Name: Klasse: Gesamt. von 5 P. von 5 P. von 5 P. von 7 P. von 7 P. von 5 P. von 8 P. von 42 P.

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Name: Klasse: Gesamt. von 5 P. von 5 P. von 5 P. von 7 P. von 7 P. von 5 P. von 8 P. von 42 P."

Transkript

1 Name: Klasse: Gesamt von 5 P. von 5 P. von 5 P. von 7 P. von 7 P. von 5 P. von 8 P. von 42 P. Mathematik-Olympiade in Niedersachsen Schuljahr 2010/ Stufe (Landesrunde) Schuljahrgang 3 Aufgaben 1. Vervollständige die Rechendreiecke. Außen wird jeweils die Summe der beiden Zahlen an einer Dreieckseite angegeben. a) b) Hannes hat 1,11. Er weiß, dass es 11 Münzen sind. In seiner Geldbörse findet er keine 2-Cent-, 20-Cent-, 1-Euro- und 2-Euro-Münzen. Von den anderen Münzen ist mindestens eine Münze je Sorte dabei. a) Welche Sorten Münzen hat Hannes in seiner Geldbörse? b) Wie viele Geldstücke jeder Sorte hat Hannes? c) Warum kann er nicht zwei 50-Cent-Münzen haben? Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 3 Seite 1 von 4

2 3. In den Bildern sind Quadrate aus Streichhölzern gelegt. Jedes Bild enthält ein Quadrat mehr als das vorhergehende Bild. Bild 1 Bild 2 Bild 3 Bild 4 a) Wie viele Streichhölzer benötigt man für das Bild 5? b) Wie viele Streichhölzer benötigt man für das Bild 8? c) Wie viele Streichhölzer benötigt man für das Bild 101? d) Stelle fest, ob es ein solches Bild mit 1000 Streichhölzern gibt. 4. Linda und Luise würfeln mit zwei Spielwürfeln. Bei jedem Wurf bilden sie die Differenz der beiden Augenzahlen (d. h. die Augenzahlen werden subtrahiert). a) Welche Zahlen können als Differenzen auftreten? b) Schreibe alle Möglichkeiten von gewürfelten Augenzahlen für die Differenz 1 auf. c) Linda behauptet, wenn sie nur beide lange genug mit zwei Spielwürfeln würfeln, kommt 1 als Differenz der Augenzahlen häufiger vor als 5. Stimmt die Behauptung von Linda? Begründe deine Antwort. Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 3 Seite 2 von 4

3 5. Max und Anna bilden aus folgenden Ziffernkärtchen zweistellige Zahlen a) Wie viele Zahlen können sie mit einer 5 an der Zehnerstelle bilden? b) Wie viele Zahlen können sie bilden, die eine 7 enthalten? Plötzlich behauptet Anna: Ich bilde die Summe der beiden Ziffern meiner Zahl und multipliziere sie mit 7. Als Ergebnis erhalte ich wieder meine Zahl. c) Welche Zahl kann Anna gefunden haben? Begründe mit einer Rechnung. d) Es gibt weitere drei Zahlen mit dieser Eigenschaft. Schreibe sie auf. 6. Oliver, Patrick und Harriet kommen aus Altdorf, Bachdorf und Chordorf in die Schule in Neustadt. Olivers Schulweg ist doppelt so lang wie Harriets. Patrick muss 2 km mehr zurücklegen als Harriet. Zusammen haben die drei Kinder bei ihrer Ankunft in der Schule insgesamt 30 km mit den Fahrrädern zurückgelegt. Wie lang sind die Schulwege von Oliver, von Patrick und von Harriet? Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 3 Seite 3 von 4

4 7. Ein Würfel schwimmt bis zur Hälfte in dunkler Tinte. Wenn man ihn herauszieht, ist eine Fläche ganz, andere Flächen sind zur Hälfte und eine Fläche ist gar nicht von der Tinte eingefärbt. Färbe mit einem Farbstift in diesen Netzen diejenigen Teile der Würfelflächen, die von der Tinte eingefärbt wurden. Die Grundfläche ist jeweils schon eingefärbt dargestellt. a) b) c) d) Falls du dich vertan hast, kannst du diese Netze als Ersatz benutzen: a) b) c) d) Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 3 Seite 4 von 4

5 Name: Klasse: Gesamt von 5 P. von 7 P. von 6 P. von 6 P. von 6 P. von 5 P. von 7 P. von 42 P. Mathematik-Olympiade in Niedersachsen Schuljahr 2010/ Stufe (Landesrunde) Schuljahrgang 4 Aufgaben 1. Bestimme die fehlende Summe in der vierten Spalte ? Antwort: Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 4 Seite 1 von 6

6 2. Wir betrachten dreistellige Zahlen mit der Quersumme 5. Die Quersumme einer Zahl ist die Summe ihrer Ziffern, zum Beispiel hat die dreistellige Zahl 274 die Quersumme 13 (274). a) Ermittle alle dreistelligen Zahlen mit der Quersumme 5, wenn alle Ziffern verschieden sein sollen. b) Ermittle alle dreistelligen Zahlen mit der Quersumme 5, in denen nicht alle Ziffern verschieden sind. c) Ermittle die Anzahl der dreistelligen Zahlen mit der Quersumme 5, die durch 4 teilbar sind. 3. a) Wie viele Dreiecke gibt es in dieser Abbildung? Gib die Dreiecke mit ihren Eckpunkten an. G F E H D b) Wie viele Vierecke gibt es in dieser Abbildung? Gib die Vierecke mit ihren Eckpunkten an. A B C Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 4 Seite 2 von 6

7 4. Ein Würfel mit verschiedenen Mustern auf den Seiten wurde auseinandergefaltet. Das Würfelnetz ist rechts abgebildet. Nun soll aus drei weiteren Würfelnetzen jeweils genau so ein Würfel gebastelt werden. Ergänze dazu bei den drei unten abgebildeten Würfelnetzen a), b) und c) in den Quadratflächen die fehlenden Muster (, und ). a) b) c) Wenn Du Dich vertan hast, kannst Du diese Muster als Ersatz nutzen. a) b) c) a) b) c) Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 4 Seite 3 von 6

