Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm

Größe: px
Ab Seite anzeigen:

Download "Brownsche Bewegung. Satz von Donsker. Bernd Barth Universität Ulm"

Transkript

1 Brownsche Bewegung Satz von Donsker Bernd Barth Universität Ulm

2 Page 2 Brownsche Bewegung Inhalt Einführung Straffheit Konvergenz Konstruktion einer zufälligen Funktion Brownsche Bewegung Satz von Donsker

3 Page 3 Brownsche Bewegung Einführung Historische Entstehung Robert Brown entdeckte 1827 eine wärmeabhängige Bewegung von Teilchen in Flüssigkeiten. Er beobachtete wie Pollen in einem Wassertropfen unregelmäßige zuckende Bewegungen machten.

4 Page 4 Brownsche Bewegung Einführung Zufällige Funktion Definition Sei C = C[0, 1] die Menge der stetigen Funktionen auf [0, 1]. Dann heißt die messbare Abbildung X : Ω C mit Wahrscheinlichkeitsraum (Ω, B, P) zufällige Funktion. Folgerung X(ω) C, ω Ω Für feste t ist X(t) die reelle Funktion auf Ω mit Wert X(t, ω) in ω. {X(t) : 0 t 1} heißt stochastischer Prozess.

5 Page 5 Brownsche Bewegung Einführung Endlich-dimensionale Verteilungen Sei {X(t) : 0 t 1} ein stochastischer Prozess. Definition Für jedes n N und für jedes n-tupel t 1, t 2,... [0, 1] von Indizes wird die Mengenfunktion P t1,...,t n : B(C n ) [0, 1] mit P t1,...,t n (B 1... B n ) = P(X t1 B 1,..., X tn B n ), B 1,..., B n B(R) endlich-dimensionale Verteilung von {X t } genannt.

6 Page 6 Brownsche Bewegung Straffheit Straffheit Sei P ein Wahrscheinlichkeitsmaß auf (C, C) und K eine kompakte Menge. Definition P ist straff, falls P(K ) > 1 ɛ. ɛ > 0 K, so dass gilt

7 Page 7 Brownsche Bewegung Straffheit Straffheit Sei w(x, δ) = sup s t δ X(s) X(t), 0 < δ 1. Satz {X n } ist straff, genau dann wenn 0 < η 1 a: P{ X n (0) > a} η, n 1 ɛ > 0 und 0 < η 1 a, 0 < δ < 1 und n 0 N: P{w(X n (t), δ) ɛ} η, n n 0, t (0, 1].

8 Page 8 Brownsche Bewegung Konvergenz Schwache Konvergenz Seien P n, P Warscheinlichkeitsmaße auf (C, C). Satz Falls die endlich-dimensionalen Verteilungen von P n schwach gegen die von P konvergieren und {P n } straff ist, dann gilt P n = P.

9 Page 9 Brownsche Bewegung Konvergenz Konvergenz in Verteilung Seien X n und X zufällige Funktionen, wobei P n die Verteilung von X n und P die von X ist. Definition (Konvergenz in Verteilung) X n konvergiert in Verteilung gegen X: falls P n = P. X n D X,

10 Page 10 Brownsche Bewegung Konstruktion einer zufälligen Funktion Konstruktion einer zufälligen Funktion Seien ξ 1, ξ 2,... iid Zufallsvariablen auf (Ω, B, P). S 0 = 0, S n = ξ ξ n Wir setzen X n ( i n, ω) = 1 σ n S i(ω), i n [0, 1], ω Ω Lineare Interpolation X n (t, ω) = i n t 1 n X n ( i 1 n i 1 t ) + n 1 n X n ( i n ), t [ i 1 n, i n ], ω Ω

11 Page 11 Brownsche Bewegung Konstruktion einer zufälligen Funktion Beispiel Gaußscher Random Walk Zufallsvariablen ξ 1, ξ 2,..., ξ n mit ξ i N(0, 1) i = 1,..., n

12 Page 12 Brownsche Bewegung Konstruktion einer zufälligen Funktion Straffheit Satz {X n } ist straff, falls ɛ > 0, λ > 1 und n 0 N: P{max i n S i λσ n} ɛ λ 2, n n 0

13 Page 13 Brownsche Bewegung Brownsche Bewegung Das Wiener Maß W Sei X : Ω C[0, 1]. Definition W ist ein Wahrscheinlichkeitsmaß auf (C, C), so dass gilt α W {X(t) α} = 1 2πt e u2 /2t du, t (0, 1] W {X(0) = 0} = 1 Für den Stochastischen Prozess {X(t) : 0 t 1} gilt: Falls 0 t 0 t 1... t k 1 dann sind X(t 1 ) X(t 0 ), X(t 2 ) X(t 1 ),..., X(t k ) X(t k 1 ) unabhängig.

14 Page 14 Brownsche Bewegung Brownsche Bewegung Brownsche Bewegung Sei X(t) eine Koordinate der Position eines sich bewegenden Teilchens im Wasser zur Zeit t, 0 t 1. Das Wiener Maß weist dieser Koordinate eine Verteilung zu, die die Brownsche Bewegung passend beschreibt.

15 Page 15 Brownsche Bewegung Brownsche Bewegung Die Existenz des Wiener Maßes Satz Auf (C, C) existiert ein Wahrscheinlichkeitsmaß W, so dass gilt α W {X(t) α} = 1 2πt e u2 /2t du, t (0, 1] W {X(0) = 0} = 1 Für den Stochastischen Prozess {X(t) : 0 t 1} gilt: Falls 0 t 0 t 1... t k 1 dann sind X(t 1 ) X(t 0 ), X(t 2 ) X(t 1 ),..., X(t k ) X(t k 1 ) unabhängig.

