Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Statistik II Übung 4: Skalierung und asymptotische Eigenschaften"

Transkript

1 Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden Sie dazu den Datensatz ProKopfEinkommen.sav, welcher u.a. das Pro Kopf Einkommen von 110 verschiedenen Ländern im Jahr 1980 beinhaltet (gemessen in US Dollar). Bitte bearbeiten Sie Aufgaben 1-5 in Gruppen von bis zu 4 Studierenden (vergessen Sie nicht die Namen!) und reichen Sie die Lösungen VOR der 4. PC Übung ein. 1. Zeigen Sie die Verteilung von Inflation (entspricht der durchschnittlichen Inflationsrate von ) anhand eines Histogramms und legen Sie die Normalverteilung zwecks Vergleichs über die Grafik. Analysieren> Deskriptive Statistiken> Häufigkeiten > Variablen: Inflation > Diagramme: Histogramme > Normalverteilungskurve anzeigen > Weiter > ok 2. Generieren Sie die Variable LogInflation als Logarithmus von Inflation (entspricht der durchschnittlichen Inflationsrate von ). Transformieren > Variable berechnen > Zielvariable: LogInflation > Numerischer Ausdruck: LN(Inflation) > ok 3. Zeigen Sie die Verteilung von LogInflation anhand eines Histrogramms und legen Sie die Normalverteilung zwecks Vergleichs über die Grafik. Ähnelt die Verteilung von LogInflation mehr der Normalverteilung als jene von Inflation? Analysieren> Deskriptive Statistiken> Häufigkeiten > Variablen: Histogramme > Normalverteilungskurve anzeigen > Weiter > ok LogInflation > Diagramme: 1

2 4. Generieren Sie die Variable LogProKopfEink als Logarithmus von ProKopfEink (Pro Kopf Einkommen 1980 in US Dollar). Transformieren > Variable berechnen > Zielvariable: LN(ProKopfEink) > ok LogproKopfEink > Numerischer Ausdruck: 5. Regressieren Sie ProKopfEink auf Inflation, Land (misst die Grösse in Quadratmeilen) und Oelproduzent (1 falls wichtiger Ölproduzent, 0 falls nicht) und interpretieren Sie die Koeffizienten. Analysieren > Regression > Linear > Abhängige Variable: Inflation, Land, Oelproduzent ProKopfEink > Unabhängige Variable: Modellzusammenfassung Modell R R-Quadrat Korrigiertes R- Quadrat Standardfehler des Schätzers a a. Einflußvariablen : (Konstante), Oelproduzent, Land, Inflation ANOVA a Mittel der Modell Quadratsumme df Quadrate F Sig. 1 Regression b Nicht standardisierte Residuen Gesamt b. Einflußvariablen : (Konstante), Oelproduzent, Land, Inflation 2

3 Koeffizienten a Standardisierte Nicht standardisierte Koeffizienten Koeffizienten Regressionskoe Modell ffizientb Standardfehler Beta T Sig. 1 (Konstante) Inflation Land Oelproduzent Wenn die Inflationsrate um 1 Prozentpunkt steigt, geht das Pro Kopf Einkommen um 14,974 US Dollar zurück. Der Koeffizient der Inflationsrate ist aber nicht statistisch signifikant. Mit jeder zusätzlichen Quadratmeile steigt das Pro Kopf Einkommen um 0,001 US Dollar. Dieser Effekt ist signifikant auf dem 5 % Niveau. Falls ein Land ein Oelproduzent ist, ist das durchschnittliche Pro Kopf Einkommen um 7615 US Dollar höher (als wenn das Land kein Oelproduzent ist). Der Koeffizient ist signifikant auf dem 1% Niveau. 6. Generieren Sie eine neue Variable LandDurch1000 als Land dividiert durch Transformieren > Variable berechnen > Zielvariable: Land/1000 > ok LandDurch1000 > Numerischer Ausdruck: 7. Warum können Sie LogProKopfEink nicht gleichzeitig (also in der selben Regression) auf Land und LandDurch1000 regressieren? Aufgrund von Multikollinearität 8. Regressieren Sie LogProKopfEink auf Inflation, LandDurch1000 und Oelproduzent (1 falls wichtiger Ölproduzent, 0 falls nicht) und interpretieren Sie die Koeffizienten. Analysieren > Regression > Linear > Abhängige Variable: LogProKopfEink > Unabhängige Variable: LogInflation, LandDurch1000, Oelproduzent Modellzusammenfassung Modell R R-Quadrat Korrigiertes R- Quadrat Standardfehler des Schätzers a a. Einflußvariablen : (Konstante), Oelproduzent, LandDurch1000, Inflation 3