8 5. An der Tafel sind die Ziffernkarten von 1 bis 9 in folgender Reihenfolge angebracht: Die Schüler sollen nun die Ziffernkarten der Größe nach von 1 bis 9 ordnen. Sie dürfen allerdings immer nur zwei benachbarte Zahlen zusammen bewegen. Beispiel: a) Finde eine Lösung mit vier oder mehr Schritten. Schreibe deine Schritte wie im Beispiel auf. Kennzeichne bei jedem Schritt die verschobenen Zahlen. b) Finde eine Lösung mit drei Schritten. Schreibe deine Lösung wie bei a) auf. Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 4 Seite 4 von 6

9 6. a) Das Haus des Nikolaus kann man in einem Zug zeichnen. Kennzeichne alle Punkte, in denen man beginnen kann, um das Haus in einem Zug zeichnen zu können. Hier kannst du probieren: Trage hier deine Lösung ein: b) Das Doppelhaus kann man nicht in einem Zug zeichnen. Wenn man eine geeignete Linie entfernt, kann man das Doppelhaus in einem Zug zeichnen. Kennzeichne eine solche Linie und zeichne einen möglichen Zug ein. Hier kannst du probieren: Trage hier deine Lösung ein: c) Prüfe, ob man die Rakete in einem Zug zeichnen kann. Gib gegebenenfalls einen Anfangspunkt an und zeichne einen möglichen Zug ein. Hier kannst du probieren: Trage hier deine Lösung ein: Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 4 Seite 5 von 6

10 7. Anna, Benni, Carla, Dennis, Emma, Franzi und Greta haben einen Wettlauf gemacht. Ihre drei Lehrer sollen erraten, in welcher Reihenfolge sie im Ziel ankamen. Herr Meier vermutet: 1. Emma, 2. Dennis, 3. Anna, 4. Franzi, 5. Greta, 6. Carla, 7. Benni. Herr Müller rät: 1. Carla, 2. Emma, 3. Benni, 4. Franzi, 5. Greta, 6. Dennis, 7. Anna. Ein Kind sagt: Gut, Herr Meier hat vier Platzierungen richtig geraten und Herr Müller sogar fünf. Daraufhin überlegt Frau Schulze kurz und nennt dann die richtige Reihenfolge. a) Schreibe auf, wer Platz 4 und 5 belegt. Erkläre, warum das so ist. b) In welcher Reihenfolge kamen die Kinder ins Ziel? Erkläre dein Vorgehen. Du kannst dazu die unten stehende Tabelle als Hilfe benutzen. Herr Meier Herr Müller Frau Schulze 1. Platz 2. Platz 3. Platz 4. Platz 5. Platz 6. Platz 7. Platz Mathematik-Olympiade 2010/2011, 3. Stufe, Aufgaben Klasse 4 Seite 6 von 6

Name: Klasse: Gesamt. von 5 P. von 3 P. von 3 P. von 3 P. von 5 P. von 6 P. von 6 P. von 31 P.

Name: Klasse: Gesamt. von 5 P. von 3 P. von 3 P. von 3 P. von 5 P. von 6 P. von 6 P. von 31 P. Name: Klasse:. 1 2 3 4 5 6 7 Gesamt von 5 P. von 3 P. von 3 P. von 3 P. von 5 P. von 6 P. von 6 P. von 31 P. Mathematik-Olympiade in Niedersachsen Schuljahr 2010/2011 2. Stufe (Regionalrunde) Schuljahrgang

Mehr

Mathematik-Olympiade Stufe, Aufgaben Klasse 3

Mathematik-Olympiade Stufe, Aufgaben Klasse 3 Vorname: Nachname: Klasse: Schule: 1 2 3 4 5 6 7 Gesamt von 6 von 5 von 6 von 7 von 3 von 35 Mathematik-Olympiade in Niedersachsen Schuljahr 2014/2015 3. Stufe (Landesrunde) Schuljahrgang 3 Aufgaben 1.

Mehr

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K:

Serie W1, Kl Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: Serie W1, Kl. 5 1. 89 + 32 = 2. 17 8 = 3. 120 : 5 = 4. 123 42 = 5. Wie viele Flächen, Ecken und Kanten hat ein Quader? F: E: K: 6. 165 cm = dm 7. 48 000 g = kg 8. Skizziere das abgebildete Würfelnetz.

Mehr

16. Essener Mathematikwettbewerb für die 3. Klassen der Grundschulen 2013/2014

16. Essener Mathematikwettbewerb für die 3. Klassen der Grundschulen 2013/2014 16. Essener Mathematikwettbewerb für die 3. Klassen der Grundschulen 20/2014 Aufgaben der zweiten Runde Hinweis: Lies jede Aufgabe erst gründlich durch, bevor du mit der Bearbeitung beginnst. Der Lösungsweg

Mehr

57. Mathematik-Olympiade 1. Runde (Schulrunde) Aufgaben

57. Mathematik-Olympiade 1. Runde (Schulrunde) Aufgaben eolympiadeklass7 57. Mathematik-Olympiade 1. Runde (Schulrunde) Aufgaben c 2017 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg

Mehr

Punkte mit besonderen Koordinaten 1

Punkte mit besonderen Koordinaten 1 MEXBOX Geraden und Vielecke 2. Punkte mit besonderen Koordinaten 1 Du brauchst: Koordinatensystem (0-20) 1 Dose Stöpsel Gummis Protokollblatt 7.7 Schreibe Dir bei allen Aufgaben die Punkte mit ihren Koordinaten

Mehr

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben

56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben 56. Mathematik-Olympiade 1. Stufe (Schulrunde) Olympiadeklasse 3 Aufgaben c 2016 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den

Mehr

Knobelaufgaben ============================================================================== Aufgabe 1 :

Knobelaufgaben ============================================================================== Aufgabe 1 : Knobelaufgaben ============================================================================== Aufgabe 1 : Untersuche, ob man die Zahl 1 000 000 000 in ein Produkt aus zwei natürlichen Zahlen zerlegen kann,

Mehr

Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung).