16 Page 16 Brownsche Bewegung Satz von Donsker Satz von Donsker Wiederholung ξ 1, ξ 2,... iid S n = ξ ξ n X n (t, ω) = 1 σ S n nt (ω) + (nt nt ) 1 σ ξ n nt +1(ω), t [0, 1], ω Ω

17 Page 17 Brownsche Bewegung Satz von Donsker Satz von Donsker Der Satz Falls E {ξ n } = 0 und Var{ξ n } = σ 2, 0 < σ 2 <. Dann gilt X n D W.

18 Page 18 Brownsche Bewegung Satz von Donsker Satz von Donsker - Beweis Lemma Seien ξ 1, ξ 2,..., ξ n unabhängige Zufallsvariablen mit E {ξ i } = 0 und Var{ξ i } = σi 2, 0 < σi 2 <. Wir setzen S i = ξ 1 + ξ ξ i und s 2 i = σ σ σ2 i. Dann gilt P{max i n S i λs n } 2 P{ S n (λ 2)s n }.

19 Page 19 Brownsche Bewegung Satz von Donsker Beispiel 1 Gaußscher Random Walk Zufallsvariablen ξ 1, ξ 2,..., ξ n mit ξ i N(0, 1) i = 1,..., n

20 Page 20 Brownsche Bewegung Satz von Donsker Beispiel 2 Einfacher Random Walk Zufallsvariablen ξ 1, ξ 2,..., ξ n mit P(ξ i = 1) = P(ξ i = 1) = 1 2 i = 1,..., n

21 Page 21 Brownsche Bewegung Satz von Donsker Anwendung Bestimmung der Verteilung von max i n S i.

22 Page 22 Brownsche Bewegung Satz von Donsker Anwendung Verteilung von max i n S i α P{ 1 σ max n i n S i α} 2 2π e u2 /2 du 0

23 Page 23 Brownsche Bewegung Satz von Donsker Quellen Convergenz of Probability Measures, Patrick Billingsley

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik

Schwache Konvergenz. Ivan Lecei. 18. Juni Institut für Stochastik Institut für Stochastik 18. Juni 2013 Inhalt 1 2 3 4 5 Nach ZGWS konvergiert für n F n (x) = P{ X 1+...+X n np npq x} gegen F(x) = 1 2π x e 1 2 u2 du, wenn die X i unabhängig und bernoulliverteilt sind

Mehr

Kapitel II. Brownsche Bewegung. Literatur: Karatzas, Shreve (1999, Chap. 2).

Kapitel II. Brownsche Bewegung. Literatur: Karatzas, Shreve (1999, Chap. 2). Kapitel II Brownsche Bewegung Literatur: Karatzas, Shreve (1999, Chap. 2). Gegeben: Wahrscheinlichkeitsraum (Ω, A, P) mit Filtration F = (F t ) t I, wobei I = [0, [. Definition 1. W = (W t ) t I Brownsche

Mehr

Schwache Konvergenz von Wahrscheinlichkeitsmaßen

Schwache Konvergenz von Wahrscheinlichkeitsmaßen Schwache Konvergenz von Wahrscheinlichkeitsmaßen 6. Juli 2010 Inhaltsverzeichnis 1 Definition 2 3 Lindeberg-Bedingung Interpretation Definition Motivation (Konvergenz von Wahrscheinlichkeitsmaßen) Sind

Mehr

Stochastik I. Vorlesungsmitschrift

Stochastik I. Vorlesungsmitschrift Stochastik I Vorlesungsmitschrift Ulrich Horst Institut für Mathematik Humboldt-Universität zu Berlin Inhaltsverzeichnis 1 Grundbegriffe 1 1.1 Wahrscheinlichkeitsräume..................................

Mehr

Stochastik-Praktikum

Stochastik-Praktikum Stochastik-Praktikum Simulation stochastischer Prozesse Peter Frentrup Humboldt-Universität zu Berlin 27. November 2017 (Humboldt-Universität zu Berlin) Zufallszahlen und Monte Carlo 27. November 2017

Mehr

Zufallsvariable, Verteilung, Verteilungsfunktion

Zufallsvariable, Verteilung, Verteilungsfunktion Kapitel 5 Zufallsvariable, Verteilung, Verteilungsfunktion 5.1 Zufallsvariable Sei (Ω, A, P ) ein beliebiger Wahrscheinlichkeitsraum. Häufig interessiert nicht ω selbst, sondern eine Kennzahl X(ω), d.h.

