik (FIM) LA I VORKURS Herbstsemester 2015 gehalten von Harald Baum 2. September 2015 Inhaltsverzeichnis 1. Stichpunkte zur Linearen Algebra I 2. Körper 3. Vektorräume

Mehr

Vorkurs Mathematik 1

Vorkurs Mathematik 1 Vorkurs Mathematik 1 Einführung in die mathematische Notation Konstanten i komplexe Einheit i 2 + 1 = 0 e Eulersche Zahl Kreiszahl 2 Einführung in die mathematische Notation Bezeichner Primzahlen, Zähler

Mehr

Lösung zur Klausur zu Krypographie Sommersemester 2005

Lösung zur Klausur zu Krypographie Sommersemester 2005 Lösung zur Klausur zu Krypographie Sommersemester 2005 1. Bestimmen Sie die zwei letzten Ziffern der Dezimaldarstellung von 12 34 Es gilt: 12 34 = 12 32+2 = 12 32 12 2 = 12 (25) 12 2 = ((((12 2 ) 2 ) 2

Mehr

Elemente der Analysis II

Elemente der Analysis II Elemente der Analysis II Kapitel 3: Lineare Abbildungen und Gleichungssysteme Informationen zur Vorlesung: http://www.mathematik.uni-trier.de/ wengenroth/ J. Wengenroth () 15. Mai 2009 1 / 35 3.1 Beispiel

Mehr

3. Zusammenhang. 22 Andreas Gathmann

3. Zusammenhang. 22 Andreas Gathmann 22 Andreas Gathmann 3. Zusammenhang Eine der anschaulichsten Eigenschaften eines topologischen Raumes ist wahrscheinlich, ob er zusammenhängend ist oder aus mehreren Teilen besteht. Wir wollen dieses Konzept

Mehr

1 Das Lemma von Burnside und seine Anwendungen

1 Das Lemma von Burnside und seine Anwendungen Das Lemma von Burnside und seine Anwendungen Mit dem Lemma von Burnside lassen sich Zählprobleme lösen, bei denen Symmetrien eine Rolle spielen. Betrachten wir als einführendes Beispiel die Anzahl der

Mehr

KAPITEL 0. Einführung

KAPITEL 0. Einführung Lineare Algebra KAPITEL 0 Einführung Dieses Skript zur Vorlesung Lineare Algebra an der Goethe Universität Frankfurt im Sommersemester 2011 befindet sich noch in der Entstehung und wird fortlaufend aktualisiert

Mehr

Einführung in die Mathematik (Vorkurs 1 )

Einführung in die Mathematik (Vorkurs 1 ) Einführung in die Mathematik (Vorkurs 1 ) Wintersemester 2008/09 Dr. J. Jordan Institut für Mathematik Universität Würzburg Germany 1 Modulbezeichnung 10-M-VKM 1 Inhaltsverzeichnis 1 Aussagen und Beweise

Mehr

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper

3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper 32 Andreas Gathmann 3. Die Eigenschaften der reellen Zahlen II: Geordnete Körper Wir haben bisher von den reellen Zahlen nur die Körpereigenschaften, also die Eigenschaften der vier Grundrechenarten ausgenutzt

Mehr

Abbildungseigenschaften

Abbildungseigenschaften Abbildungseigenschaften.5. Injektivität Injektivität (injektiv, linkseindeutig) ist eine Eigenschaft einer mathematischen Funktion. Sie bedeutet, dass jedes Element der Zielmenge höchstens einmal als Funktionswert

Mehr

3. Relationen Erläuterungen und Schreibweisen

3. Relationen Erläuterungen und Schreibweisen 3. Relationen Eine Relation ist allgemein eine Beziehung, die zwischen Dingen bestehen kann. Relationen im Sinne der Mathematik sind ausschließlich diejenigen Beziehungen, bei denen stets klar ist, ob

Mehr

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend:

a 2 (a b)(a + b) h 1 := h, n N h n+1 := h h n. (2) Die Regeln für das Rechnen mit Potenzen übertragen sich dann weitgehend: 1.1.2 Symbolisches Rechnen Taschenrechner und mathematische Software wie Matlab arbeiten in der Regel numerisch, das heißt das Ergebnis eines Rechenausdrucks zum Beispiel der Form (1 1 4 ) 4 9 wird etwa

Mehr

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden

Rechnen modulo n. Bernhard Ganter. Institut für Algebra TU Dresden D-01062 Dresden Rechnen modulo n Bernhard Ganter Institut für Algebra TU Dresden D-01062 Dresden bernhard.ganter@tu-dresden.de Kanonische Primfaktorzerlegung Jede natürliche Zahl n > 0 kann auf eindeutige Weise in der

Mehr

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz

Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz Tobias Kraushaar Kaiserstr. 178 44143 Dortmund Matr.- Nr.: 122964 Euklidischer Algorithmus, Restklassenring und seine Struktur, Chinesischer Restklassensatz 1. EINLEITUNG... 2 2. HAUPTTEIL... 3 2.1. Der

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein.

Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. Oft kommt es darauf an, Potenzen a n mod m zu berechnen. Dabei kann n eine sehr groÿe Zahl sein. 3 1384788374932954500363985493554603584759389 mod 28374618732464817362847326847331872341234 Wieso kann ein

Mehr

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt

Mathematik 1. Lösungsvorschläge zum 2. Übungsblatt Hochschule Regensburg Fakultät Informatik/Mathematik Christoph Böhm Wintersemester 0/0 Wirtschaftsinformatik Bachelor IW Informatik Bachelor IN Vorlesung Mathematik Mathematik Lösungsvorschläge zum Übungsblatt

Mehr

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008

RSA-Verschlüsselung. von Johannes Becker Gießen 2006/2008 RSA-Verschlüsselung von Johannes Becker Gießen 2006/2008 Zusammenfassung Es wird gezeigt, wieso das nach Ronald L. Rivest, Adi Shamir und Leonard Adleman genannte RSA-Krptosstem funktioniert, das mittlerweile

Mehr

2. Stetige lineare Funktionale

2. Stetige lineare Funktionale -21-2. Stetige lineare Funktionale Die am Ende von 1 angedeutete Eigenschaft, die ein lineares Funktional T : D(ú) 6 verallgemeinerten Funktion macht, ist die Stetigkeit von T in jedem n 0 0 D(ú). Wenn

Mehr

Leitfaden: Algebra I. I. Gruppen

Leitfaden: Algebra I. I. Gruppen Leitfaden: Algebra I Vorbemerkung: Ist M eine Menge, so wird ihre Mächtigkeit = Kardinalität mit M bezeichnet. Bei einer Gruppe G wird die Mächtigkeit der Grundmenge die Ordnung der Gruppe genannt. I.

Mehr

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie

Minimale Darstellungen, Kommutator- und Fixräume, projektive Geometrie Notation Die in dieser Arbeit verwendete Notation ist im Wesentlichen Standard, so wie sie beispielsweise in [As] zu nden ist. Einige Abweichungen hiervon, Klarstellungen und zusätzliche Notationen (sofern

Mehr