Grundwissen 5 - Aufgaben Seite Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). Grundwissen 5 - Aufgaben 22.01.2016 Seite 1 1. Gegeben sind die drei (graugetönten) Figuren A, B und C (vergleiche Abbildung). a) Gib an, welche dieser drei Figuren den größten und welche den kleinsten

Mehr

24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1984/1985 Aufgaben und Lösungen

24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1984/1985 Aufgaben und Lösungen 24. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1984/1985 Aufgaben und Lösungen 1 OJM 24. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

JAHRGANGSSTUFENTEST 2015 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) b)9096 : 758

JAHRGANGSSTUFENTEST 2015 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) b)9096 : 758 JAHRGANGSSTUFENTEST 205 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 6 DER REALSCHULEN IN BAYERN (ARBEITSZEIT: 45 MINUTEN) LÖSUNGSMUSTER Berechne. a) 000 0 :0 0 0 0 b)9096 : 758 /2 900 2 2 MIT SYMBOLISCHEN,

Mehr

50. Mathematikolympiade, 3. Stufe, Klasse 3

50. Mathematikolympiade, 3. Stufe, Klasse 3 50. Mathematikolympiade, 3. Stufe, Klasse 3 Vorname / Name... Geb.datum :... PLZ/ Wohnort... Straße :... Schule mit Schulort:.... Hannes hat in seinem Geldbeutel 1,11 Euro. Er weiß, dass es genau 11 Münzen

Mehr

5. Jgst. 1. Tag

5. Jgst. 1. Tag Schulstempel Probeunterricht 009 Mathematik 5. Jgst.. Tag. Tag. Tag Name Vorname gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen

Mehr

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN

MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN MATHEMATIK WETTBEWERB 1997/98 DES LANDES HESSEN AUFGABEN DER GRUPPE A 1. Gib die jeweilige Lösungsmenge in aufzählender Form an: G = Z. a) (x + 7) 2 = 100 b) (x + 7) 2 > 18 c) (2x 4) 2 (2x + 4) 2 < 64

Mehr

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte.

3x 5 7x Die folgenden Zahlenpaare gehören zu einer indirekten Proportionalität. Bestimme und ergänze die fehlenden Werte. JAHRGANGSSTUFENTEST 2013 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN IN BAYERN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: KLASSE: 8 PUNKTE: / 21 NOTE: 1 Bestimme die Lösungsmenge

Mehr

Mathematik (A) Hauptschule

Mathematik (A) Hauptschule Die Senatorin für Bildung und Wissenschaft Freie Hansestadt Bremen Zentrale Abschlussprüfung 10 2008 Mathematik (A) Teil 2 Taschenrechner und Formelsammlung dürfen benutzt werden. Name: Klasse: Datum:

Mehr

Mathematik-Olympiade Schulrunde 2012

Mathematik-Olympiade Schulrunde 2012 Aufgaben Klassenstufe 5 Zeichne zwei Kreise und zwei Geraden so, dass die jeweilige Figur a) genau neun Schnittpunkte aufweist, b) genau zehn Schnittpunkte aufweist, c) genau elf Schnittpunkte aufweist.

Mehr

1. a) Schätze, wie schwer und wie groß die abgebildeten Tiere in Wirklichkeit sind.

1. a) Schätze, wie schwer und wie groß die abgebildeten Tiere in Wirklichkeit sind. Vorschlag 1: Größen aus dem Alltag 1. a) Schätze, wie schwer und wie groß die abgebildeten Tiere in Wirklichkeit sind. b) Ordne die folgenden Größen richtig zu: 7,5 t; 4 000 kg; 160 kg; 10 kg; 1 500 g;

Mehr

30. Essener Mathematikwettbewerb 2014/2015

30. Essener Mathematikwettbewerb 2014/2015 Klasse 5 Am Neujahrstag des Jahres 2014 sitzen Anna und ihre Oma beisammen. Anna freut sich immer, wenn die Oma ihr eine Knobelaufgabe stellt. Heute soll es um Zeiten gehen. Das Jahr 2014 hat 365 Tage

Mehr

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2016 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

Lege, zeichne, rechne! Lösung 1

Lege, zeichne, rechne! Lösung 1 Lege, zeichne, rechne! 1 6 6 11 9 10 6 9 8 10 10 3 6 13 9 10 8 1 10 12 12 13 Rechne! 2 6 4 2 3 10 2 6 1 4 3 8 3 4 2 6 3 1 9 2 8 10 9 2 4 6 18 13 1 4 9 16 4 10 12 6 18 10 3 14 11 18 1 3 9 14 6 20 19 1 18

Mehr

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben

50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben 50. Mathematik-Olympiade 1. Stufe (Schulstufe) Klasse 3 Aufgaben c 2010 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Lies den Text der

Mehr

Probeunterricht 2007 für die Realschulen in Bayern

Probeunterricht 2007 für die Realschulen in Bayern Probeunterricht 007 für die Realschulen in Bayern Mathematik 4. Jahrgangsstufe 1. Tag Name: Gruppe: Punkte: / 3 1. Berechne. a) 47 85 + 798 675 = b) 7 095 57 = / 1 / 1 c) 75 634 007 51 89 = d) 19 656 :

Mehr

Runde 2 Aufgabe 1. Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf?

Runde 2 Aufgabe 1. Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf? Aufgabe 1 Welche Figur(en) kann man nicht in einem Zug mit dem Stift zeichnen, wenn man keine Linie doppelt ziehen darf? Aufgabe 2 Udo gibt seinem Freund ein Rätsel auf: Ich denke mir eine dreistellige

Mehr

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse

Pangea Mathematikwettbewerb FRAGENKATALOG Klasse Pangea Mathematikwettbewerb FRAGENKATALOG 205 7. Klasse Pangea Ablaufvorschrift Antwortbogen Fülle den Bereich Anmeldedaten auf dem Antwortbogen vollständig aus und achte darauf, dass die entsprechenden

Mehr

Felix Lauffer. Mathematik. Ziffern und Zahlen. Ω µz ü r c h e r k a n t o n a l e m i t t e l s t u f e n k o n f e r e n z v e r l a g z k m.