Mehr

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung

Brownsche Bewegung. M. Gruber. 20. März 2015, Rev.1. Zusammenfassung Brownsche Bewegung M. Gruber 20. März 2015, Rev.1 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung

Brownsche Bewegung. M. Gruber SS 2016, KW 11. Zusammenfassung Brownsche Bewegung M. Gruber SS 2016, KW 11 Zusammenfassung Stochastische Prozesse, Pfade; Definition der Brownschen Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit;

Mehr

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung

Brownsche Bewegung. M. Gruber. 19. März Zusammenfassung Brownsche Bewegung M. Gruber 19. März 2014 Zusammenfassung Stochastische Prozesse, Pfade; Brownsche Bewegung; Eigenschaften der Brownschen Bewegung: Kovarianz, Stationarität, Selbstähnlichkeit, quadratische

Mehr

3 Markov-Eigenschaft der Brownschen Bewegung

3 Markov-Eigenschaft der Brownschen Bewegung Man verifiziert 2.) für P n = Q n, und somit gilt: jede Teilfolge von (P n ) n N besitzt eine konvergente Teilfolge. Betrachte nun die endlich-dimensionalen Randverteilungen der Maße P n. Dazu sei π t1,...,t

Mehr

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011

Zufällige stabile Prozesse und stabile stochastische Integrale. Stochastikseminar, Dezember 2011 Zufällige stabile Prozesse und stabile stochastische Integrale Stochastikseminar, Dezember 2011 2 Stabile Prozesse Dezember 2011 Stabile stochastische Prozesse - Definition Stabile Integrale α-stabile

Mehr

Gegenbeispiele in der Wahrscheinlichkeitstheorie

Gegenbeispiele in der Wahrscheinlichkeitstheorie VARIOUS KINDS OF CONVERGENCES OF SEQUENCES OF RANDOM VARIABLES 10 Dezember, 2012 1 Bekannte Konvergenzarten 2 3 1 Bekannte Konvergenzarten 2 3 Wahrscheinlichkeitsraum Im Folgenden betrachten wir immer

Mehr

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen

Konvergenz gegen einen Prozess mit unabhängigen Zuwächsen - Anwendungen Konvergenz gegen einen rozess mit unabhängigen Zuwächsen - Anwendungen Saskia F. Glaffig 20.07.17 "Wiederholung" Definition (vgl. Jacod, Shiryaev, I.3.26: oissonprozess). Ein erweiterter oissonprozess

Mehr

1.3 Zufallsvariablen

1.3 Zufallsvariablen 1.3 Zufallsvariablen Beispiel Irrfahrt zwischen drei Zuständen Start in G bei t = 0, Zeithorizont T N Grundraum σ-algebra Ω = {ω = (ω 0, ω 1,..., ω T ) {G, R, B} T +1, ω 0 = G} Wahrscheinlichkeitsmaß P

Mehr

Schwache Konvergenz. Kapitel 8

Schwache Konvergenz. Kapitel 8 Im Hinblick auf die funktionalen Grenzwertsätze wird in diesem Kapitel die Theorie der schwachen Konvergenz endlicher Maße auf separablen metrischen, vorallem polnischen Räumen entwickelt. In dieser Situation

Mehr

Gaußsche Felder und Simulation

Gaußsche Felder und Simulation 3 2 data_2d_1.dat data_2d_2.dat data_2d_64.dat data_2d_128.dat 1-1 -2-3 1 2 3 4 5 6 7 Gaußsche Felder und Simulation Benedikt Jahn, Aaron Spettl 4. November 28 Institut für Stochastik, Seminar Zufällige

Mehr

13 Grenzwertsätze Das Gesetz der großen Zahlen

13 Grenzwertsätze Das Gesetz der großen Zahlen 13 Grenzwertsätze 13.1 Das Gesetz der großen Zahlen Der Erwartungswert einer zufälligen Variablen X ist in der Praxis meist nicht bekannt. Um ihn zu bestimmen, sammelt man Beobachtungen X 1,X 2,...,X n

Mehr

Finanzmathematik I Lösungvorschläge für Übungsblatt 1

Finanzmathematik I Lösungvorschläge für Übungsblatt 1 Finanzmathematik I Lösungvorschläge für Übungsblatt 1 J. Widenmann ufgabe 1: Zu zeigen ist, dass Q die Definition Ü.1.1.2 erfüllt. Zunächst bemerken wir, dass Q wegen der nnahme f 0 Werte in R + annimmt.

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1

ist ein n-dimensionaler, reeller Vektorraum (vgl. Lineare Algebra). Wir definieren auf diesem VR ein Skalarprodukt durch i y i i=1 24 14 Metrische Räume 14.1 R n als euklidischer Vektorraum Die Menge R n = {(x 1,..., x n ) x i R} versehen mit der Addition und der skalaren Multiplikation x + y = (x 1 + y 1,..., x n + y n ) λx = (λx

Mehr

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume

Kapitel II Kontinuierliche Wahrscheinlichkeitsräume Kapitel II Kontinuierliche Wahrscheinlichkeitsräume 1. Einführung 1.1 Motivation Interpretation der Poisson-Verteilung als Grenzwert der Binomialverteilung. DWT 1.1 Motivation 211/476 Beispiel 85 Wir betrachten

Mehr

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose

Seminar stochastische Geometrie. 25. Januar Faserprozesse im R 2. Simona Renner. Faserprozesse. Kenngrößen Intensität Richtungsrose Seminar stochastische Geometrie 25. Januar 2010 Contents 1 2 3 4 5 Definitionen Faser: glatte Kurve endlicher Länge in der Ebene Faser γ ist das Bild der Kurve γ(t) = (γ 1 (t), γ 2 (t)) mit (i) γ : [0,

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 2009 UNIVERSITÄT KARLSRUHE Blatt 9 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 40: Es sei (X t ) t 0 ein

Mehr

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten

Kapitel 4. Stochastische Grundlagen. 4.1 Filtrationen und Stoppzeiten Kapitel 4 Stochastische Grundlagen An dieser Stelle möchte ich auf einige stochastische Grundlagen eingehen, die bisher im Kapitel 3 Anwendung gefunden haben und im Folgenden Anwendung finden werden. Grundproblem

