Lineare Gleichungssysteme mit 3 und mehr Variablen

Größe: px
Ab Seite anzeigen:

Download "Lineare Gleichungssysteme mit 3 und mehr Variablen"

Transkript

1 Linere Gleihungssysteme mit un mehr rilen Beispiel 1 mit rilen: 11 Zunähst estimmt mn ie rile, ie mn ls Erste eliminieren will. In iesem Fll soll von hinten nh vorn vorgegngen weren,.h. zuerst soll rile entfernt weren. Dzu muss mn jeweils zwei Gleihungen so kominieren, ss sih eim Aieren ie rile ufhet. Durh weren zwei neue Gleihungen mit nur noh zwei rilen geilet. In iesem Beispiel weren Gleihung I mit Gleihung II un nn erneut Gleihung I mit Gleihung III kominiert. (Eine Gleihung muss oppelt verreitet weren.) 11 Ü Ü Die Neenrehnungen weren er Üersiht hler, wenn möglih, seitlih versetzt geshrieen Es wuren zwei neue Gleihungen geilet: Diese weren wieer miteinner kominiert, um nn en Wert er ersten rilen zu erhlten. D hier er Koeffizient von shon üereinstimmt, muss nihts mehr veränert weren un es wir sofort iert. (Ansonsten muss wieer eine Neenrehnung erfolgen.)

2 D in ieser letzten Gleihung nur noh eine rile enthlten ist, enötigt mn hier keine weitere Nummerierung. Der Wert er rilen wir usgerehnet: Um en Wert er rilen zu erhlten, setzt mn en Wert er rilen in eine er eien Gleihungen ein, ie nur un enthlten. (lso I oer ) In iesem Beispiel wir in Gleihung eingesetzt: 7 Ü 7 1 Durh Umformung ergit sih für er Wert: Nun enötigt mn noh en Wert er rilen. Diesen erehnet mn in einer er rei Ausgngsgleihungen urh Einsetzen von un. Hier wir in Gleihung I eingesetzt: Ü Durh Umformung ergit sih für er Wert: 1 D es sih hier um ie Berehnung eines Gleihungssystems hnelt, muss m Shluss eine Lösungsmenge ngegeen weren. In ihr weren nur ie Werte er rilen in er Reihenfolge es Alphets ufgelistet, um ie Zuornung gewährleisten zu können. Dies geshieht uh, wenn ie rilen in einer neren Reihenfolge erehnet wuren. L ;; 1 Eine Proe in llen rei Gleihungen estätigt ie Rihtigkeit es Ergenisses. Enthlten niht lle Ausgngsgleihungen rilen, so knn mn urh geshikte Komintion en Rehenweg verkürzen. Dei ist es niht immer sinnvoll, im ersten Shritt grunsätzlih s Eliminieren er letzten rilen urhzuführen. Dies gilt eenflls für ein volles Gleihungssystem. Wenn mn geshikter un mit kleinen Zhlen rehnen will, muss mn sih us en Gleihungen ie rihtige rile für en ersten Shritt herussuhen.

3 Beispiel mit rilen: D hier ie ritte Gleihung kein enthält, kominiert mn im ersten Shritt nur ie Gleihungen I un II so, ss ie rile eliminiert wir Ü Ü Diese neue Gleihung enthält nun ieselen rilen wie Gleihung III, soss eie miteinner kominiert weren können Ü Drus ergit sih mit: 1 Durh Einsetzen von in Gleihung III un umformen erhält mn mit: Setzt mn un in Gleihung II ein, so erhält mn mit: Un ie Lösungsmenge lutet in er rihtigen Reihenfolge: L 1; ; Die Proe niht vergessen!

4 Beispiel mit rilen: In einem solhen Fll muss mn reiml kominieren (jeweils zwei Gleihungen), mit mn rei Gleihungen mit nur noh rei rilen erhält. Dnn verfährt mn wie im Beispiel 1. (ei fünf Gleihungen ml kominieren für Gleihungen mit rilen, usw.) Welhe Gleihungen mehrfh genutzt weren, ist urh geshiktes Kominieren vorgegeen. Auh im Beispiel soll ls erstes ie rile (letzte rile) eliminiert weren. (Es ietet sih er uh ie rile n.) Folgene Komintionen ieten en shnellsten Erfolg mit geringstem Aufwn: ergit sih us irekter Aition von Gleihung II un III Neenrehnungen Drus ergit sih: 18 1 D hier nur noh zwei Gleihungen ie rile enthlten, weren iese kominiert, um zu eliminieren. Ü Ü

5 1 18 Ü Nun knn mn ie Gleihungen un III kominieren: 11 Ü Drus ergit sih er Wert er rilen. Durh Einsetzen in ie neren Gleihungen knn mn nn, nh un zum Shluss errehnen. Die Lösungsmenge lutet: L 1; ; ;1 Die rilen weren in lphetisher Reihenfolge ngegeen. Mehrere rilen ürfen enselen Wert esitzen (hier un ). Auh ie Null ist ein Wert für eine rile un muss entsprehen er Reihenfolge mit ngegeen weren.

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B

Erkundungen. Terme vergleichen. Rechteck Fläche als Produkt der Seitenlängen Fläche als Summe der Teilflächen A B Erkundungen Terme vergleihen Forshungsuftrg : Fläheninhlte von Rehteken uf vershiedene Arten erehnen Die Terme () is (6) eshreien jeweils den Fläheninhlt von einem der drei Rehteke. Ordnet die Terme den

Mehr

Skript. 1. Allgemeine Einführung. zur Bestimmung ganzrationaler Funktionen mit vorgegebenen Eigenschaften (Steckbriefaufgaben)

Skript. 1. Allgemeine Einführung. zur Bestimmung ganzrationaler Funktionen mit vorgegebenen Eigenschaften (Steckbriefaufgaben) Bestimmung gnzrtionler Funktionen Stekriefufgen Berufskolleg Mrienshule Lippstt Shule er Sekunrstufe II mit gymnsiler Oerstufe - sttlih nerknnt - Skript zur Bestimmung gnzrtionler Funktionen mit vorgegeenen