Felix Lauffer. Mathematik. Ziffern und Zahlen. Ω µz ü r c h e r k a n t o n a l e m i t t e l s t u f e n k o n f e r e n z v e r l a g z k m. Felix Lauffer Mathematik Ziffern und Zahlen Ω µz ü r c h e r k a n t o n a l e m i t t e l s t u f e n k o n f e r e n z v e r l a g z k m. c h Inhalt Inhalt Autorenvorstellung Felix Lauffer Zahlenraum

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 3 Grundschulen und Förderschulen Schuljahr 2012/2013 Fach Mathematik Name: ANWEISUNGEN Es gibt verschiedene Arten von Aufgaben in diesem Mathematiktest. Bei einigen

Mehr

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen

RabenWerkstatt Effektsystem Geometrie in Fläche und Raum. erarbeitet von Peter Herbert Maier. Lösungen RabenWerkstatt Effektsystem Geometrie in Fläche und Raum erarbeitet von Peter Herbert Maier Lösungen Muster legen Figuren legen Lege die Muster nach. Setze sie fort. Entwirf ein eigenes Muster. 2 Figuren

Mehr

Fingerterme. Welche. passen?

Fingerterme. Welche. passen? Zahlenkarten, Heft Welche 28 Fingerterme passen? Zwischen Marisa und Felix liegen Zahlenkarten. Felix zeigt Marisa eine Karte. Felix weiß nicht, welche Zahl auf der Karte steht. Marisa zeigt Felix mit

Mehr

1-Punkt-Aufgaben. 1) Berechne! 99, ,9 + 9, ,9999 =? 2) Berechne! A) B) 7 C) D) E) 3) Subtrahiere von! A) B) C) D) E) ~ 5 ~

1-Punkt-Aufgaben. 1) Berechne! 99, ,9 + 9, ,9999 =? 2) Berechne! A) B) 7 C) D) E) 3) Subtrahiere von! A) B) C) D) E) ~ 5 ~ 1-Punkt-Aufgaben 1) Berechne! 99,99 + 999,9 + 9,999 + 0,9999 =? A) 1020,8979 B) 1110,8889 C) 1200,8790 D)2010,7989 E) 10109,9889 2) Berechne! A) B) 7 C) D) E) 3) Subtrahiere von! A) B) C) D) E) ~ 5 ~ 2-Punkte-Aufgaben

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 In einem Vieleck nennt man die Verbindungsstrecken benachbarter Eckpunkte Seiten, die Verbindungsstrecken nicht benachbarter Eckpunkte Diagonalen. Bestimme die Anzahl der Diagonalen

Mehr

Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der Klasse 4 in NRW

Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der Klasse 4 in NRW Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der Klasse in NRW Lösungsvorschläge der dritten Runde 0/0 Aufgabe : Buchstabensumme Setze für die Buchstaben Ziffern ein. Gleiche Buchstaben

Mehr

Tag der Mathematik 2016

Tag der Mathematik 2016 Tag der Mathematik 016 Mathematischer Wettbewerb, Klassenstufe 9 10 30. April 016, 9.00 1.00 Uhr Aufgabe 1 Der Mittelwert von 016 (nicht unbedingt verschiedenen) natürlichen Zahlen zwischen 1 und 0 16

Mehr

Eignungstest Mathematik

Eignungstest Mathematik Eignungstest Mathematik Klasse 4 Datum: Name: Von Punkten wurden Punkte erreicht Zensur: 1. Schreibe in folgende Figuren die Bezeichnungen für die jeweilige Figur! Für eine Rechteck gibt ein R ein, für

Mehr

Probeunterricht 2007 für die Realschulen in Bayern

Probeunterricht 2007 für die Realschulen in Bayern Probeunterricht 007 für die Realschulen in Bayern Mathematik 5. Jahrgangsstufe. Tag Name: Gruppe: Punkte: / 3. Berechne. a) 4785 + 798675 = b) 7095 57 = / / c) 75 634 007 5 89 = d) 45 + 60 : 5 = / /. Anja

Mehr

1 Ein 1,75 m langer Holzpfahl steckt zu einem Fünftel seiner Länge im Boden. Gib an, wie lang der Teil des Holzpfahls ist, der aus dem Boden ragt.

1 Ein 1,75 m langer Holzpfahl steckt zu einem Fünftel seiner Länge im Boden. Gib an, wie lang der Teil des Holzpfahls ist, der aus dem Boden ragt. JAHRGANGSSTUFENTEST 200 IM FACH MATHEMATIK FÜR DIE JAHRGANGSSTUFE 8 DER REALSCHULEN WAHLPFLICHTFÄCHERGRUPPE I (ARBEITSZEIT: 45 MINUTEN) NAME: PUNKTE: /2 KLASSE: 8 NOTE: Ein,75 m langer Holzpfahl steckt

Mehr

Fach Mathematik. (Schuljahr 2008/2009) Name: Klasse: Schülercode:

Fach Mathematik. (Schuljahr 2008/2009) Name: Klasse: Schülercode: Kompetenztest für Schülerinnen und Schüler der Klassenstufe 8 an Regelschulen, Gymnasien, Gesamtschulen und Förderzentren mit dem Bildungsgang der Regelschule Fach Mathematik (Schuljahr 2008/2009) Name:

Mehr

Aufgabenheft Mathematik

Aufgabenheft Mathematik Vergleichsarbeiten in 3. Grundschulklassen Aufgabenheft Mathematik Name: Klasse: Vergleichsarbeiten in der Grundschule VERA 2007 VERA 2007 Herausgeber: Projekt VERA (Vergleichsarbeiten in 3. Grundschulklassen)

Mehr

Problemlösen Denkaufgaben

Problemlösen Denkaufgaben Problemlösen Denkaufgaben Hufeisenaufgabe Das Hufeisen soll durch 2 gerade Schnitte in so viele Teile wie möglich zerschnitten werden. In der Skizze ist es z.b. in 3 Stücke geteilt. Das Hufeisen ist so

Mehr

Beispiel. Schriftliche Prüfung zur Aufnahme in Klassenstufe 5 eines Gymnasiums mit vertiefter mathematisch-naturwissenschaftlicher Ausbildung

Beispiel. Schriftliche Prüfung zur Aufnahme in Klassenstufe 5 eines Gymnasiums mit vertiefter mathematisch-naturwissenschaftlicher Ausbildung Beispiel Schriftliche Prüfung zur Aufnahme in Klassenstufe 5 eines Gymnasiums mit vertiefter mathematisch-naturwissenschaftlicher Ausbildung Teil 2: Klausur Schreibe deinen Namen und deine Schule auf alle