Mehr

Scheinklausur zur Vorlesung Stochastik II

Scheinklausur zur Vorlesung Stochastik II Institut für Mathematische Stochastik WS 2007/2008 Universität Karlsruhe 25. 02. 2008 Dr. B. Klar Scheinklausur zur Vorlesung Stochastik II Muster-Lösung Dauer: 90 Minuten Name: Vorname: Matrikelnummer:

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 4 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 3/4 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Tutoraufgaben: Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge

Mehr

Einführung und Grundlagen

Einführung und Grundlagen Kapitel 1 Einführung und Grundlagen Generelle Notation: Ω, A, P sei ein W-Raum im Hintergrund nie weiter spezifiziert Die betrachteten Zufallsvariablen seien auf Ω definiert, zb X : Ω, A M, A, wobei M,

Mehr

7. Die Brownsche Bewegung

7. Die Brownsche Bewegung 7. DIE BROWNSCHE BEWEGUNG 7 5 5 50 00 50 200 250 0 5 20 Abbildung 7.: Pfad einer Brownschen Bewegung 7. Die Brownsche Bewegung Definition 7.. Ein cadlag stochastischer Prozess {W t } mit W 0 = 0, unabhängigen

Mehr

κ Κα π Κ α α Κ Α

κ Κα π Κ α α Κ Α κ Κα π Κ α α Κ Α Ζ Μ Κ κ Ε Φ π Α Γ Κ Μ Ν Ξ λ Γ Ξ Ν Μ Ν Ξ Ξ Τ κ ζ Ν Ν ψ Υ α α α Κ α π α ψ Κ α α α α α Α Κ Ε α α α α α α α Α α α α α η Ε α α α Ξ α α Γ Α Κ Κ Κ Ε λ Ε Ν Ε θ Ξ κ Ε Ν Κ Μ Ν Τ μ Υ Γ φ Ε Κ Τ θ

Mehr

Wahrscheinlichkeitstheorie

Wahrscheinlichkeitstheorie Wahrscheinlichkeitstheorie Dr. C.J. Luchsinger 5 n (Konvergenz, LLN) 5.1 Konvergenzarten In der WT gibt es viele Konvergenzarten für Folgen von Zufallsgrössen. Sie haben alle ihre Berechtigung. In der

Mehr

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses

Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Orthogonalreihendarstellung eines zentrierten Gauß-Prozesses Thomas Steinle Seminar Zufällige Felder Universität Ulm 18. November, 2008 Einleitung Inhalt Einleitung Wiederholung und Themenvorstellung Wichtiges

Mehr

4.2 Grenzwerte und Stetigkeit reeller Funktionen

4.2 Grenzwerte und Stetigkeit reeller Funktionen 4. Grenzwerte und Stetigkeit reeller Funktionen 73 4. Grenzwerte und Stetigkeit reeller Funktionen Definition 4.. Gegeben sei eine Funktion y = mit D(f). (i) Sei D(f). heißt stetig in, falls es für alle

Mehr

1 Bedingte Erwartungswerte

1 Bedingte Erwartungswerte Die folgenden Regeln sind das alltägliche Handwerkszeug für den Umgang mit bedingten Erwartungen und werden in diesem Abschnitt, allerdings ohne Beweise, zitiert. Es ist durchaus eine lohnenswerte Übung,

Mehr

Seminar stabile Zufallsprozesse

Seminar stabile Zufallsprozesse Definitionen und Eigenschaften stabiler Verteilungen 2. November 2011 Inhalt 1 Definitionen Definitionen Beweis der Äquivalenz Beispiele 2 Eigenschaften 3 Charakteristische Funktion 4 Laplace Transformation

Mehr

Dynamische Risikomaße

Dynamische Risikomaße Dynamische Risikomaße in der Unternehmenssteuerung Jochen Wolf FH Koblenz Ulm, 24.01.2012 Wolf FH Koblenz Dynamische Risikomaße Ulm, 24.01.2012 1 / 31 statische Risikomaße Agenda 1 statische Risikomaße

Mehr

Grundlagen der Wahrscheinlichkeitstheorie

Grundlagen der Wahrscheinlichkeitstheorie Priv.-Doz. Dr. H. Steinacker Wintersemester 2013/2014 Grundlagen der Wahrscheinlichkeitstheorie betrachte Wiederholungen eines Experimentes, gleicher Vorbereitung (z.b. Würfeln, Dart werfen, Doppelspaltexperiment,...)

Mehr

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren

Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung Eigenschaften von stochastischen Ordnungen Kleine Generatoren Universität Hamburg Fachbereich Mathematik Schwerpunkt Mathematische Statistik und Stochastische Prozesse Bundesstr. 55 D-20146 Hamburg Maximale Generatoren Integral Stochastischer Ordnungen - Fortsetzung

Mehr

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006

Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 2006 Stochastische Prozesse Gliederung zur Vorlesung im Sommersemester 26 Markus Reiß Universität Heidelberg reiss@statlab.uni-heidelberg.de VORLÄUFIGE FASSUNG: 28. Juli 26 Inhaltsverzeichnis 1 Der Poissonprozess