Mehr

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit

Fragebogen 1 zur Arbeitsmappe Durch Zusatzempfehlung zu mehr Kundenzufriedenheit Teilnehmer/Apotheke/Ort (Zus/1) Frgeogen 1 zur Areitsmppe Durh Zustzempfehlung zu mehr Kunenzufrieenheit Bitte kreuzen Sie jeweils ie rihtige(n) Antwort(en) in en Felern is n! 1. Worin esteht ie Beeutung

Mehr

5.6 Gleichsetzungsverfahren

5.6 Gleichsetzungsverfahren .6 Gleihsetzungsverfhren Verfhren: Beide Gleihungen des Gleihungssystems werden nh derselen Vrilen ufgelöst und die entsprehenden Terme werden einnder gleihgesetzt. Beispiele (G x ) ) () x + y () x - y

Mehr

Vorlesung Diskrete Strukturen Transportnetze

Vorlesung Diskrete Strukturen Transportnetze Vorlesung Diskrete Strukturen Trnsportnetze Bernhr Gnter WS 2009/10 Gerihtete Grphen Ein shlingenloser gerihteter Grph ist ein Pr (V, A), woei V eine elieige Menge ist, eren Elemente wir Eken nennen un

Mehr

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000

2. Landeswettbewerb Mathematik Bayern 2. Runde 1999/2000 Lndeswettewer Mthemtik Bern Runde 999/000 Aufge Ein Würfel wird durh je einen Shnitt rllel zur order-, Seiten und Dekflähe in ht Quder zerlegt (siehe Skizze) Können sih die Ruminhlte dieser Quder wie :

Mehr

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen

Übungen zur Vorlesung Modellierung WS 2003/2004 Blatt 11 Musterlösungen Dr. Theo Lettmnn Pderorn, den 9. Jnur 24 Age 9. Jnur 24 A x, A 2 x, Üungen zur Vorlesung Modellierung WS 23/24 Bltt Musterlösungen AUFGABE 7 : Es sei der folgende prtielle deterministishe endlihe Automt

Mehr

Umstellen von Formeln und Gleichungen

Umstellen von Formeln und Gleichungen Umstellen von Formeln und Gleihungen. Ds Zusmmenfssen von Termen edeutet grundsätzlih ein Ausklmmern, uh wenn mn den Zwishenshritt niht immer ufshreit. 4 6 = (4 6) =. Steht eine Vrile, nh der ufgelöst

Mehr

Geometrie. Inhaltsverzeichnis. 8.1 Der Satz von Ptolemäus und sein klassischer Beweis. Der Satz von Ptolemäus. 8 Der Satz von Ptolemäus

Geometrie. Inhaltsverzeichnis. 8.1 Der Satz von Ptolemäus und sein klassischer Beweis. Der Satz von Ptolemäus. 8 Der Satz von Ptolemäus Der Stz von Ptolemäus 1 Geometrie Der Stz von Ptolemäus Autor: Peter Anree Inhltsverzeihnis 8 Der Stz von Ptolemäus 1 8.1 Der Stz von Ptolemäus un sein lssisher Beweis........... 1 8.2 Verhältnis er Digonlen

Mehr

Das kleine 9er-Einmaleins mit den 10 Fingern lernen.

Das kleine 9er-Einmaleins mit den 10 Fingern lernen. Ws? Multiplizieren 9er-Finger-Einmleins Wozu? Ds kleine 9er-Einmleins mit den 10 Fingern lernen. 1. Beide Hände mit usgestrekten Fingern zeigen nh oen. 2. Die Dumen zeigen nh ußen (Hndflähen zum Gesiht).

Mehr

Bruchrechnen. Faßt man zwei Drittel eines Ganzen zusammen, so schreibt man 3. Bezeichnungen bei Brüchen: Der Bruch als Quotient:

Bruchrechnen. Faßt man zwei Drittel eines Ganzen zusammen, so schreibt man 3. Bezeichnungen bei Brüchen: Der Bruch als Quotient: Bruhrehnen Zerlegt mn ein Gnzes (einen Li Brot, eine Torte, einen Apfel, einen Geletrg, eine Kreisflähe, ein Rehtek, eine Streke,... ) in,,... gleihe Teile, so heißt ein solher Teil (Bruhteil es Gnzen)

Mehr

Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q.

Mathematik PM Rationale Zahlen. Ist a kein Vielfaches von b, so entsteht eine neue Zahl, Bruch oder rationale Zahl genannt. Sie bilden die Menge Q. Mthetik PM Rtionle Zhlen Rtionle Zhlen. Einführung Die Gleihung = 9 ht ie Lösung. Z 9 9 Die Gleihung = ht ie Lösung. Z Definition Die Gleihung =, it, Z un 0, ht ie Ist kein Vielfhes von, so entsteht eine

Mehr

Übungen zu CFGs (Daniel Siebert 2011, cc-by-nc-sa)

Übungen zu CFGs (Daniel Siebert 2011, cc-by-nc-sa) Üungen zu CFGs (niel ieert 2011, -y-n-s) nmerkungen: 1. Wenn niht explizit ngegeen gilt für lle CFGs s trtsymol. ie Terminl- un ihtterminlsymole ergeen sih us en Prouktionsregeln. 2. ufgentypen zur Einshätzung

Mehr

Kapitel 6 E-Mails schreiben und organisieren

Kapitel 6 E-Mails schreiben und organisieren Kpitel 6 E-Mils shreien und orgnisieren Die Kommuniktion vi E-Mil ist heute essenziell. Und Ihr M ist estens gerüstet für den Empfng, ds Verfssen und die Orgnistion von E-Mils. Wie Sie effektiv mit dem

Mehr

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius.

Grundwissen Mathematik 8.Klasse Gymnasium SOB. Darstellung im Koordinatensystem: Der Kreisumfang ist direkt proportional zu seinem Radius. Gymso 1 Grundwissen Mthemtik 8.Klsse Gymnsium SOB 1.Funktionle Zusmmenhänge 1.1.Proportionlität Ändern sih ei einer Zuordnung die eiden Größen im gleihen Verhältnis, so spriht mn von einer direkten Proportionlität.