4 ANOVA a Mittel der Modell Quadratsumme df Quadrate F Sig. 1 Regression b Nicht standardisierte Residuen Gesamt a. Abhängige Variable: LogProKopfEink b. Einflußvariablen : (Konstante), Oelproduzent, LandDurch1000, Inflation Koeffizienten a Standardisierte Nicht standardisierte Koeffizienten Koeffizienten Regressionskoe Modell ffizientb Standardfehler Beta T Sig. 1 (Konstante) Inflation LandDurch Oelproduzent a. Abhängige Variable: LogProKopfEink Wenn die Inflationsrate um 1 Prozentpunkt steigt, geht das Pro Kopf Einkommen um 0,1% zurück, aber dieser Effekt ist nicht statistisch signifikant. Falls ein Land ein Oelproduzent ist, ist das durchschnittliche Pro Kopf Einkommen um 142,3% höher (als wenn das Land kein Oelproduzent ist). Der Koeffizient ist signifikant auf dem 1% Niveau. Der Effekt von 1000 zusätzlichen Quadratmeilen erhöht das Pro Kopf Einkommen um annähernd 0% und ist nicht statistisch signifikant. 9. Regressieren Sie ProKopfEink auf LogInflation und interpretieren Sie die Koeffizienten Analysieren > Regression > Linear > Abhängige Variable: LogInflation ProKopfEink > Unabhängige Variable: Modellzusammenfassung Modell R R-Quadrat Korrigiertes R- Quadrat Standardfehler des Schätzers a a. Einflußvariablen : (Konstante), LogInflation 4

5 ANOVA a Modell Quadratsumme df Mittel der Quadrate F Sig. 1 Regression b Nicht standardisierte Residuen Gesamt b. Einflußvariablen : (Konstante), LogInflation Koeffizienten a Nicht standardisierte Koeffizienten Standardisierte Koeffizienten Regressionskoe Modell ffizientb Standardfehler Beta T Sig. 1 (Konstante) LogInflation Wenn die Inflationsrate um 1% steigt, sinkt das Pro Kopf Einkommen um ungefähr 11, 91 US Dollar. Dieser Koeffizient ist signifikant auf dem 5% Niveau. 10. Warum kann es in Regressionen Sinn machen, die logarithmierte Version einer Variable anstatt deren ursprünglicher Version zu verwenden? Lineares Modell gilt nicht für die ursprüngliche Variable, aber für die logarithmierte Version (zb: Wachstum kann exponentiell sein, der Logarithmus davon kann aber linear sein). 11. Erklären Sie intuitiv das Konzept der Konsistenz. Wenn Stichprobe gegen unendlich geht, kollabiert die Verteilung des Schätzers zum wahren Wert des Effekts. Oder: Je grösser die Stichprobe, umso mehr nähert sich die Verteilung des Schätzers dem wahren Wert des Effekts an. 12. Was bedeutet die Korrelation eines Regressors mit dem Fehlerterm für die Konsistenz von OLS (lineare Regression)? Der Schätzer ist inkonsistent, weil der Schätzer auch in sehr grossen Stichproben (also asymptotisch) verzerrt ist. 5

6 13. Was sagt der zentrale Grenzwertsatz für eine Folge von unabhängigen Zufallsvariablen Y mit identischer Verteilung? 14. Was impliziert der zentrale Grenzwertsatz für den OLS Schätzer (unter der Annahme, dass der Schätzer konsistent ist)? Deshalb ist OLS Schätzer asymptotisch normalverteilt: 15. Mit welcher Rate ( Geschwindigkeit ) gehen die Varianz und der Standardfehler des OLS Schätzers gegen Null? 6