Mehr

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume

Extremalpunkte und der Satz von Krein-Milman. 1 Lokalkonvexe topologische Vektorräume Extremalpunkte und der Satz von Krein-Milman Seminar zu ausgewählten Kapiteln der Banachraumtheorie Vortrag von Michael Hoffmann 1 Lokalkonvexe topologische Vektorräume Im folgenden betrachten wir stets

Mehr

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten

Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten Kapitel 2 Stochastische Unabhängigkeit, bedingte Wahrscheinlichkeiten 2.1 Stochastische Unabhängigkeit von Ereignissen Gegeben sei ein W-Raum (Ω, C, P. Der Begriff der stochastischen Unabhängigkeit von

Mehr

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik

Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Klausur zur Einführung in die Wahrscheinlichkeitstheorie und Statistik Prof. Dr. C. Löh/M. Blank 27. Juli 2012 Name: Matrikelnummer: Vorname: Übungsleiter: Diese Klausur besteht aus 8 Seiten. Bitte überprüfen

Mehr

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion

22 KAPITEL 1. GRUNDLAGEN. Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion KAPITEL 1. GRUNDLAGEN Um zu zeigen, dass diese Folge nicht konvergent ist, betrachten wir den punktweisen Limes und erhalten die Funktion 1 für 0 x < 1 g 0 (x) = 1 1 für < x 1. Natürlich gibt dies von

Mehr

2 Stationarität. Strikte Stationarität

2 Stationarität. Strikte Stationarität 2 Stationarität. Strikte Stationarität Die in 1 benutzten Begriffe sind noch zu präzisieren : Definition 2.1. a) Ein stochastischer Prozess {X t } t T heißt strikt stationär, falls für je endlich viele

Mehr

3. Kombinatorik und Wahrscheinlichkeit

3. Kombinatorik und Wahrscheinlichkeit 3. Kombinatorik und Wahrscheinlichkeit Es geht hier um die Bestimmung der Kardinalität endlicher Mengen. Erinnerung: Seien A, B, A 1,..., A n endliche Mengen. Dann gilt A = B ϕ: A B bijektiv Summenregel:

Mehr

Terminologie Stochastischer Prozesse

Terminologie Stochastischer Prozesse Terminologie Stochastischer Prozesse Nikolai Nowaczyk 2014-03-31 Dieses Script ist die Ausarbeitung zum einem Vortrag, gehalten im Seminar zur Wahrscheinlichkeitstheorie im SS 14 an der Uni Regensburg.

Mehr

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 =

p k (1 p) n k s k = (1 p + ps) n. k p(1 p) k 1 s k ((1 p)s) k 1 = Binomialverteilung Für X Bin(n, p) gilt nach der binomischen Formel G X (s) = E[s X ] = n ( ) n p k (1 p) n k s k = (1 p + ps) n. k Geometrische Verteilung Sei X eine geometrisch verteilte Zufallsvariable

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1

4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 4 Absolutstetige Verteilungen und Zufallsvariablen 215/1 23. Bemerkung Integralbegriffe für Funktionen f : R d R (i) Lebesgue-Integral (Vorlesung Analysis IV). Spezialfall: (ii) Uneigentliches Riemann-Integral

Mehr

Klausur zur Vorlesung Stochastik II

Klausur zur Vorlesung Stochastik II Institut für Stochastik WS 007/008 Universität Karlsruhe. 0. 008 r. B. Klar Klausur zur Vorlesung Stochastik II Muster-Lösung auer: 90 Minuten Name: Vorname: Matrikelnummer: iese Klausur hat bestanden,

Mehr

Vorlesungsskript: Martingale

Vorlesungsskript: Martingale Vorlesungsskript: Martingale von Steffen Dereich Fachbereich Mathematik und Informatik Philipps-Universität Marburg Version vom 25. Februar 2010 Inhaltsverzeichnis 4 Martingale 2 4.1 Einführung.......................................

Mehr

A. STOCHASTISCHE PROZESSE UND STOPPZEITEN 109

A. STOCHASTISCHE PROZESSE UND STOPPZEITEN 109 A. STOCHASTISCHE PROZESSE UND STOPPZEITEN 19 A. Stochastische Prozesse und Stoppzeiten In dieser Vorlesung arbeiten wir immer auf einem Massraum (Ω, F), der gross genug ist, um alle definierten Objekte

Mehr

Unabhängige Zufallsvariablen

Unabhängige Zufallsvariablen Kapitel 9 Unabhängige Zufallsvariablen Die Unabhängigkeit von Zufallsvariablen wird auf die Unabhängigkeit von Ereignissen zurückgeführt. Im Folgenden sei Ω, A, P ) ein Wahrscheinlichkeitsraum. Definition

Mehr

HANDOUT #1 KONVERGENZ VON W-MASSEN, VERTEILUNGEN UND ZUFALLSVARIABLEN

HANDOUT #1 KONVERGENZ VON W-MASSEN, VERTEILUNGEN UND ZUFALLSVARIABLEN HANDOUT #1 KONVERGENZ VON W-MASSEN, VERTEILUNGEN UND ZUFALLSVARIABLEN FOLKMAR BORNEMANN Die Vielfalt der Konvergenzberiffe für W-Maße, Verteilungen und Zufallsvariablen (wie vage, schwache, stochastische

Mehr

Finanzmathematik in diskreter Zeit

Finanzmathematik in diskreter Zeit Finanzmathematik in diskreter Zeit Version vom: 27. Mai 2017 Prof. Dr. Thorsten Schmidt 1 1 Universität Freiburg. www.stochastik.uni-freiburg.de/schmidt Vorwort Dieses Skriptum ist aus einer Vorlesung