Mehr

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1

Grundlagen der Technischen Informatik. Bausteine der Digitaltechnik - Binäre Schalter und Gatter. Kapitel 7.1 Busteine er Digitltehnik - Binäre Shlter un Gtter Kpitel 7. Dr.-Ing. Stefn Wilermnn ehrstuhl für rwre-softwre-co-design Entwurfsrum - Astrktionseenen SYSTEM-Eene + MODU-/RT-Eene (Register-Trnsfer) ogik-/gatter-eene

Mehr

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen:

Volumen und Oberfläche von Prismen und Zylindern: Das Volumen und die Oberfläche sind für alle geraden Prismen und Zylinder wie folgt zu berechnen: Körpererehnungen Grunwissen Grunwissen Viele mthemtishe Körper lssen sih us en eknnten geometrishen Grunkörpern zusmmensetzen: us geren Prismen, Zylinern, Kegeln, Pyrmien un Kugeln. Hinsihtlih er Oerflähen-

Mehr

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19

10. Lineare Gleichungen mit zwei Variabeln Eine lineare Gleichung in 2 Variablen... 19 Alger Vorlesung (.Teil) Mg. Dniel Zeller INHALTSVERZEICHNIS 0. Linere Gleihungen mit zwei Vrieln... 9 Eine linere Gleihung in Vrilen... 9 Geometrishe Deutung einer lineren Gleihung in Vrilen... Gleihungssystem

Mehr

Hilfsrelais HR 116. Bilfinger Mauell GmbH

Hilfsrelais HR 116. Bilfinger Mauell GmbH Bilfinger Muell GmH Hilfsrelis HR 11 Die Hilfsrelis ienen zur glvnishen Trennung, Kontktvervielfhung un Trennung zwishen Hilfs- un Steuerstromkreisen. Bilfinger Muell GmH Inhltsverzeihnis Inhlt Seite Anwenung

Mehr

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010

R. Brinkmann http://brinkmann-du.de Seite 1 17.11.2010 R. rinkmnn http://rinkmnn-du.de Seite 7..2 Grundegriffe der Vektorrehnung Vektor und Sklr Ein Teil der in Nturwissenshft und Tehnik uftretenden Größen ist ei festgelegter Mßeinheit durh die nge einer Mßzhl

Mehr

ADSORPTIONS-ISOTHERME

ADSORPTIONS-ISOTHERME Institut für Physiklishe Chemie Prktikum Teil und B 8. DSORPTIONS-ISOTHERME Stnd 30/0/008 DSORPTIONS-ISOTHERME. Versuhspltz Komponenten: - Büretten - Pipetten - Shütteltish - Wge - Filtriergestell - Behergläser.

Mehr

Die Philosophisch-historische Fakultät der Universität Bern. erlässt

Die Philosophisch-historische Fakultät der Universität Bern. erlässt Stuienpln für s Bhelor- un Mster-Stuienprogrmm Estern Europen Stuies / Osteurop-Stuien / Étues e l Europe orientle er Universität Bern in Zusmmenreit mit er Universität Friourg vom 1. August 2009 Die Philosophish-historishe

Mehr

Hausaufgabe 2 (Induktionsbeweis):

Hausaufgabe 2 (Induktionsbeweis): Prof. Dr. J. Giesl Formle Sprhen, Automten, Prozesse SS 2010 Üung 3 (Age is 12.05.2010) M. Brokshmidt, F. Emmes, C. Fuhs, C. Otto, T. Ströder Hinweise: Die Husufgen sollen in Gruppen von je 2 Studierenden

Mehr

5 Vierecke. 1 Quadrat

5 Vierecke. 1 Quadrat Viereke Shüleruhseite ((nm: Seitenereihe folgen in. Korr)) Viereke uftkt Seiten 8, 9 Seite 8 Qurt Viereksformen Seiten 0, Seite 0 Einstieg rotes Vierek: Rehtek lues Vierek: Rute grünes Vierek: Prllelogrmm

Mehr

Grundwissen Mathematik 8 1 Zahlen Bruchterme sind z.b.: ; ; in Faktoren zerlegen gemeinsame Faktoren kürzen + D = Q\{0; 2}

Grundwissen Mathematik 8 1 Zahlen Bruchterme sind z.b.: ; ; in Faktoren zerlegen gemeinsame Faktoren kürzen + D = Q\{0; 2} Zahlen + a + Bruhterme sin z.b.: ; ; a a +. Kürzen ( ) ( + ) ( + ) ( + ) in Faktoren zerlegen gemeinsame Faktoren kürzen. Aieren un Sutrahieren Beispiel:, + D Q\{0; } a) Hauptnenner (HN) estimmen: HN:

Mehr

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken.

Facharbeit über den Beweis der Existenz der Euler schen Gerade in ebenen Dreiecken. Fhreit üer den Beweis der Eistenz der Euler shen Gerde in eenen Dreieken. Verfßt von Ing. Wlter Höhlhumer im Mi und ergänzt im Juli Eistenz der Euler shen Gerde Eistenz der Euler shen Gerde Eistenz der

Mehr

Mathematik Regelheft Klasse 6

Mathematik Regelheft Klasse 6 Mthemtik Regelheft Klsse 6 Inhltsverzeihnis I Them: Teilrkeit 6.) Teiler un Vielfhe 6.) Teilrkeitsregeln 6.) Primzhlen un Primfktorzerlegung 6.) ggt 6.) kgv II Them: Winkel 6.6) Kreissklen un ihre Einteilung

Mehr

Shortest Path Algorithmus von Edsger Dijkstra

Shortest Path Algorithmus von Edsger Dijkstra Shortest Pth Algorithmus von Esger Dijkstr Mihel Dienert 16. Dezemer 2010 Inhltsverzeihnis 1 Shortest Pth Algorithmus 1 1.1 Grphen................................. 1 1.2 Knoten..................................