7 16. Vergleichen Sie zwei Regressionsmodelle, die anhand einer Stichprobe mit 395 Beobachtungen geschätzt werden. In einem Modell wird die abhängige Variable auf vier unabhängige Variablen regressiert. Das entsprechende R 2 beträgt 0,738. Im anderen Modell wird dieselbe abhängige Variable nur auf eine der vier unabhängigen Variablen regressiert. Das R 2 beträgt 0,264 in diesem (zweiten) Modell. a. Formulieren Sie die Nullhypothese (H 0 ) als auch die Alternativhypothese (H 1 ) für einen F- Test, der die zwei Modelle vergleicht. H 0 : β 2 = β 3 = β 4 = 0 H A : Mindestens einer der Koeffizienten β 2, β 3 oder β 4 ist verschieden von Null b. Berechnen Sie die F-Statistik anhand der R 2 der Modelle [1]. (R 2 ur R 2 r )/q F = (1 R 2 ur )/(N k 1) = (0,738 0,264)/3 (1 0,738)/( ) 0,158 0, ,19 c. Bestimmen Sie den kritischen Wert für den F-Test anhand der Tabelle mit kritischen Werten. F 3,390 = 2,60 d. Wird die Nullhypothese auf dem 5% Signifikanzniveau abgelehnt? 235,19 > 2,60 H 0 wird auf dem 5% Niveau verworfen 17. Sind die zwei folgenden Modelle statistisch signifikant unterschiedlich auf dem 5% Signifikanzniveau? Vergleichen Sie die Modelle mit Hilfe des F-Tests. Anzahl der Beobachtungen in der Stichprobe: 95 Modell 1: y i = β 0 + β 1 x 1 + β 2 x 2 + β 3 x 3 + β 4 x 4 + u, R 2 ur = 0,8598 Modell 2: y i = β 0 + β 3 x 3 + u, R 2 r = 0,8480 H 0 : β 1 = β 2 = β 4 = 0 H A : Mindestens einer der Koeffizienten β 1, β 2 oder β 4 ist verschieden von Null F = (0,8598 0,8480)/3 (1 0,8598)/(95 4 1) 2,52 F 3,90 = 2,71 2,52 < 2,71 H 0 wird auf dem 5% Niveau nicht verworfen Die zwei Modelle sind nicht statistisch signifikant unterschiedlich auf dem 5% Signifikanzniveau. [1] Formel für F-Statistik lautet F = (R ur 2 R 2 r )/q (1 R 2 ur )/(N k 1) 7

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz.

2. Generieren Sie deskriptive Statistiken (Mittelwert, Standardabweichung) für earny3 und kidsunder6yr3 und kommentieren Sie diese kurz. Statistik II Übung : Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (6-24 Jahre alt) und der Anzahl der unter

Mehr

Statistik II Übung 1: Einfache lineare Regression

Statistik II Übung 1: Einfache lineare Regression Statistik II Übung 1: Einfache lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen dem Lohneinkommen von sozial benachteiligten Individuen (16-24 Jahre alt) und der Anzahl der

Mehr

B. Regressionsanalyse [progdat.sav]

B. Regressionsanalyse [progdat.sav] SPSS-PC-ÜBUNG Seite 9 B. Regressionsanalyse [progdat.sav] Ein Unternehmen möchte den zukünftigen Absatz in Abhängigkeit von den Werbeausgaben und der Anzahl der Filialen prognostizieren. Dazu wurden über

Mehr

Statistik II Übung 2: Multivariate lineare Regression

Statistik II Übung 2: Multivariate lineare Regression Statistik II Übung 2: Multivariate lineare Regression Diese Übung beschäftigt sich mit dem Zusammenhang zwischen Flugpreisen und der Flugdistanz, dem Passagieraufkommen und der Marktkonzentration. Verwenden

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung Aufgabe 1: [14,5 Punkte] Sie interessieren sich für die Determinanten

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X.

Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. Lineare Regression Einfache Regression Beispieldatensatz: trinkgeld.sav Ziel: Vorhersage eines Kriteriums/Regressand Y durch einen Prädiktor/Regressor X. H0: Y lässt sich nicht durch X erklären, das heißt

Mehr

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung

Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung Lehrstuhl für Statistik und emp. Wirtschaftsforschung, Prof. R. T. Riphahn, Ph.D. Bachelorprüfung, Praxis der empirischen Wirtschaftsforschung Aufgabe 1: [14,5 Punkte] Sie interessieren sich für die Determinanten

Mehr

Übungsblätter zu Methoden der Empirischen Sozialforschung IV: Regressionsanalyse. Lösungsblatt zu Nr. 2

Übungsblätter zu Methoden der Empirischen Sozialforschung IV: Regressionsanalyse. Lösungsblatt zu Nr. 2 Martin-Luther-Universität Halle-Wittenberg Institut für Soziologie Dr. Wolfgang Langer 1 Übungsblätter zu Methoden der Empirischen Sozialforschung IV: Regressionsanalyse Lösungsblatt zu Nr. 2 1. a) Je

Mehr

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012

Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Einführung in die Statistik für Politikwissenschaftler Wintersemester 2011/2012 Es können von den Antwortmöglichkeiten alle, mehrere, eine oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort

Mehr

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19

Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, :34 P.M. Page 11. Über die Übersetzerin 9. Einleitung 19 Trim Size: 176mm x 240mm Lipow ftoc.tex V1 - March 9, 2016 6:34 P.M. Page 11 Inhaltsverzeichnis Über die Übersetzerin 9 Einleitung 19 Was Sie hier finden werden 19 Wie dieses Arbeitsbuch aufgebaut ist

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 9A a.