Mehr

7 Der Satz von Girsanov

7 Der Satz von Girsanov 7 Der Satz von Girsanov Der Satz von Girsanov wird uns eine neue Perspektive auf die Rolle des Drifts liefern. Die Prozesse Brownsche Bewegung B t, Brownsche Bewegung mit Drift X t = B t + µt haben wir

Mehr

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik Univ. Leipzig Mathematisches Institut Vertretung Professur Stochastische Prozesse Max v. Renesse email: mrenesse@math.tu-berlin.de Vorlesung im SoSe 2010 Stochastische Analysis & Zeitstetige Finanzmathematik

Mehr

2 Brownsche Bewegung. Wahrscheinlichkeitstheorie III Teil Der Wienerraum

2 Brownsche Bewegung. Wahrscheinlichkeitstheorie III Teil Der Wienerraum 8 Wahrscheinlichkeitstheorie III Teil 3 Brownsche Bewegung Wir haben die Brownsche Bewegung bereits als Grenzwert reskalierter Irrfahrten in der VL WTH II kennengelernt siehe dazu Abschnitt 5.. In diesem

Mehr

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird.

Weihnachtsaufgaben. a) Welche Urnenmodelle gibt es? Stelle zu jedem Modell ein konkretes Beispiel auf, welches durch dieses Modell beschrieben wird. Weihnachtsaufgaben Diese Aufgaben dienen dazu die in der Vorlesung und den Übungen eingeführten Begriffe zu verstehen und zu vertiefen, die Bearbeitung ist freiwillig Das Blatt wurde von den Übungsleitern

Mehr

Das Boolesche Modell

Das Boolesche Modell mit konvexen Körnern 3.12.2009 mit konvexen Körnern Ziele des heutigen Seminars: ist sehr anwendungsbezogen. Daher ist unser Ziel, am Ende die folgenden statistischen Fragen zu beantworten: Wann ist das

Mehr

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable.

12 Ungleichungen. Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. 12 Ungleichungen Wir beginnen mit einer einfachen Ungleichung über die Varianz. Satz 35 Es sei X eine zufällige Variable. Dann gilt: min c R E(X c)2 = Var X. Beweis: Für alle reellen Zahlen c R gilt: E(X

Mehr

Ritz-Galerkin-Verfahren Courant Element

Ritz-Galerkin-Verfahren Courant Element Ritz-alerkin-Verfahren Courant Element Moritz Scherrmann LMU München Zillertal am 09.01.2015 Moritz Scherrmann Ritz-alerkin-Verfahren Courant Element 1/15 Erinnerung Sei R n beschränktes ebiet, f C 0 ()

Mehr

Musterlösung Klausur,,Einführung in die W theorie

Musterlösung Klausur,,Einführung in die W theorie Institut für angewandte Mathematik Wintersemester 3/4 Andreas Eberle, Lisa Hartung / Patrick Müller Musterlösung Klausur,,Einführung in die W theorie. (Zufallsvariablen und ihre Verteilung) a) Was ist

Mehr

Stochastische Prozesse

Stochastische Prozesse INSTITUT FÜR STOCHASTIK SS 29 UNIVERSITÄT KARLSRUHE Blatt 6 Priv.-Doz. Dr. D. Kadelka Dipl.-Math. W. Lao Übungen zur Vorlesung Stochastische Prozesse Musterlösungen Aufgabe 27: Sei X eine R + -wertige

Mehr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr

DWT 1.4 Rechnen mit kontinuierlichen Zufallsvariablen 234/467 Ernst W. Mayr 1.4.2 Kontinuierliche Zufallsvariablen als Grenzwerte diskreter Zufallsvariablen Sei X eine kontinuierliche Zufallsvariable. Wir können aus X leicht eine diskrete Zufallsvariable konstruieren, indem wir

Mehr

1.3 Wiederholung der Konvergenzkonzepte

1.3 Wiederholung der Konvergenzkonzepte 1.3 Wiederholung der Konvergenzkonzepte Wir erlauben nun, dass der Stichprobenumfang n unendlich groß wird und untersuchen das Verhalten von Stichprobengrößen für diesen Fall. Dies liefert uns nützliche

Mehr

Kapitel 6 Martingale

Kapitel 6 Martingale Kapitel 6 Martingale Martingale spielen eine große Rolle in der Finanzmathematik, und sind zudem ein wichtiges Hilfsmittel für die statistische Inferenz stochastischer Prozesse, insbesondere auch für Zählprozesse

Mehr

Der Metropolis-Hastings Algorithmus

Der Metropolis-Hastings Algorithmus Der Algorithmus Michael Höhle Department of Statistics University of Munich Numerical Methods for Bayesian Inference WiSe2006/07 Course 30 October 2006 Markov-Chain Monte-Carlo Verfahren Übersicht 1 Einführung

Mehr

2 Zufallsvariable und Verteilungsfunktionen

2 Zufallsvariable und Verteilungsfunktionen 8 2 Zufallsvariable und Verteilungsfunktionen Häufig ist es so, dass den Ausgängen eines Zufallexperiments, d.h. den Elementen der Ereignisalgebra, eine Zahl zugeordnet wird. Das wollen wir etwas mathematischer