Mehr

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006

STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 STUDIENPLAN ZUM STUDIENGANG BACHELOR VOLKSWIRTSCHAFTSLEHRE UNIVERSITÄT BERN VOM 1. SEPTEMBER 2006 Die Wirtshfts- un Sozilwissenshftlihe Fkultät er Universität Bern erlässt, gestützt uf Artikel 39 Astz

Mehr

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen

DOWNLOAD. Grundrechenarten 5./6. Klasse: Multiplikation. Mathetraining in 3 Kompetenzstufen DOWNLOD rigitte Penzenstler 5./6. Klsse: Multipliktion Mthetrining in 3 Kompetenzstufen rigitte Penzenstler ergeorfer Unterrihtsieen Downlouszug us em Originltitel: Mthetrining in 3 Kompetenzstufen n 1:

Mehr

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis

Informatik II SS Pumping Lemma für reguläre Sprachen (1/2) Pumping Lemma für reguläre Sprachen (2) Beweis Pumping Lemm für reguläre Sprhen (1/2) Informtik II SS 2004 Teil 6: Sprhen, Compiler un Theorie 2 Ds Pumping Lemm ist eine Methoe, um herus zu finen, o eine Sprhe niht regulär. Prof. Dr. Dieter Hogrefe

Mehr

Dreiecke und Vierecke

Dreiecke und Vierecke reieke un Viereke Viereke Welhe esoneren Viereke sin eknnt, ws zeihnet esonere Viereke us? Impuls uf Seiten, Winkel, Symmetrie!.) s Qurt: Ein Qurt esitzt folgene Eigenshften: lle Seiten sin gleihlng. (

Mehr

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1)

solche mit Textzeichen (z.b. A, a, B, b,!) solche mit binären Zeichen (0, 1) teilung Informtik, Fh Progrmmieren 1 Einführung Dten liegen oft ls niht einfh serier- und identifizierre Dtensätze vor. Stttdessen reräsentieren sie lnge Zeihenketten, z.b. Text-, Bild-, Tondten. Mn untersheidet

Mehr

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele:

Mathematik 17 Bruchrechnen 00 Name: Vorname: Datum: Lernziele: Mthemtik 7 Bruhrehnen 00 Nme: Vornme: Dtum: Lernziele: Nr. Lernziel A Ih knn ie vier Grunopertionen (Aition, Subtrktion, Multipliktion un Division) uf Aufgben mit Brühen nwenen. B Ih knn ie vier Grunopertionen

Mehr

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche

2.1 Motivation, Zurückführung auf ein Doppelintegral. Wir betrachten einen zylindrischen Körper K, der von der Fläche Kpitel 2 Ds Flähenintegrl 2.1 Motivtion, Zurükführung uf ein Doppelintegrl Wir betrhten einen zylindrishen Körper K, der von der Flähe z f(x, y, seitlih von einer Zylinderflähe mit Erzeugenden prllel zur

Mehr

DV1_Kapitel_5.doc Seite 5-1 von 36 Rüdiger Siol 12.09.2009 16:31

DV1_Kapitel_5.doc Seite 5-1 von 36 Rüdiger Siol 12.09.2009 16:31 Rvensurg-Weingrten Vorlesung zur Dtenverreitung Tehnishe Informtik Inhltsverzeihnis 5 TECHNISCHE INFORMATIK...5-2 5. ENTWURF DIGITALER SYSTEME...5-2 5.2 KOMBINATIONSSCHALTUNGEN (SCHALTNETZE)...5-3 5.2.

Mehr

Stabile Hochzeiten wie und warum?

Stabile Hochzeiten wie und warum? Stile Hohzeiten wie un wrum? Tg er Mthemtik HU erlin 25. pril 2009 Stefn elsner TU erlin, Mthemtik felsner@mth.tu-erlin.e Ws sin stile Hohzeiten? Gegeen: Menge von ruen, M Menge von Männern, = M. Jee Person

Mehr

Kapitel 7 Kalender, Erinnerungen und Kontakte

Kapitel 7 Kalender, Erinnerungen und Kontakte Kpitel 7 Klener, Erinnerungen un Kontkte Zu einem orentlihen Smrtphone gehören ntürlih uh eine usgereif- te Klener- un Erinnerungsfunktion un eine gute Kontktverwltung. Beim iphone reiten lle iese Funktionen

Mehr

Musterfragen HERMES 5.1 Foundation

Musterfragen HERMES 5.1 Foundation Musterfrgen HERMES 5.1 Fountion Inhlt Seite 2 A Seite 3 Einführung Multiple-Choie-Frgen HERMES ist ein offener Stnr er shweizerishen Bunesverwltung. Die Shweizerishe Eigenossenshft, vertreten urh s Informtiksteuerungsorgn

Mehr

Institut für Mathematik

Institut für Mathematik U n i v e r s i t ä t A u g s u r g Institut für Mthemtik Rente Motzer Mgishe Qurte - Einführung in ie Linere Alger nhn ieses Vektorrummoells Preprint Nr. 9/8. Ferur 8 Institut für Mthemtik Universitätsstrße

Mehr

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort

Vorlesung 24: Topological Sort 1: Hintergrund. Einführung in die Programmierung. Bertrand Meyer. Topological sort Einführung in ie Progrmmierung Vorlesung 4: Topologil Sort : Hintergrun Bertrn Meer Letzte Üerreitung 3. Jnur 4 3 Topologil sort 4 Prouziere eine zu einer gegeenen Prtiellen Ornung komptile Vollstänige

Mehr

Prüfungsteil Schriftliche Kommunikation (SK)

Prüfungsteil Schriftliche Kommunikation (SK) SK Üerlik und Anforderungen Üerlik und Anforderungen Prüfungsteil Shriftlihe Kommuniktion (SK) Üerlik und Anforderungen Worum geht es? In diesem Prüfungsteil sollst du einen Beitrg zu einem estimmten Them

Mehr

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz

Seminar zum anorganisch-chemischen Praktikum I. Quantitative Analyse. Prof. Dr. M. Scheer Patrick Schwarz Seminr zum norgnish-hemishen Prktikum I Quntittive Anlyse Prof. Dr. M. Sheer Ptrik Shwrz itertur A. F. Hollemn, E. Wierg, ehruh der Anorgnishen Chemie, de Gruyter Verlg, Berlin, New York (Ahtung, neue