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 9A a. LÖSUNG 9A a. Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Das Regressionsmodell soll nur für Büropersonal angewendet werden Management- und Bewachungspersonal (MIND =0) soll nicht einbezogen

Mehr

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil?

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil? AKULTÄT ANGEWANDTE SOZIALWISSENSCHATEN PRO. DR. SONJA HAUG Projekt Kaffeemaschine Welche aktoren beeinflussen das Geschmacksurteil? Ausgehend von der Verkostung an der Hochschule Regensburg und der dabei

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 29 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 1 Ökonometrie I Michael Hauser 2 / 29 Inhalt Annahme normalverteilter Fehler Stichprobenverteilung des OLS Schätzers t-test und Konfidenzintervall

Mehr

Empirische Analysen mit dem SOEP

Empirische Analysen mit dem SOEP Empirische Analysen mit dem SOEP Methodisches Lineare Regressionsanalyse & Logit/Probit Modelle Kurs im Wintersemester 2007/08 Dipl.-Volksw. Paul Böhm Dipl.-Volksw. Dominik Hanglberger Dipl.-Volksw. Rafael

Mehr

Bachelorprüfung WS 2012/13

Bachelorprüfung WS 2012/13 Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 22 Übersicht Weitere Hypothesentests in der Statistik 1-Stichproben-Mittelwert-Tests 1-Stichproben-Varianz-Tests 2-Stichproben-Tests Kolmogorov-Smirnov-Test

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG

Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2012/13 - MUSTERLÖSUNG Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. . Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr.  . Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode?

X =, y In welcher Annahme unterscheidet sich die einfache KQ Methode von der ML Methode? Aufgabe 1 (25 Punkte) Zur Schätzung der Produktionsfunktion des Unternehmens WV wird ein lineares Regressionsmodell der Form angenommen. Dabei ist y t = β 1 + x t2 β 2 + e t, t = 1,..., T (1) y t : x t2

Mehr

Übung 4 im Fach "Biometrie / Q1"

Übung 4 im Fach Biometrie / Q1 Universität Ulm, Institut für Epidemiologie und Medizinische Biometrie, D-89070 Ulm Institut für Epidemiologie und Medizinische Biometrie Leiter: Prof. Dr. D. Rothenbacher Schwabstr. 13, 89075 Ulm Tel.

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse

Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten. Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere Lagemasse Grundeinstellungen Befehl: Bearbeiten >Optionen > Allgemein: Namen anzeigen Häufigkeiten Befehl: Analysieren > Deskriptive Statistiken > Häufigkeiten Unter: Statistiken: Angabe Kurtosis/ Schiefe/ andere

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik

Teilklausur des Moduls Kurs 42221: Vertiefung der Statistik Name, Vorname Matrikelnummer Teilklausur des Moduls 32741 Kurs 42221: Vertiefung der Statistik Datum Termin: 21. März 2014, 14.00-16.00 Uhr Prüfer: Univ.-Prof. Dr. H. Singer Vertiefung der Statistik 21.3.2014

Mehr

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test)

Test von Hypothesen: Signifikanz des Zusammenhangs (F-Test) Test von Hyothesen: Signifikanz des Zusammenhangs (F-Test) Die Schätzung der Regressionsfunktion basiert auf Daten einer Stichrobe Inwiefern können die Ergebnisse dieser Schätzung auf die Grundgesamtheit

Mehr

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen

a) Man bestimme ein 95%-Konfidenzintervall für den Anteil der Wahlberechtigten, die gegen die Einführung dieses generellen 2) Bei einer Stichprobe unter n=800 Wahlberechtigten gaben 440 an, dass Sie gegen die Einführung eines generellen Tempolimits von 100km/h auf Österreichs Autobahnen sind. a) Man bestimme ein 95%-Konfidenzintervall

Mehr

1. Lösungen zu Kapitel 7

1. Lösungen zu Kapitel 7 1. Lösungen zu Kapitel 7 Übungsaufgabe 7.1 Um zu testen ob die Störterme ε i eine konstante Varianz haben, sprich die Homogenitätsannahme erfüllt ist, sind der Breusch-Pagan-Test und der White- Test zwei

Mehr

Musterlösung. Modulklausur Multivariate Verfahren

Musterlösung. Modulklausur Multivariate Verfahren Musterlösung Modulklausur 31821 Multivariate Verfahren 25. September 2015 Aufgabe 1 (15 Punkte) Kennzeichnen Sie die folgenden Aussagen zur Regressionsanalyse mit R für richtig oder F für falsch. F Wenn