Mehr

Probeunterricht 2014 Mathematik Jgst Tag

Probeunterricht 2014 Mathematik Jgst Tag Schulstempel Probeunterricht 2014 Mathematik Jgst. 5-1. Tag /30 Punkte 1. Tag Punkte 2. Tag Punkte gesamt Note Lies die Aufgaben genau durch. Arbeite sorgfältig und schreibe sauber. Deine Lösungen und

Mehr

Jahrgangsstufenarbeit Mathematik. für die Jahrgangsstufe 6 an den bayerischen Hauptschulen. 30. September Aufgaben. Arbeitszeit: 45 Minuten

Jahrgangsstufenarbeit Mathematik. für die Jahrgangsstufe 6 an den bayerischen Hauptschulen. 30. September Aufgaben. Arbeitszeit: 45 Minuten Jahrgangsstufenarbeit Mathematik für die Jahrgangsstufe 6 an den bayerischen Hauptschulen 30. September 010 Aufgaben Arbeitszeit: 45 Minuten Name: Klasse: Schule: Lernbereich/Lehrplanthema Aufgaben maximale

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative en Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder mit einer

Mehr

Lösungen Klasse 12. Figur 1 Figur 2 In Teil 2 zeigen wir, dass 8 auch eine Lösung ist. Siehe dazu Figur 3.

Lösungen Klasse 12. Figur 1 Figur 2 In Teil 2 zeigen wir, dass 8 auch eine Lösung ist. Siehe dazu Figur 3. Lösungen Klasse Klasse. Jemand hat einige Kreisscheiben auf einen Tisch gelegt. Jede Kreisscheibe berührt genau drei andere Kreisscheiben. Wie viele Kreisscheiben können insgesamt auf dem Tisch liegen?

Mehr

Repetition Mathematik 6. Klasse (Zahlenbuch 6)

Repetition Mathematik 6. Klasse (Zahlenbuch 6) Repetition Mathematik 6. Klasse (Zahlenbuch 6) Grundoperationen / Runden / Primzahlen / ggt / kgv / Klammern 1. Berechne schriftlich: 2'097 + 18 6 16'009 786 481 274 69 d.) 40'092 : 78 2. Die Summe von

Mehr

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW:

Mathematik. Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit. Aufgabe Nr./Jahr: 16/2010. Bezug zum Lehrplan NRW: Mathematik Mathematische Leitidee: Daten, Häufigkeit und Wahrscheinlichkeit Aufgabe Nr./Jahr: 16/2010 Bezug zum Lehrplan NRW: Prozessbezogener Bereich (Kap. 2.1) Prozessbezogene Kompetenzen (Kap. 3.1)

Mehr

Institut zur Qualitätsentwicklung im Bildungswesen. Name, Vorname: Klasse: Schule:

Institut zur Qualitätsentwicklung im Bildungswesen. Name, Vorname: Klasse: Schule: Institut zur Qualitätsentwicklung im Bildungswesen Name, Vorname: Klasse: Schule: ANWEISUNGEN In diesem Aufgabenheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben sind kurz,

Mehr

1.Runde der Mathematik-Olympiade 2017 am Göttenbach-Gymnasium Idar-Oberstein

1.Runde der Mathematik-Olympiade 2017 am Göttenbach-Gymnasium Idar-Oberstein 1.Runde der Mathematik-Olympiade 2017 am Göttenbach-Gymnasium Idar-Oberstein Der Wettbewerb richtet sich an alle Schülerinnen und Schüler unserer Schule. Dabei ist zu beachten, dass die Aufgaben nach dem

Mehr

28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen

28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen 28. Mathematik Olympiade 1. Stufe (Schulolympiade) Klasse 6 Saison 1988/1989 Aufgaben und Lösungen 1 OJM 28. Mathematik-Olympiade 1. Stufe (Schulolympiade) Klasse 6 Aufgaben Hinweis: Der Lösungsweg mit

Mehr

100 % Mathematik - Lösungen

100 % Mathematik - Lösungen 100 % Mathematik: Aus der Geometrie Name: Klasse: Datum: 1 Ordne die gemessenen Längenangaben den beschriebenen Objekten zu. 22 m 37 cm Tischdicke 22 mm Breite eines Turnsaals 2 m 45 cm Sitzhöhe 258 mm

Mehr

Ausgabe: Abgabe: Name: Benötigte Zeit für alle Aufgaben: Wiederholung

Ausgabe: Abgabe: Name: Benötigte Zeit für alle Aufgaben: Wiederholung 15. Übungsblatt Ausgabe: 28.04.04 Abgabe: 05.05.04 Name: Benötigte Zeit für alle Aufgaben: Wiederholung Römische Zahlen Eine Zahl verwandelt man am einfachsten in eine römische Zahl, indem man jeweils

Mehr

Download. Kopfrechentraining Klasse Kopfrechnen 9 /10. Räumliches Vorstellungsvermögen. Elke Königsdorfer 7 9 =

Download. Kopfrechentraining Klasse Kopfrechnen 9 /10. Räumliches Vorstellungsvermögen. Elke Königsdorfer 7 9 = Download Elke Königsdorfer Kopfrechentraining Klasse 9+10 Räumliches Vorstellungsvermögen Sekundarstufe I Elke Königsdorfer Downloadauszug aus dem Originaltitel: Kopfrechnen 9 /10 Ü b u n g s a u f g a

Mehr

5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht.

5. Jgst Tag. 1. Berechne: Punkte. a) = b) : 53 = 2. Berechne die Zahl, für die der Platzhalter steht. Schulstempel Probeunterricht 00 Mathematik 5. Jgst. -. Tag. Tag. Tag gesamt Note Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut erkennbar

Mehr

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2,

Grundwissen Jahrgangsstufe 9. Lösungen. 144c 6 + = ( d)² 144c6 + = ( d)². Berechne ohne Taschenrechner: a) 2, Grundwissen Jahrgangsstufe 9 Lösungen Berechne ohne Taschenrechner: a) 2,25 + 7 1 9 b) 16 000 000 4 c) 81a 8 Gib die Lösungsmenge der folgenden Gleichungen an: a) ( x)² = 9 b) x² = 5 c) 2x² + 50 = 0 Sind

Mehr

74 Mathe trainieren. 4. Klasse

74 Mathe trainieren. 4. Klasse 74 Mathe trainieren 4. Klasse Inhaltsverzeichnis Einmaleins....................................1 Rechnen bis 1 000....................... 3 Zahlen entdecken und rechnen bis 10 000....................................