Mehr

Prüfungsvorbereitung Maler/-in und Lackierer/-in

Prüfungsvorbereitung Maler/-in und Lackierer/-in #04900_003_00-AH 18.05.2010 17:32 Uhr Seite 1 Friehelm Dukt, Konr Rihter, Günter Westhoff Prüfungsvorereitung Mler/-in un Lkierer/-in Gesellenprüfung Fhrihtung Gestltung un Instnhltung 3. Auflge Bestellnummer

Mehr

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente:

Inhalt: Die vorliegenden Folienvorlagen enthalten folgende Elemente: Inhlt: 1 Seiten und Winkel im rehtwinkligen reiek edienen des Tshenrehners erehnungen in rehtwinkligen reieken 4 erehnungen in llgemeinen reieken 5 erehnungen in Vieleken 6 erehnungen mit Prmetern Exkurs:

Mehr

KAPITEL 1 EINFÜHRUNG: STABILE MATCHINGS

KAPITEL 1 EINFÜHRUNG: STABILE MATCHINGS KPITEL 1 EINFÜHRUNG: STILE MTHINGS F. VLLENTIN,. GUNERT In iesem Kpitel weren wir ein erstes konkretes Prolem es Opertions Reserh kennenlernen. Es hnelt sih um s Prolem es stilen Mthings, ein wihtiges

Mehr

Aktion: Der Patient führt eine Pro- bzw. Supination

Aktion: Der Patient führt eine Pro- bzw. Supination .5 Üungen mit un ohne Gerät 389 A..103 Extension es Ellenogen gelenks. Ausgngsstellung. En stellung. Anmerkung: Es ist uf einen stilen Rumpf zu hten. Neen iesen reltiv isolierten Streküungen für en M.

Mehr

LÖSUNGSVORSCHLÄGE ZUM 7. ÜBUNGSBLATT IN LINEARER ALGEBRA II

LÖSUNGSVORSCHLÄGE ZUM 7. ÜBUNGSBLATT IN LINEARER ALGEBRA II LÖSUNGSVORSCHLÄGE ZUM 7. ÜBUNGSBLATT IN LINEARER ALGEBRA II Prof. Werner Bley, Frnz Gmeineder Deember 9, 211 Aufgbe 1 Obwohl ds Resultt dieser Aufgbe niht sehr tiefliegend ist, ht es doh eine gnz wihtige

Mehr

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09

Hans U. Simon Bochum, den Annette Ilgen. Beispiele zur Vorlesung. Theoretische Informatik. WS 08/09 Hns U. Simon Bohum, den 7..28 Annette Ilgen Beispiele zur Vorlesung Theoretishe Informtik WS 8/9 Voremerkung: Hier findet sih eine Smmlung von Beispielen und Motivtionen zur Vorlesung Theoretishe Informtik.

Mehr

Fachgebiet Rechnersysteme 2. Übung Logischer Entwurf. Technische Universität Darmstadt. 4. Aufgabe. b) Minterm-Normalform

Fachgebiet Rechnersysteme 2. Übung Logischer Entwurf. Technische Universität Darmstadt. 4. Aufgabe. b) Minterm-Normalform Fhgeiet Rehnersysteme 2. Üung Logisher Entwur Tehnishe Universität Drmstt 2. Üung Logisher Entwur 4. Auge 1 4. Auge 2. Üung Logisher Entwur 4. Auge 3 ) Minterm-Normlorm Geen sei ie ooleshe Funktion + +

Mehr

Protokoll zur Vorlesung Theoretische Informatik I

Protokoll zur Vorlesung Theoretische Informatik I Protokoll zur Vorlesung Theoretishe Informtik I! " # $ % # & ' ( % ) * + & " & & &, " ' % + - + # + & '. / 0 1 # 0 & 2 & # & 3 4 & 5 # 0 + & 6 & ' + 7 7 3 8 4 & 7 + + + % ( % 6 # 9 & 5 # 0 + & 3 8. : &

Mehr

FB Technologie und Management. Das de Morgansche Theorem. Kombinationsschaltungen (Schaltnetze) Rangfolge der 3 Grundoperationen

FB Technologie und Management. Das de Morgansche Theorem. Kombinationsschaltungen (Schaltnetze) Rangfolge der 3 Grundoperationen FB Tehnologie un Mngement Komintionsshltungen (hltnetze) Eingngsvektor X Komintorishes ystem (hltnetz) y y Ausgngsvektor f(x) n y m Dtenverreitung (Kpitel 5 Tehnishe Informtik) Drstellung er ignle X hltnetz

Mehr

Chemisches Gleichgewicht

Chemisches Gleichgewicht TU Ilmenu Chemishes Prktikum Versuh Fhgebiet Chemie 1. Aufgbe Chemishes Gleihgewiht Stellen Sie 500 ml einer 0,1m N her! estimmen Sie die genue onzentrtion der hergestellten N mit zwei vershiedenen Anlysenmethoden

Mehr

Spannung galvanischer Zellen (Zellspannungen)

Spannung galvanischer Zellen (Zellspannungen) Spnnung glvnisher Zellen (Zellspnnungen) Ziel des Versuhes Kennenlernen der Abhängigkeit der Zellspnnung von den Konzentrtionen der potenzilbestimmenden Ionen (Nernst-Gleihung). Anwendung der Zellspnnungsmessung

Mehr

1. Voraussetzung. 2. Erstmalig anmelden Login beantragen. Online Fahrzeug-Registrierung. Anleitung

1. Voraussetzung. 2. Erstmalig anmelden Login beantragen. Online Fahrzeug-Registrierung. Anleitung Anleitung Online Fhrzeug-Registrierung 1. Vorussetzung Ihr Unternehmen muss ereits ei Toll Collet ls Kunde registriert sein. Den Antrg finden Sie unter www.toll-ollet.de/registrierung 2. Erstmlig nmelden

Mehr

CREATE YOUR OWN PERFUME BUSINESS CONCEPT. Der Duft für Ihr erfolgreiches Business

CREATE YOUR OWN PERFUME BUSINESS CONCEPT. Der Duft für Ihr erfolgreiches Business CREATE YOUR OWN PERFUME BUSINESS CONCEPT Der Duft für Ihr erfolgreihes Business DAS BUSINESS CONCEPT Fszinieren einfh. In wenigen Shritten zum iniviuellsten Weregeshenk er Welt. Wollen Sie sih von Ihren