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Prof. Dr. Bernd Süßmuth Universität Leipzig Institut für Empirische Wirtschaftsforschung Volkswirtschaftslehre, insbesondere Ökonometrie 6.. Herleitung des OLS-Schätzers

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief. Statistik II Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Wiederholung Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte

Mehr

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief

Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Schätzverfahren, Annahmen und ihre Verletzungen, Standardfehler. Oder: was schiefgehen kann, geht schief Statistik II Literatur Kategoriale Unabhängige, Interaktion, nicht-lineare Effekte : Schätzung Statistik

Mehr

Teil: lineare Regression

Teil: lineare Regression Teil: lineare Regression 1 Einführung 2 Prüfung der Regressionsfunktion 3 Die Modellannahmen zur Durchführung einer linearen Regression 4 Dummyvariablen 1 Einführung o Eine statistische Methode um Zusammenhänge

Mehr

Übung V Lineares Regressionsmodell

Übung V Lineares Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Michael Alpert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2007 Übung

Mehr

Analyse von Querschnittsdaten. Signifikanztests I Basics

Analyse von Querschnittsdaten. Signifikanztests I Basics Analyse von Querschnittsdaten Signifikanztests I Basics Warum geht es in den folgenden Sitzungen? Kontinuierliche Variablen Generalisierung kategoriale Variablen Datum 13.10.2004 20.10.2004 27.10.2004

Mehr

Aufgaben zu Kapitel 4

Aufgaben zu Kapitel 4 Rasch, Friese, Hofmann & aumann (2006). Quantitative Methoden. Band (2. Auflage). Heidelberg: Springer. Aufgaben zu Kapitel 4 Aufgabe a) Berechnen Sie die Korrelation zwischen dem Geschlecht und der Anzahl

Mehr

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen.

Kapitel 3 Schließende lineare Regression Einführung. induktiv. Fragestellungen. Modell. Matrixschreibweise. Annahmen. Kapitel 3 Schließende lineare Regression 3.1. Einführung induktiv Fragestellungen Modell Statistisch bewerten, der vorher beschriebenen Zusammenhänge auf der Basis vorliegender Daten, ob die ermittelte

Mehr

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell

Kapitel 8. Einfache Regression. Anpassen des linearen Regressionsmodells, OLS. Eigenschaften der Schätzer für das Modell Kapitel 8 Einfache Regression Josef Leydold c 2006 Mathematische Methoden VIII Einfache Regression 1 / 21 Lernziele Lineares Regressionsmodell Anpassen des linearen Regressionsmodells, OLS Eigenschaften

Mehr

Das multiple lineare Regressionsmodell

Das multiple lineare Regressionsmodell Das multiple lineare Regressionsmodell Worum geht es in diesem Lernmodul? Das Modell Schätzen der Koeffizienten Interpretation der Koeffizienten Testen der Koeffizienten Worum geht es in diesem Lernmodul?

Mehr

Bachelorprüfung SS MUSTERLÖSUNG

Bachelorprüfung SS MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung SS 2017

Mehr

Nachschreibklausur im Anschluss an das SS 2009

Nachschreibklausur im Anschluss an das SS 2009 Nachschreibklausur im Anschluss an das SS 2009 08. Oktober 2009 Lehrstuhl: Prüfungsfach: Prüfer: Hilfsmittel: Klausurdauer: Wirtschaftspolitik Empirische Wirtschaftsforschung Prof. Dr. K. Kraft Nicht-programmierbarer

Mehr

Einfache lineare Regressionsanalyse

Einfache lineare Regressionsanalyse Dr. Matthias Rudolf Modul M3: Multivariate Statistik Aufgaben und Lösungshinweise zum Computerseminar ERA: Einfache lineare Regressionsanalyse Dr. Matthias Rudolf: Modul BA-M3 Multivariate Statistik Seite

Mehr

Stichwortverzeichnis. Symbole

Stichwortverzeichnis. Symbole Stichwortverzeichnis Symbole 50ste Perzentil 119 A Absichern, Ergebnisse 203 Abzählbar unendliche Zufallsvariable 146 Alternativhypothese 237 238 formulieren 248 Anekdote 340 Annäherung 171, 191 Antwortquote

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren

Heinz Holling & Günther Gediga. Statistik - Deskriptive Verfahren Heinz Holling & Günther Gediga Statistik - Deskriptive Verfahren Übungen Version 15.12.2010 Inhaltsverzeichnis 1 Übung 1; Kap. 4 3 2 Übung 2; Kap. 5 4 3 Übung 3; Kap. 6 5 4 Übung 4; Kap. 7 6 5 Übung 5;

Mehr

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1 SPSS-Ausgabe : Univariate Varianzanalyse [DatenSet] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav Tests der Zwischensubjekteffekte Abhängige Variable: Einkommen Quelle Korrigiertes Modell Konstanter

Mehr

Empirische Wirtschaftsforschung

Empirische Wirtschaftsforschung Empirische Wirtschaftsforschung Herbert Stocker Online-Exercise: Life expectancy Die durchschnittliche Lebenserwartung hat in den meisten Ländern über die letzten fünf Dekaden mehr oder weniger stark zugenommen.