Mehr

Orientierungsarbeit in der Jahrgangsstufe 4. Schuljahr 2016/2017. Mathematik

Orientierungsarbeit in der Jahrgangsstufe 4. Schuljahr 2016/2017. Mathematik Ministerium für Bildung, Jugend und Sport Orientierungsarbeit in der Jahrgangsstufe 4 Schuljahr 2016/2017 Mathematik Name:... Klasse:... Seite 1 von 7 Orientierungsarbeit Mathematik/Jahrgangsstufe 4/2016/2017

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Von einer Baustelle soll Schutt abgefahren werden. Der Lkw einer Firma fährt jeweils zweimal am Tag. a) Am ersten Tag transportierte er insgesamt 9500 kg. Bei der ersten Fahrt waren

Mehr

Altersgruppe Klasse 5

Altersgruppe Klasse 5 Altersgruppe Klasse 5 Ein Kreis und ein Dreieck können einander auf verschiedene Arten schneiden. Im Folgenden sollen immer Punkte betrachtet werden, wo Kreis und Dreieck einander richtig schneiden und

Mehr

1 Natürliche Zahlen und ihre Erweiterung zu den ganzen Zahlen

1 Natürliche Zahlen und ihre Erweiterung zu den ganzen Zahlen Natürliche Zahlen darstellen das Zehnersystem Natürliche Zahlen und ihre Erweiterung zu den ganzen Zahlen Trage die fehlenden Zahlen in die Tabelle ein. Vorgänger 7 Zahl 6 87 6 87 Nachfolger 8 7 6 900

Mehr

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94

Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 Geometrie Ich kann... 91 Figuren und Körper erkennen und beschreiben Dreiecke, Quadrate, Rechtecke, Kreise beschreiben S. 92 Würfel, Quader, Kugeln beschreiben S. 94 die Lage von Gegenständen im Raum erkennen

Mehr

Nr. Aufgabe ü = 1. Die Hälfte von : 4 = 2. Ein Viertel von = 3. Ein Zehntel von

Nr. Aufgabe ü = 1. Die Hälfte von : 4 = 2. Ein Viertel von = 3. Ein Zehntel von 1. 15 9 = 1. Die Hälfte von 100. 2. 100 : 4 = 3. 28 + 7 = 4. 24 + 12 : 6 = 5. 1 m = cm 6. 3 cm = mm 2. Ein Viertel von 12. 3. Ein Zehntel von 80. 4. 25 2 = 5. 25 4 = 6. 3H 4 Z 2 E 8z = 7. 1 kg = g 8. 1

Mehr

Kompetenztest. Testheft

Kompetenztest. Testheft Kompetenztest Testheft Klassenstufe 8 Gymnasium Schuljahr 2009/2010 Fach Mathematik ALLGEMEINE ANWEISUNGEN In diesem Testheft findest du eine Reihe von Aufgaben und Fragen zur Mathematik. Einige Aufgaben

Mehr

Lösungen Klasse 3. Klasse 3

Lösungen Klasse 3. Klasse 3 Klasse 3 Lösungen Klasse 3 1. Welche der folgenden Figuren kann man zeichnen ohne dabei den Bleistift abzuheben und ohne eine bereits gezeichnete Linie erneut nachzufahren? (A) (B) (C) (D) (E) Lösung:

Mehr

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84

Niedersächsisches Kultusministerium. Name: Klasse / Kurs: Schule: Allgemeiner Teil Hauptteil Wahlaufgaben Summe. Mögliche Punkte 28 36 20 84 Niedersächsisches Abschlussprüfung zum Erwerb des Sekundarabschlusses I Hauptschulabschluss Schuljahrgang 9, Schuljahr 2012/2013 Mathematik G- und E-Kurs Prüfungstermin 30. April 2013 Name: Klasse / Kurs:

Mehr

Mathecamp Kaiserlautern 2017

Mathecamp Kaiserlautern 2017 Mathecamp Kaiserlautern 2017 Beweisstrategien Beweisstrategie 1: Vollständige Fallunterscheidung Bei dieser Beweisstrategie teilt man ein komplexes Problem (eine komplexe Aussage) in endliche viele Fälle

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Absolute und relative Häufigkeiten Wenn man mit Reißzwecken würfelt, dann können sie auf den Kopf oder auf die Spitze fallen. Was ist wahrscheinlicher? Ein Versuch schafft Klarheit. Um nicht immer wieder

Mehr

4. Jgst. 1. Tag. Name Vorname Note:

4. Jgst. 1. Tag. Name Vorname Note: Schulstempel Probeunterricht 008 Mathematik 4. Jgst. 1. Tag 1. Tag gesamt Name Vorname Note: Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen

Mehr

Demo-Text für Klasse 6. Vergleichsarbeiten. Mecklenburg-Vorpommern INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK.

Demo-Text für  Klasse 6. Vergleichsarbeiten. Mecklenburg-Vorpommern INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK. Vergleichsarbeiten Klasse 6 2013 Mecklenburg-Vorpommern Mit ausführlicher Lösung. Text 19061 Stand: 13. November 2016 FRIEDRICH W. BUCKEL INTERNETBIBLIOTHEK FÜR SCHULMATHEMATIK 19061 Vergleichsarbeit Klasse

Mehr

x-beliebig 401 Ein Würfel liegt auf dem Pult. Man kann ihn von allen Seiten betrachten. So sind fünf Würfelflächen sichtbar.

x-beliebig 401 Ein Würfel liegt auf dem Pult. Man kann ihn von allen Seiten betrachten. So sind fünf Würfelflächen sichtbar. x-beliebig 10 1 6 Sichtbare und unsichtbare 401 Ein Würfel liegt auf dem Pult. Man kann ihn von allen Seiten betrachten. So sind fünf sichtbar. Die Fläche am Boden ist verdeckt, also unsichtbar. Ergänze