Mehr

Vorlesung 7a. Der Zentrale Grenzwertsatz

Vorlesung 7a. Der Zentrale Grenzwertsatz Vorlesung 7a Der Zentrale Grenzwertsatz als Erlebnis und Das Schwache Gesetz der Großen Zahlen Wiederholung: Die Normalverteilung Dichtefunktion ϕ der Standardnormalverteilung ϕ(x) 0.0 0.1 0.2 0.3 0.4

Mehr

Material der Folien zur Vorlesung Stochastische Prozesse Wintersemester 2016/2017

Material der Folien zur Vorlesung Stochastische Prozesse Wintersemester 2016/2017 Material der Folien zur Vorlesung Stochastische Prozesse Wintersemester 2016/2017 Prof. Dr. Hans-Jörg Starkloff Technische Universität Bergakademie Freiberg (Sachsen), Institut für Stochastik Letzte Änderung:

Mehr

Vollständigkeit. 1 Konstruktion der reellen Zahlen

Vollständigkeit. 1 Konstruktion der reellen Zahlen Vortrag im Rahmen des Proseminars zur Analysis, 17.03.2006 Albert Zeyer Ziel des Vortrags ist es, die Vollständigkeit auf Basis der Konstruktion von R über die CAUCHY-Folgen zu beweisen und äquivalente

Mehr

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W.

8. Formelsammlung. Pr[ ] = 0. 0 Pr[A] 1. Pr[Ā] = 1 Pr[A] A B = Pr[A] Pr[B] DWT 8.1 Gesetze zum Rechnen mit Ereignissen 203/467 Ernst W. 8. Formelsammlung 8.1 Gesetze zum Rechnen mit Ereignissen Im Folgenden seien A und B, sowie A 1,..., A n Ereignisse. Die Notation A B steht für A B und zugleich A B = (disjunkte Vereinigung). A 1... A

Mehr

Einführung in Quasi-Monte Carlo Verfahren

Einführung in Quasi-Monte Carlo Verfahren Einführung in Quasi- Markus Zahrnhofer 3. Mai 2007 Markus Zahrnhofer () Einführung in Quasi- 3. Mai 2007 1 / 27 Inhalt der Präsentation 1 Motivierendes Beispiel 2 Einführung 3 quasi- Allgemeines Diskrepanz

Mehr

2 Zufallsvariablen und deren Verteilungen

2 Zufallsvariablen und deren Verteilungen 2 Zufallsvariablen und deren Verteilungen 2.1 Zufallsvariablen Zufallsvariablen sind Funktionen von Ω in die reellen Zahlen R. Beispiel 2.1.1 (Zweimaliger Münzwurf). Ω = ZZ, KK, KZ, ZK}. Sei X(ω) die Anzahl

Mehr

Häufungspunkte und Satz von Bolzano und Weierstraß.

Häufungspunkte und Satz von Bolzano und Weierstraß. Häufungspunkte und Satz von Bolzano und Weierstraß. Definition: Sei (a nk ) k N eine konvergente Teilfolge der Folge (a n ) n N.Dannwirdder Grenzwert der Teilfolge (a nk ) k N als Häufungspunkt der Folge

Mehr

Reelle Zufallsvariablen

Reelle Zufallsvariablen Kapitel 3 eelle Zufallsvariablen 3. Verteilungsfunktionen esultat aus der Maßtheorie: Zwischen der Menge aller W-Maße auf B, nennen wir sie W B ), und der Menge aller Verteilungsfunktionen auf, nennen

Mehr

Die Perronsche Methode

Die Perronsche Methode Emilia Finsterwald und Peter Schrank 21.06.2012 Gliederung 1 Oskar Perron 2 3 4 5 6 7 8 Oskar Perron (1880-1975) b7.mai 1880 in Frankenthal - d22.feb. 1975 in München Lösung eines speziellen s Im Fall

Mehr

Das Black-Scholes Modell

Das Black-Scholes Modell Vathani Arumugathas Das Black-Scholes Modell 1 Das Black-Scholes Modell Vathani Arumugathas Seminar zu Finanzmarktmodellen in der Lebensversicherung, Universität zu Köln 10. Juni 016 Inhaltsverzeichnis

Mehr

Kapitel VII - Funktion und Transformation von Zufallsvariablen

Kapitel VII - Funktion und Transformation von Zufallsvariablen Universität Karlsruhe (TH) Institut für Statistik und Mathematische Wirtschaftstheorie Wahrscheinlichkeitstheorie Kapitel VII - Funktion und Transformation von Zufallsvariablen Markus Höchstötter Lehrstuhl

Mehr

Gesetze der großen Zahlen

Gesetze der großen Zahlen Kapitel 0 Gesetze der großen Zahlen 0. Einführung Im ersten Kapitel wurde auf eine Erfahrungstatsache im Umgang mit zufälligen Erscheinungen aufmerksam gemacht, die man gewöhnlich als empirisches Gesetz

Mehr

Allgemeine Punktprozesse

Allgemeine Punktprozesse Allgemeine Punktprozesse Michael Auchter 17. Mai 2010 Seite 2 Allgemeine Punktprozesse 17. Mai 2010 Inhaltsverzeichnis Definitionen Definition von Punktprozessen Das Intensitätsmaß Stationarität, Isotropie

Mehr

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) :=

Definition Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := Definition 2.34. Sei X eine stetige Z.V. mit Verteilungsfunktion F und Dichte f. Dann heißt E(X) := x f(x)dx der Erwartungswert von X, sofern dieses Integral existiert. Entsprechend wird die Varianz V(X)