Mehr

Seminar zur Energiewirtschaft:

Seminar zur Energiewirtschaft: Seminar zur Energiewirtschaft: Ermittlung der Zahlungsbereitschaft für erneuerbare Energien bzw. bessere Umwelt Vladimir Udalov 1 Modelle mit diskreten abhängigen Variablen 2 - Ausgangssituation Eine Dummy-Variable

Mehr

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14.

Standardab er des. Testwert = 145.5 95% Konfidenzintervall. T df Sig. (2-seitig) Differenz Untere Obere -2.011 698.045-5.82-11.50 -.14. Aufgabe : einfacher T-Test Statistik bei einer Stichprobe Standardfehl Standardab er des Mittelwert weichung Mittelwertes 699 39.68 76.59 2.894 Test bei einer Sichprobe Testwert = 45.5 95% Konfidenzintervall

Mehr

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse II: Lineare multiple Regression

Institut für Soziologie Christian Ganser. Methoden 2. Regressionsanalyse II: Lineare multiple Regression Institut für Soziologie Christian Ganser Methoden 2 Regressionsanalyse II: Lineare multiple Regression Inhalt 1. Anwendungsbereich 2. Vorgehensweise bei multipler linearer Regression 3. Beispiel 4. Modellannahmen

Mehr

Jost Reinecke. 7. Juni 2005

Jost Reinecke. 7. Juni 2005 Universität Bielefeld 7. Juni 2005 Testtheorie Test für unabhängige Stichproben Test für abhängige Stichproben Testtheorie Die Testtheorie beinhaltet eine Reihe von Testverfahren, die sich mit der Überprüfung

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 15. Mai 2009 15. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Überblick 1. Korrelation vs. Regression 2. Ziele der Regressionsanalyse 3. Syntax für

Mehr

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest.

1. Erklären Sie den Unterschied zwischen einem einseitigen und zweiseitigen Hypothesentest. Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood

Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Anpassungsrechnungen mit kleinsten Quadraten und Maximum Likelihood Hauptseminar - Methoden der experimentellen Teilchenphysik WS 2011/2012 Fabian Hoffmann 2. Dezember 2011 Inhaltsverzeichnis 1 Einleitung

Mehr

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt:

1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Beispiele zum Üben und Wiederholen zu Wirtschaftsstatistik 2 (Kurs 3) 1 Einfachregression 1.1In 10 Haushalten wurden Einkommen und Ausgaben für Luxusgüter erfragt: Haushaltseinkommen 12 24 30 40 80 60

Mehr

Gliederung. 1. Einführung. Heute schon Musik gehört?

Gliederung. 1. Einführung. Heute schon Musik gehört? Regressionsanalyse Technische Universität Chemnitz Seminar: Forschungsmethodik und Evalua

Mehr

UE Angewandte Statistik Termin 4 Gruppenvergleichstests

UE Angewandte Statistik Termin 4 Gruppenvergleichstests UE Angewandte Statistik Termin 4 Gruppenvergleichstests Martina Koller Institut für Pflegewissenschaft SoSe 2015 INHALT 1 Allgemeiner Überblick... 1 2 Normalverteilung... 2 2.1 Explorative Datenanalyse...

Mehr

Modell (Konstante) 0,411 0,155 male 0,212 0,13 job 0,119 0,131 alcohol 0,255 0,05 a. Abhängige Variable: skipped

Modell (Konstante) 0,411 0,155 male 0,212 0,13 job 0,119 0,131 alcohol 0,255 0,05 a. Abhängige Variable: skipped Aufgabe 1 [14 Punkte] Sie möchten untersuchen, wovon die Abwesenheit der Studierenden in den Vorlesungen an einer Universität abhängt. Sie verfügen über einen Datensatz zu 282 Studierenden mit folgenden

Mehr

Annahmen des linearen Modells

Annahmen des linearen Modells Annahmen des linearen Modells Annahmen des linearen Modells zusammengefasst A1: Linearer Zusammenhang: y = 0 + 1x 1 + 2x 2 + + kx k A2: Zufallsstichprobe, keine Korrelation zwischen Beobachtungen A3: Erwartungswert