Mehr

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass)

Konstruktion des regulären Fünfecks mit dem rostigen Zirkel (rusty compass) onstruktion des regulären Fünfeks mit dem rostigen Zirkel (rusty ompss) Vrinte 1 Oliver ieri ie hier vorliegende Methode zur onstruktion eines regulären Fünfeks unter Zuhilfenhme eines rostigen Zirkels

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Einführungsmöglichkeiten des Skalarprodukts. r r

Einführungsmöglichkeiten des Skalarprodukts. r r Einfühungsmöglihkeiten des Sklpodukts Jügen Zumdik I. Geometishe Zugänge im Euklidishen Vektoum Euklidishe Länge eines Vektos ist eeits eingefüht Polem Winkel zwishen Vektoen R² α β ϕ α-β osϕ osα-β osαosβ

Mehr

1 152.17. 1. Gegenstand und Zweck

1 152.17. 1. Gegenstand und Zweck 5.7. März 0 Verordnung üer die Klssifizierung, die Veröffentlihung und die Arhivierung von Dokumenten zu Regierungsrtsgeshäften (Klssifizierungsverordnung, KRGV) Der Regierungsrt des Kntons Bern, gestützt

Mehr

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2

Formelsammlung. 2 c 3. Wenn die Ebene durch die Gerade g und den Punkt g gehen soll, gilt: 3 und h : 2 Formelsmmlug Gere urh zwei Pukte A( 3 ) u B( 3 ) g AB : 3 Eee urh rei Pukte A( 3 ), B( 3 ) u C( 3 ) [Eee i Prmeterform] E ABC : 3 s 3 Eee urh Gere u Pukt. Sei P( p p p 3 ) u g : We ie Eee urh ie Gere g

Mehr

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten

6 Tiefensuche in ungerichteten Graphen: Zweifache Zusammenhangskomponenten 66 6 ZWEIFACHE ZUSAMMENHANGSKOMPONENEN 6 iefenshe in ngerihteten Grphen: Zeifhe Zsmmenhngskomponenten Der Algorithms ist gnz gen ersele ie im gerihteten Fll! Ailng 1 zeigt noh einml en gerihtete Fll n

Mehr

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt.

Der Vektor lebt unabhängig vom Koordinatensystem: Bei einer Drehung des Koordinatensystems ändern zwar die Komponenten, der Vektor v aber bleibt. Vektorlger Vektorlger Vektoren sind Grössen, die einen Betrg sowie eine Rihtung im Rum hen. Im Gegenstz zu den Vektoren estehen Sklre nur us einer Grösse ls Zhl. In Bühern wird nsttt v oft v geshrieen.

Mehr

Autogene Milchzahntransplantation

Autogene Milchzahntransplantation Ein Falleriht Autogene Milhzahntransplantation Dirk Nolte et al. Die autogene Milhzahntransplantation ist eine relativ unekannte Methoe es Einzelzahnersatzes, ie erstaunlih gute klinishe Ergenisse liefert.

Mehr

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps

1 GeschäftsdiaGramme. Abbildung 1.1: Übersicht zu unterschiedlichen Grafi ktypen. 2.1.4 Unify objects: graphs e.g. org graphs, networks, and maps 1 GeshäftsdiGrmme Wenn mn eine deutshe Üersetzung des Begriffes usiness hrts suht, so ist mn mit dem Wort Geshäftsdigrmme gnz gut edient. Wir verstehen unter einem Geshäftsdigrmm die Visulisierung von

Mehr

Mathematik Trigonometrie Einführung

Mathematik Trigonometrie Einführung Mthemtik Trigonometrie Einführung Ws edeutet ds Wort Trigonometrie und mit ws eshäftigt sih die Trigonometrie? Eine kleine Wortkunde: tri edeutet 'drei' Beispiel: Trithlon,... gon edeutet 'Winkel'/'Ek'

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist

Die Näherung ist umso genauer, je kleiner die Zellen sind. Der Grenzwert ist Höhere Mthemtik Mehrfhintegrle sind Integrle üer eiete R n Zweifhintegrle treten B ei der Berehnung des Fläheninhltes und von Flähenträgheitsmomenten uf Dreifhintegrle kommen ei der Berehnung des Volumeninhltes

Mehr

7.4. Teilverhältnisse

7.4. Teilverhältnisse 7... erehnung von Teilverhältnissen ufgen zu Teilverhältnissen Nr. 7.. Teilverhältnisse Die Shwerpunkte von Figuren und Körpern lssen sih mit Hilfe von Teilverhältnissen usdrüken und erehnen. Definition

Mehr

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung

Technische Universität München Sommer 2016 Prof. J. Esparza / Dr. M. Luttenberger, S. Sickert 18. Juni HA-Lösung. TA-Lösung ehnishe niversität Münhen ommer 2016 Prof. J. Esprz / Dr. M. Luttenerger,. ikert 18. Juni 2016 HA-Lösung A-Lösung Einführung in die theoretishe Informtik Aufgenltt 8 Behten ie: oweit niht explizit ngegeen,

Mehr

Logarithmen und Logarithmengesetze

Logarithmen und Logarithmengesetze R. Brinkmnn http://brinkmnn-du.de Seite 9.. Logrithmen und Logrithmengesetze Wir betrhten die Gleihung 5 = 5 Auf der linken Seite steht eine Potenz mit der Bsis 5 und dem Eponenten. Auf der rehten Seite

Mehr

Übungstest 1 RECHNEN ALTENPFLEGEHILFE GEFÖRDERT VOM BASIS 3.