Mehr

Känguru der Mathematik 2016 Gruppe Ecolier (3. und 4. Schulstufe) Österreich

Känguru der Mathematik 2016 Gruppe Ecolier (3. und 4. Schulstufe) Österreich Känguru der Mathematik 2016 Gruppe Ecolier (3. und 4. Schulstufe) Österreich 17.03.2016-3 Punkte Beispiele - 1. Amy, Bert, Carl, Doris und Ernst werfen jeweils zwei Würfel. Wer hat insgesamt die größte

Mehr

Jahrgangsstufenarbeit Mathematik. für die Jahrgangsstufe 6 an den bayerischen Hauptschulen. 30. September Aufgaben. Arbeitszeit: 45 Minuten

Jahrgangsstufenarbeit Mathematik. für die Jahrgangsstufe 6 an den bayerischen Hauptschulen. 30. September Aufgaben. Arbeitszeit: 45 Minuten Jahrgangsstufenarbeit Mathematik für die Jahrgangsstufe 6 an den bayerischen Hauptschulen 30. September Aufgaben Arbeitszeit: 45 Minuten Name: Klasse: Schule: Lernbereich/Lehrplanthema Aufgaben maximale

Mehr

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum:

Kompetenztest. 1 Im rechtwinkligen Dreieck. Satz des Pythagoras. Kompetenztest. Testen und Fördern. Satz des Pythagoras. Name: Klasse: Datum: Testen und Fördern Name: Klasse: Datum: 1) Bringe die Satzteile in die richtige Reihenfolge. (Es sind zwei Sätze.) den rechten Winkel einschließen heißen die Seiten, die Katheten, 1 Im rechtwinkligen Dreieck

Mehr

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5

Alfons und Bertram spielen mit einer 5-Cent-Münze und einem Würfel. Als zufällig die 5 5. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 8 Aufgaben c 005 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. Hinweis: Der Lösungsweg mit

Mehr

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h)

Serie 1 Klasse 9 RS. 3. 4% von ,5 h = min. 1 und Stelle die Formel nach der Größe in der Klammer um. V = A G h (h) Serie 1 Klasse 9 RS 1. 1 1 2. -15 (- + 5) 4. 4% von 600 4.,5 h = min 5. 5³ 6. Runde auf Tausender. 56608 7. Vergleiche (). 1 und 1 4 8. Stelle die Formel nach der Größe in der Klammer um. V = A

Mehr

Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe 6

Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe 6 Mathematik für Gymnasien Übungsaufgaben - Jahrgangsstufe I. Brüche. Allgemein: a) Aus welchen Bestandteilen besteht ein Bruch? b) Was besagt der Nenner? c) Was besagt der Zähler? d) In welchen Diagrammen

Mehr

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel)

Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Zentrale Aufnahmeprüfung 2011 für die Kurzgymnasien und die Handelsmittelschulen des Kantons Zürich Mathematik, 2. Sekundarschule (bisheriges Lehrmittel) Von der Kandidatin oder vom Kandidaten auszufüllen:

Mehr

5. Jgst. 1. Tag. Name Vorname Note:

5. Jgst. 1. Tag. Name Vorname Note: Schulstempel Probeunterricht 008 Mathematik 5. Jgst.. Tag. Tag gesamt Name Vorname Note: Lies die Aufgaben genau durch! Arbeite sorgfältig und schreibe sauber! Deine Lösungen und Lösungswege müssen gut

Mehr

Mathematik Mustertest 2

Mathematik Mustertest 2 4 Mit bayerischem Abziehverfahren (gültig seit 2015) 89 Mathematik Mustertest 2 Name: Klasse: Datum: 1. Die 26 Kinder der Klasse 3b wurden gefragt, welchen Lieblingsfußballverein sie haben. Schau dir das

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 5 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Zentrale Abschlussarbeit Mittlerer Schulabschluss

Zentrale Abschlussarbeit Mittlerer Schulabschluss Zentrale Abschlussarbeit 2017 Mittlerer Schulabschluss Herausgeber Ministerium für Schule und Berufsbildung des Landes Schleswig-Holstein Jensendamm 5, 24103 Kiel Aufgabenentwicklung Ministerium für Schule

Mehr

Aufgabe S 1 (4 Punkte)

Aufgabe S 1 (4 Punkte) Aufgabe S 1 (4 Punkte) In einem regelmäßigen Achteck wird das Dreieck ABC betrachtet, wobei C der Mittelpunkt der Seite ist, die der Seite AB gegenüberliegt Welchen Anteil am Flächeninhalt des Achtecks

Mehr

Pangea Ablaufvorschrift

Pangea Ablaufvorschrift Pangea Mathematik-Wettbewerb 2011 Klassenstufe 7 Pangea Ablaufvorschrift Antwortbogen Überprüfung der Anmeldedaten Kennzeichnung (Beispiel) beachten! Prüfung Zur Beantwortung der 25 Fragen hast du 60 Minuten

Mehr

Aufgabe 5: Gebiete, geometrische Körper

Aufgabe 5: Gebiete, geometrische Körper Schüler/in Aufgabe 5: Gebiete, geometrische Körper LERNZIELE: Sich in der Ebene orientieren Geometrische Körper beschreiben und benennen Achte darauf: 1. Du teilst Gebiete/Flächen gemäss den Angaben im

Mehr

Große Anzahlen schätzen. 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind.

Große Anzahlen schätzen. 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind. Große Anzahlen schätzen 1 Da sind ja viele Menschen! Schätze, wie viele Menschen auf dem Bild zu sehen sind. Ich schätze, es sind Menschen. Wie weiß man, wie viele Menschen das ungefähr sind? Kennst du

Mehr

will die Bildungsstandards umsetzen.

will die Bildungsstandards umsetzen. Aufgabenstellungen für die Klassen 1 bis 4 1 will die Bildungsstandards umsetzen. Grafik entnommen aus Bildungsstandards für die Grundschule: Mathematik konkret, Cornelsen Scriptor 2009 2 1 Raum und Form

Mehr

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg

Serie 1 Klasse Vereinfache. a) 2(4a 5b) b) 3. Rechne um. a) 456 m =... km b) 7,24 t =... kg Serie 1 Klasse 10 1. Berechne. 1 a) 4 3 b) 0,64 : 8 c) 4 6 d) ³. Vereinfache. 1x²y a) (4a 5b) b) 4xy 3. Rechne um. a) 456 m =... km b) 7,4 t =... kg 4. Ermittle. a) 50 % von 30 sind... b) 4 kg von 480