Mehr

3 Grundlagen statistischer Tests (Kap. 8 IS)

3 Grundlagen statistischer Tests (Kap. 8 IS) 3 Grundlagen statistischer Tests (Kap. 8 IS) 3.1 Beispiel zum Hypothesentest Beispiel: Betrachtet wird eine Abfüllanlage für Mineralwasser mit dem Sollgewicht µ 0 = 1000g und bekannter Standardabweichung

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. . Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr.  . Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell

Übung zur Empirischen Wirtschaftsforschung V. Das Lineare Regressionsmodell Universität Ulm 89069 Ulm Germany Dipl.-WiWi Christian Peukert Institut für Wirtschaftspolitik Fakultät für Mathematik und Wirtschaftswissenschaften Ludwig-Erhard-Stiftungsprofessur Sommersemester 2010

Mehr

Allgemeines zu Tests. Statistische Hypothesentests

Allgemeines zu Tests. Statistische Hypothesentests Statistische Hypothesentests Allgemeines zu Tests Allgemeines Tests in normalverteilten Grundgesamtheiten Asymptotische Tests Statistischer Test: Verfahren Entscheidungsregel), mit dem auf Basis einer

Mehr

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell

Das (multiple) Bestimmtheitsmaß R 2. Beispiel: Ausgaben in Abhängigkeit vom Einkommen (I) Parameterschätzer im einfachen linearen Regressionsmodell 1 Lineare Regression Parameterschätzung 13 Im einfachen linearen Regressionsmodell sind also neben σ ) insbesondere β 1 und β Parameter, deren Schätzung für die Quantifizierung des linearen Zusammenhangs

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 28. August 2009 28. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Überblick 1. Korrelation vs. Regression 2. Ziel der Regressionsanalyse 3. Syntax für den

Mehr

Statistischer Rückschluss und Testen von Hypothesen

Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss und Testen von Hypothesen Statistischer Rückschluss Lerne von der Stichprobe über Verhältnisse in der Grundgesamtheit Grundgesamtheit Statistischer Rückschluss lerne aus Analyse

Mehr

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 ***

Lean Body Mass [kg] Estimate Std. Error t value Pr(> t ) (Intercept) ??? lbm <2e-16 *** Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

4.1. Nullhypothese, Gegenhypothese und Entscheidung

4.1. Nullhypothese, Gegenhypothese und Entscheidung rof. Dr. Roland Füss Statistik II SS 8 4. Testtheorie 4.. Nullhypothese, Gegenhypothese und Entscheidung ypothesen Annahmen über die Verteilung oder über einzelne arameter der Verteilung eines Merkmals

Mehr

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO

Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO Schätzen und Testen von Populationsparametern im linearen Regressionsmodell PE ΣO 4. Dezember 2001 Generalisierung der aus Stichprobendaten berechneten Regressionsgeraden Voraussetzungen für die Generalisierung

Mehr

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang.

Bachelorprüfung. Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname. Matrikelnr. E-Mail. Studiengang. Lehrstuhl für Statistik und empirische Wirtschaftsforschung Fach: Prüfer: Bachelorprüfung Praxis der empirischen Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Name, Vorname Matrikelnr. E-Mail Studiengang

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2013/2014. Aufgabe 1

Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2013/2014. Aufgabe 1 Lehrstuhl für Statistik und Ökonometrie der Otto-Friedrich-Universität Bamberg Prof. Dr. Susanne Rässler Klausur zu Methoden der Statistik II (mit Kurzlösung) Wintersemester 2013/2014 Aufgabe 1 Der Fußballprofi

Mehr

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp

Dr. Maike M. Burda. Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp Dr. Maike M. Burda Welchen Einfluss hat die Körperhöhe auf das Körpergewicht? Eine Regressionsanalyse. HU Berlin, Econ Bootcamp 8.-10. Januar 2010 BOOTDATA.GDT: 250 Beobachtungen für die Variablen... cm:

Mehr

Bachelorprüfung WS 2014/15 - MUSTERLÖSUNG

Bachelorprüfung WS 2014/15 - MUSTERLÖSUNG Lehrstuhl für Statistik und empirische Wirtschaftsforschung Prof. Regina T. Riphahn, Ph.D. Bachelorprüfung WS 2014/15 - MUSTERLÖSUNG Fach: Praxis der empirischen Wirtschaftsforschung Prüfer: Prof. Regina

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst.

Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen. 0 sonst. Aufgabe 1 (2 + 4 + 2 + 1 Punkte) Gegeben sei folgende zweidimensionale Wahrscheinlichkeitsdichtefunktion zweier Zufallsvariablen X und Y : { 2x + 2y für 0.5 x 0.5, 1 y 2 f(x, y) = 3 0 sonst. a) Berechnen

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Wiederholungsübungen zu den Kapiteln 7 bis 11

Wiederholungsübungen zu den Kapiteln 7 bis 11 Mittelwert-Tests Übung Wiederholungsübungen zu den Kapiteln 7 bis 11 In dieser Übung wird der Datensatz 4 verwendet. In dem (fiktiven) Datensatz sind für 50 Personen vier Variablen erfasst: das Geschlecht,

Mehr

Statistik für Dummies

Statistik für Dummies Bearbeitet von Deborah Rumsey, Reinhard Engel 3. aktualisierte Auflage 2015. Buch. 368 S. Softcover ISBN 978 3 527 71156 7 Format (B x L): 17,6 x 24 cm Wirtschaft > Betriebswirtschaft: Theorie & Allgemeines

Mehr

Marketing III - Angewandte Marktforschung (SS 2016)

Marketing III - Angewandte Marktforschung (SS 2016) TECHNISCHE UNIVERSITÄT ILMENAU Fakultät für Wirtschaftswissenschaften und Medien Fachgebiet Marketing Univ.-Prof. Dr. rer. pol. habil. Anja Geigenmüller Marketing III - Angewandte Marktforschung (SS 2016)

Mehr

Auswertung und Lösung

Auswertung und Lösung Körperkraft [Nm] 0 50 100 150 200 250 0 20 40 60 80 Lean Body Mass [kg] Dieses Quiz soll Ihnen helfen, den R Output einer einfachen linearen Regression besser zu verstehen (s. Kapitel 5.4.1) Es wurden

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Saisik II Übung 4: Skalierung und asympoische Eigenschafen Diese Übung beschäfig sich mi der Skalierung von Variablen in Regressionsanalysen und mi asympoischen Eigenschafen von OLS. Verwenden Sie dazu

Mehr

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen

2. Stochastische ökonometrische Modelle. - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen .1. Stochastische ökonometrische Modelle.1 Einführung Ziele: - Modelle der ökonomischen Theorie an der Wirklichkeit überprüfen - Numerische Konkretisierung ökonomischer Modelle und deren Analse. . Variierende

Mehr

Vorlesung: Statistik II für Wirtschaftswissenschaft

Vorlesung: Statistik II für Wirtschaftswissenschaft Vorlesung: Statistik II für Wirtschaftswissenschaft Prof. Dr. Helmut Küchenhoff Institut für Statistik, LMU München Sommersemester 2017 6 Genzwertsätze Einführung 1 Wahrscheinlichkeit: Definition und Interpretation

Mehr

Inferenz im multiplen Regressionsmodell

Inferenz im multiplen Regressionsmodell 1 / 40 Inferenz im multiplen Regressionsmodell Kapitel 4, Teil 2 Ökonometrie I Michael Hauser 2 / 40 Inhalt ANOVA, analysis of variance korrigiertes R 2, R 2 F-Test F-Test bei linearen Restriktionen Erwartungstreue,

Mehr

Konkretes Durchführen einer Inferenzstatistik

Konkretes Durchführen einer Inferenzstatistik Konkretes Durchführen einer Inferenzstatistik Die Frage ist, welche inferenzstatistischen Schlüsse bei einer kontinuierlichen Variablen - Beispiel: Reaktionszeit gemessen in ms - von der Stichprobe auf

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

1. Lösungen zu Kapitel 5

1. Lösungen zu Kapitel 5 . Lösungen zu Kapitel 5 Übungsaufgabe 5. a) Falsch! Die Varianz des geschätzten Koeffizienten ˆβ berechnet sich folgendermaßen: ) b) Falsch! Var(β ˆ ) = ˆσ2 ˆσ X 2 = = ( ˆεt 2 (K+) X 2 t X 2 5 5 2 0 8

Mehr

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit. 21. Juni 2007: Pfadanalyse und lineare Strukturgleichungsmodelle

Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit. 21. Juni 2007: Pfadanalyse und lineare Strukturgleichungsmodelle Forschungspraktikum Gruppenbezogene Menschenfeindlichkeit 2. Juni 2007: Pfadanalyse und lineare Strukturgleichungsmodelle In vielen Untersuchungen soll eine komplexere Beziehungsstruktur untersucht werden.

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester Statistik mit SPSS Sommersemester 2009 Statistik mit SPSS 09. Mai 2009 09. Mai 2009 Statistik Dozentin: mit Esther SPSSOchoa Fernández 1 Arbeitsschritte bei der Datenanalyse Datenmanagement (Einlesen von Daten, Teilen von

Mehr