Übungstest 1 RECHNEN ALTENPFLEGEHILFE GEFÖRDERT VOM BASIS 3. Üungstest 1 RECHNEN ALTENPFLEGEHILFE GEFÖRDERT VOM BASIS 3 www.tel.net 2 Inhlt Testformt tel Rehnen Bsis 3 4 Prüfungsluf un -molitäten 5 Prüfungsufgen Testteil I 7 Prüfungsufgen Testteil II 15 Lösungsshlüssel

Mehr

Nullstellen quadratischer Gleichungen

Nullstellen quadratischer Gleichungen Nullstellen qudrtischer Gleichungen Rolnd Heynkes 5.11.005, Achen Nch y ufgelöst hen qudrtische Gleichungen die Form y = x +x+c. Zeichnet mn für jedes x uf der rechten Seite und ds drus resultierende y

Mehr

3 Exzisionstechniken und Defektdeckungen in speziellen Lokalisationen

3 Exzisionstechniken und Defektdeckungen in speziellen Lokalisationen 95 3 Exzisionstehniken und Defektdekungen in speziellen Loklistionen 3.1 Kopf-Hls-Region Voremerkungen Die Häufigkeit störender Veränderungen sowie enigner und mligner kutner Neuildungen im Kopf-Hls- Bereih

Mehr

Orientierungshilfe zu Auswahltests Training, Tipps und Taktik Bundesagentur für Arbeit

Orientierungshilfe zu Auswahltests Training, Tipps und Taktik Bundesagentur für Arbeit Informtionen für Jugendlihe Orientierungshilfe zu Auswhltests Trining, Tipps und Tktik Bundesgentur für Areit Bundesgentur für Areit I N H A LT Orientierungshilfe zu Auswhltests Inhlt Seite 3 Vorwort

Mehr

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie -

Für den Mathe GK, Henß. - Lineare Algebra und analytische Geometrie - Für den Mthe GK, Henß - Linere Alger und nlytische Geometrie - Bis uf die Astände ist jetzt lles drin.. Ich h noch ne tolle Seite entdeckt mit vielen Beispielen und vor llem Aufgen zum Üen mit Lösungen..

Mehr

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2

Übungen zu Frage 62: Nr. 1: Von einer regelmäßigen fünfseitigen Pyramide sind gegeben: Grundkante a = 7,5 cm Mantelfläche M = 190 cm 2 Üungen tereometrie fünfseitige yrmide Üungen zu Frge 6: Nr : Von einer regelmäßigen fünfseitigen yrmide sind gegeen: Grundknte = 7,5 cm ntelfläce = 90 cm erecnen ie die Höe der eitenfläce und den Winkel

Mehr

Dichtpflanzung von Hokkaido bringt mehr Ertrag und gleiche Lagereignung

Dichtpflanzung von Hokkaido bringt mehr Ertrag und gleiche Lagereignung Mrtin Herener; Lnwirtshftskmmer NRW; Grtenstr. 11; 50765 Köln; 0221 5340-240, mrtin.herener@lwk.nrw.e Dihtpflnzung von Hokkio ringt mehr Ertrg un gleihe Lgereignung Zusmmenfssung - Empfehlungen In einem

Mehr

Checkliste Sinus, Kosinus, Tangens

Checkliste Sinus, Kosinus, Tangens Chekliste Sinus, Kosinus, Tngens Nr. K 1 K K 3 K 4 K 5 K 6 K 7 K 8 Kompetenz Ih knn... in einem rehtwinkligen Dreiek Kthete, Gegenkthete und Hypotenuse estimmen in einem rehtwinkligen Dreiek die Seitenverhältnisse

Mehr

GESTRA SPECTORcom-Gateway. Kessel- und Brennersteuerung Durch das Intranet, Internet oder GSM-Netz ins Kesselhaus

GESTRA SPECTORcom-Gateway. Kessel- und Brennersteuerung Durch das Intranet, Internet oder GSM-Netz ins Kesselhaus GESTRA -Gtewy - un steuerung Durh s Intrnet, oer GSM-Netz ins hus Die Systemvorteile im einzelnen Mit em -Gtewy ist es GESTRA gelungen, ie Welt er steuerung mit er er Wsserseite zu verinen. Ein kleines,

Mehr

Sie das Gerät aus und überprüfen Sie den Lieferumfang. Netzkabel. Trägerbogen/Plastikkarten-Trägerbogen DVD-ROM

Sie das Gerät aus und überprüfen Sie den Lieferumfang. Netzkabel. Trägerbogen/Plastikkarten-Trägerbogen DVD-ROM Instlltionsnleitung Hier eginnen ADS-2100 Lesen Sie zuerst die Produkt-Siherheitshinweise, evor Sie ds Gerät einrihten. Lesen Sie dnn diese Instlltionsnleitung zur korrekten Einrihtung und Instlltion.

Mehr

G4_S01 Seite 2. Licht und Farbe (Fortsetzung) Untersuchung des neuen T-Shirts

G4_S01 Seite 2. Licht und Farbe (Fortsetzung) Untersuchung des neuen T-Shirts Emil un Anres gehen in ein Kleiungsgeshäft, um ein ornges T-Shirt zu kufen. Auf em Nhhuseweg öffnen sie ihre Einkufstshe, um einem Freun s neue ornge T-Shirt zu zeigen. Sie sin üerrsht, ss s T-Shirt rot

Mehr

Top-Aevo Prüfungsbuch

Top-Aevo Prüfungsbuch Top-Aevo Prüfungsbuh Testufgben zur Ausbildereignungsprüfung (AEVO) 250 progrmmierte Testufgben (Multiple Choie) 1 Unterweisungsentwurf / 1 Präsenttion 40 möglihe Frgen nh einer Unterweisung Top-Aevo.de

Mehr

Zunächst ein paar Fragen zu Ihrer Person:

Zunächst ein paar Fragen zu Ihrer Person: Zunähst ein paar Fragen zu Ihrer Person: Sehr geehrte Damen un Herren! Wir laen Sie herzlih zu ieser Gesunheitsefragung ein, a uns Ihre Gesunheit wihtig ist. Darum führen wir ei itworks as Projekt (f)itworks

Mehr

McAfee Firewall Enterprise Control Center

McAfee Firewall Enterprise Control Center Hnuh für en Shnellstrt Revision A MAfee Firewll Enterprise Control Center Version 5.3.1 In iesem Hnuh für en Shnellstrt finen Sie llgemeine Anweisungen zum Einrihten von MAfee Firewll Enterprise Control

Mehr

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck

Download. Basics Mathe Flächenberechnung. Fläche von Rechteck, Quadrat, Drachen, Raute, Parallelogramm, Dreieck. Michael Franck Downlod Mihel Frnk sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm, Dreiek Downloduszug us dem Originltitel: sis Mthe Flähenerehnung Flähe von Rehtek, Qudrt, Drhen, Rute, Prllelogrmm,

Mehr

Ungleichungen. Jan Pöschko. 28. Mai Einführung

Ungleichungen. Jan Pöschko. 28. Mai Einführung Ungleichungen Jn Pöschko 8. Mi 009 Inhltsverzeichnis Einführung. Ws sind Ungleichungen?................................. Äquivlenzumformungen..................................3 Rechnen mit Ungleichungen...............................