Mehr

Korrespondenzzirkel Klassenstufe 5 Leipziger Schülergesellschaft für Mathematik Serie 2

Korrespondenzzirkel Klassenstufe 5 Leipziger Schülergesellschaft für Mathematik Serie 2 Korrespondenzzirkel Klassenstufe 5 Leipziger Schülergesellschaft für Mathematik Serie Liebe Schülerinnen, Schüler (und Eltern), hiermit übersende ich euch die zweite Serie. Dieses mal beschäftigen wir

Mehr

Stochastik. Mit drei Würfeln würfeln (1) = = 1 8. Augensumme. Möglichkeiten. Insgesamt:

Stochastik. Mit drei Würfeln würfeln (1) = = 1 8. Augensumme. Möglichkeiten. Insgesamt: Mit drei Würfeln würfeln (1) 1. 1 + 1 + 1 = 3 2. 6 + 6 + 6 = 1 8 3 4 5 6 7 8 9 10 1 1 1 1 1 2 1 1 3 1 1 4 1 1 5 1 1 6 3 3 3 2 2 6 1 2 2 1 2 3 1 2 4 1 2 5 1 3 5 1 4 5 2 2 2 1 3 3 1 3 4 1 2 6 1 3 6 2 2 3

Mehr

Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der 4. Klassen in NRW

Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der 4. Klassen in NRW Landesweiter Mathematikwettbewerb für Schülerinnen und Schüler der 4. Klassen in NRW Aufgaben der zweiten Runde 207/208 Hinweis: Lies jede Aufgabe erst gründlich durch, bevor du mit der Bearbeitung beginnst.

Mehr

FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe

FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner. Name:... Kandidatennummer/ Gruppennummer Vorname:... Aufgabe Nr.: Summe Aufnahmeprüfung 2013 Mathematik FMS 2 / HMS 2 Erster Teil - ohne Taschenrechner Name:....................... Kandidatennummer/ Gruppennummer Vorname:....................... Aufgabe Nr.: 1 2 3 4 5 6 7 Summe

Mehr

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums

Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Marie-Curie-Gymnasium Waldstrasse 1a 16540 Hohen Neuendorf Tel.: 03303/9580 Liebe Schüler der zukünftigen 7. Klassen des Marie-Curie- Gymnasiums Um euch den Einstieg in den Mathematikunterricht zu erleichtern,

Mehr

JAHRGANGSSTUFENARBEIT AN DER MITTELSCHULE. MATHEMATIK Jahrgangsstufe 6

JAHRGANGSSTUFENARBEIT AN DER MITTELSCHULE. MATHEMATIK Jahrgangsstufe 6 JAHRGANGSSTUFENARBEIT AN DER MITTELSCHULE MATHEMATIK Jahrgangsstufe 6 9. Oktober 2015 Arbeitszeit: 45 Minuten; innerhalb der ersten beiden Unterrichtsstunden Benötigtes Arbeitsmaterial: Stift, Bleistift,

Mehr

Du darfst für jede erledigte Seite eine Sonne ausmalen und bekommst einen Fleißpunkt im neuen Schuljahr von mir! Name:

Du darfst für jede erledigte Seite eine Sonne ausmalen und bekommst einen Fleißpunkt im neuen Schuljahr von mir! Name: Ich komme In die 3.klasse! Du darfst für jede erledigte Seite eine Sonne ausmalen und bekommst einen Fleißpunkt im neuen Schuljahr von mir! 111111 111111 111111 111111 Name: Zahlen bis 100 Teil 1 1 1.

Mehr

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft

Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich. Mathematik. Primarschule, Teil 2. Übungsheft Vorbereitung auf die Gymiprüfung 2017 im Kanton Zürich Mathematik Primarschule, Teil 2 Übungsheft Lektion 7 Umfangberechnungen Lektion 7 Umfangberechnungen 4. Miss alle Seiten und schreibe sie an, berechne

Mehr

1. Sabine hat 4 Freunde zum Geburtstag eingeladen. Wie oft erklingen die Gläser, wenn jeder mit jedem anstößt?

1. Sabine hat 4 Freunde zum Geburtstag eingeladen. Wie oft erklingen die Gläser, wenn jeder mit jedem anstößt? 1. Sabine hat 4 Freunde zum Geburtstag eingeladen. Wie oft erklingen die Gläser, wenn jeder mit jedem anstößt? 2. Du siehst hier drei Streichhölzer. Aus diesen 3 mach 4! Du darfst kein Streichholz dazugeben.

Mehr

Aufgaben 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere den Nullpunkt des Geodreiecks gelb.

Aufgaben 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere den Nullpunkt des Geodreiecks gelb. Station 2 Strecken Eine Strecke hat einen Anfangspunkt und einen Endpunkt. Diese Strecke ist 2 cm lang. 1. a) Male die Seite (Skala) des Geodreiecks, mit der Strecken gemessen werden, rot an. b) Markiere

Mehr

29. Essener Mathematikwettbewerb 2013/2014

29. Essener Mathematikwettbewerb 2013/2014 Klasse 5 Judith beschäftigt sich mit Primzahlen. a) Sie betrachtet alle Primzahlen, die kleiner als 30 sind; Judith verdoppelt sie jeweils und addiert danach 1. Untersuche, in welchen Fällen das Ergebnis

Mehr

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern:

Klassenstufen 7, 8. Aufgabe 1 (6+6+8 Punkte). Magischer Stern: Department Mathematik Tag der Mathematik 31. Oktober 2009 Klassenstufen 7, 8 Aufgabe 1 (6+6+8 Punkte). Magischer Stern: e a 11 9 13 12 10 b c d Die Summe S der natürlichen Zahlen entlang jeder der fünf

Mehr

Übungen zum Kompetenztest im Fach Mathematik

Übungen zum Kompetenztest im Fach Mathematik Übungen zum Kompetenztest im Fach Mathematik 1. Die Aufgaben sind nach einer bestimmten Regel erstellt. 3+6+9+12+15=5*9 20+30+40+50+60=5*40 100+200+300+400+500=5*300 Verwende diese Regel, um die folgenden

Mehr