Mehr

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c

Kommutativgesetz 1.) a + b = b + a Entsprechende Umformungen gelten. Assoziativgesetz 3.) ( a + b ) + c = a + ( b + c ) = a + b + c 03.05.0 Elemetre Termumformuge Kommuttivgesetz. + + Etsprehede Umformuge gelte... für Sutrktio ud Divisio iht. Assozitivgesetz 3. ( + + + ( + + + 4. (... (... 5. ( + - + ( - + - 6. (. :. ( :. : Etsprehede

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Integrationsmethoden

Integrationsmethoden Universität Perborn Dezember 8 Institut für Mthemtik C. Kiser Integrtionsmethoen Prtielle Integrtion (Prouktintegrtion) Unbestimmte Integrtion er Prouktregel (u v) () = u ()v() + u()v () liefert (u v)()

Mehr

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} +

dem Verfahren aus dem Beweis zu Satz 2.20 erhalten wir zunächst die folgenden beiden ε-ndeas für die Sprachen {a} {b} und {ε} {a} + Lösungen zu Üungsltt 3 Aufge 1. Es gilt L(( ) ) = ({} {}) {} = ({} {}) ({} {} + ). Mit dem Verfhren us dem Beweis zu Stz 2.20 erhlten wir zunächst die folgenden eiden -NDEAs für die Sprchen {} {} und {}

Mehr

VIP Tour Extra 2010 Neue Benutzerführung Automat (NeuBAu)

VIP Tour Extra 2010 Neue Benutzerführung Automat (NeuBAu) VIP Tour Extr 2010 Neue Benutzerführung Automt (NeuBAu) Kontkt DB Vertrie GmH P.DVR 11 Stephensonstrße 1 60326 Frnkfurt m Min www.hn.de Änderungen vorehlten Einzelngen ohne Gewähr Stnd: Septemer 2010 Herusgeer

Mehr

Funktionen und Mächtigkeiten

Funktionen und Mächtigkeiten Vorlesung Funktionen und Mähtigkeiten. Etws Mengenlehre In der Folge reiten wir intuitiv mit Mengen. Eine Menge ist eine Zusmmenfssung von Elementen. Zum Beispiel ist A = {,,,,5} eine endlihe Menge mit

Mehr

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN

ZDfB_Ü01_LV_06 120206. Felix Brandl München ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01. Kandidatenblätter LESEVERSTEHEN ZEIT: 40 MINUTEN Felix Brndl Münhen ZDfB_Ü01_LV_06 120206 ZERTIFIKAT DEUTSCH FÜR DEN BERUF ÜBUNGSSATZ 01 Kndidtenlätter ZEIT: 40 MINUTEN Zertifikt Deutsh für den Beruf Üungsstz 01 Aufge 1 Bitte lesen Sie den folgenden

Mehr

Projektmanagement Selbsttest

Projektmanagement Selbsttest Projektmngement Selsttest Oliver F. Lehmnn, PMP Projet Mngement Trining www.oliverlehmnn-trining.de Dieses Dokument drf frei verteilt werden, solnge seine Inhlte einshließlih des Copyright- Vermerks niht

Mehr

McAfee Firewall Enterprise Control Center

McAfee Firewall Enterprise Control Center Shnellstrt Hnuh Revision A MAfee Firewll Enterprise Control Center Version 5.3.x In iesem Hnuh für en Shnellstrt finen Sie llgemeine Anweisungen zum Einrihten von MAfee Firewll Enterprise Control Center

Mehr

Füllungen im Zahnhalsbereich Mit dem Laser im Vorteil

Füllungen im Zahnhalsbereich Mit dem Laser im Vorteil Füllungen im Zhnhlsereih Mit dem Lser im Vorteil Vorgehen im Vergleih zur konventionellen Behndlung Die Präprtion mit Er:YAG-Lsern ht gegenüer Hohgeshwindigkeitsshleifkörpern diverse Vorteile. Wesentlih

Mehr

Übungstest 1 RECHNEN METALLVERARBEITUNG GEFÖRDERT VOM BASIS 3.

Übungstest 1 RECHNEN METALLVERARBEITUNG GEFÖRDERT VOM BASIS 3. Üungstest 1 RECHNEN METALLVERARBEITUNG GEFÖRDERT VOM BASIS 3 www.tel.net 2 Inhlt Testformt tel Rehnen Bsis 3 4 Prüfungsluf un -molitäten 5 Prüfungsufgen Testteil I 7 Prüfungsufgen Testteil II 15 Lösungsshlüssel

Mehr

Vertragsbedingungen MAILOFANT Stand Januar 2011

Vertragsbedingungen MAILOFANT Stand Januar 2011 Vertrgseingungen MAILOFANT Stn Jnur 2011 1 Funktionsweise 1.1 Beshreiung Der MAILOFANT ist ein revisionssiheres wesiertes E-Milrhiv, welhes E-Mils unveränerr un lükenlos rhiviert. 1.2 Anlge es Arhivs Der

Mehr

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A

Innenraum-Lasttrennschalter H 22. Ein- oder Dreipolige Ausführung Bemessungs-Spannung 12, 25 und 38,5 kv Bemessungs-Strom 630 und 1250 A Innenrm-Lsrennshler H 22 Ein- oer Dreiolige sührng Bemessngs-Snnng 12, 25 n 8,5 Bemessngs-Srom n 12 Inhl: DRIESCHER - Innenrm-Lsrennshler n Lsshler- Siherngs-Kominion H 22 nh EN 60265-1 n EN 62271-105

Mehr