Mehr

TU DORTMUND Sommersemester 2018

TU DORTMUND Sommersemester 2018 Fakultät Statistik. April 08 Blatt Aufgabe.: Wir betrachten das Zufallsexperiment gleichzeitiges Werfen zweier nicht unterscheidbarer Würfel. Sei A das Ereignis, dass die Augensumme beider Würfel ungerade

Mehr

Einiges über die Brown sche Bewegung

Einiges über die Brown sche Bewegung Einiges über die Brown sche Bewegung Gunther Leobacher und Friedrich Pillichshammer Inhaltsverzeichnis Definition und Existenz einer Brown schen Bewegung Einige elementare Eigenschaften der Brown schen

Mehr

4 Fehlerabschätzungen und Konvergenz der FEM

4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 4 Fehlerabschätzungen und Konvergenz der FEM 153 Es sei V der Lösungsraum und V N V ein endlich dimensionaler Unterraum. Weiters sei u V die exakte Lösung und

Mehr

Stochastik. Skript zur Vorlesung von Prof. Dr. Michael Kohler Sommersemester 2007

Stochastik. Skript zur Vorlesung von Prof. Dr. Michael Kohler Sommersemester 2007 Stochastik Skript zur Vorlesung von Prof. Dr. Michael Kohler Sommersemester 2007 1 1. Grundbegriffe der Maßtheorie Ziel: Konstruktion von Maßzahlen (wie z. B. Wahrscheinlichkeit / Länge / Fläche / Volumen

Mehr

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6

1 Stochastische Konvergenz 2. 2 Das Gesetz der grossen Zahlen 4. 3 Der Satz von Bernoulli 6 Wirtschaftswissenschaftliches Zentrum 0 Universität Basel Mathematik Dr. Thomas Zehrt Grenzwertsätze Benötigtes Vorwissen: Der Stoff der Vorlesung,,Statistik wird als bekannt vorausgesetzt, insbesondere

Mehr

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012

Darstellungssatz von Riesz in vollständig regulären Räumen. Carina Pöll Wintersemester 2012 Darstellungssatz von Riesz in vollständig regulären Räumen Carina Pöll 0726726 Wintersemester 2012 Inhaltsverzeichnis 1 Einleitung 1 2 Definitionen und Resultate aus der Topologie 1 3 Der Darstellungssatz

Mehr

Zeitstetige Markov-Prozesse: Einführung und Beispiele

Zeitstetige Markov-Prozesse: Einführung und Beispiele Zeitstetige Markov-Prozesse: Einführung und Beispiele Simone Wielart 08.12.10 Inhalt Q-Matrizen und ihre Exponentiale Inhalt Q-Matrizen und ihre Exponentiale Zeitstetige stochastische Prozesse Inhalt Q-Matrizen

Mehr

Stochastik. 1. Wahrscheinlichkeitsräume

Stochastik. 1. Wahrscheinlichkeitsräume Stochastik 1. Wahrscheinlichkeitsräume Ein Zufallsexperiment ist ein beliebig oft und gleichartig wiederholbarer Vorgang mit mindestens zwei verschiedenen Ergebnissen, bei dem der Ausgang ungewiß ist.

Mehr

7 Bedingte Erwartungswerte und Bedingte Verteilungen

7 Bedingte Erwartungswerte und Bedingte Verteilungen 7 edingte Erwartungswerte und edingte Verteilungen Sei (Ω,, P ein W Raum, (Ω, ein Messraum, Y : Ω Ω sei (, -messbar und nehme die Werte y 1,..., y n Ω an. Y 1 (y k {ω Ω Y (ω y k } : k Ω 1 + + n und σ(y

Mehr

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen...

I Grundbegriffe 1 1 Wahrscheinlichkeitsräume Bedingte Wahrscheinlichkeiten und Unabhängigkeit Reellwertige Zufallsvariablen... Inhaltsverzeichnis I Grundbegriffe 1 1 Wahrscheinlichkeitsräume......................... 1 2 Bedingte Wahrscheinlichkeiten und Unabhängigkeit........... 7 3 Reellwertige Zufallsvariablen........................

Mehr

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme

Optimale Steuerung, Prof.Dr. L. Blank 1. II Linear-quadratische elliptische Steuerungsprobleme Optimale Steuerung, Prof.Dr. L. Blank 1 II Linear-quadratische elliptische Steuerungsprobleme Zuerst: Zusammenstellung einiger Begriffe und Aussagen aus der Funktionalanalysis (FA), um dann etwas über

Mehr

Lehrstuhl IV Stochastik & Analysis. Stochastik II. Wahrscheinlichkeitstheorie I. Skriptum nach einer Vorlesung von Hans-Peter Scheffler

Lehrstuhl IV Stochastik & Analysis. Stochastik II. Wahrscheinlichkeitstheorie I. Skriptum nach einer Vorlesung von Hans-Peter Scheffler Fachschaft Mathematik Uni Dortmund Lehrstuhl IV Stochastik & Analysis Stochastik II Wahrscheinlichkeitstheorie I Skriptum nach einer Vorlesung von Hans-Peter Scheffler Letzte Änderung: 26. November 2002

Mehr

Einführung in die Stochastik 6. Übungsblatt

Einführung in die Stochastik 6. Übungsblatt Einführung in die Stochastik 6. Übungsblatt Fachbereich Mathematik SS M. Kohler 3. Mai A. Fromkorth D. Furer Gruppen und Hausübung Aufgabe (a) Die Wahrscheinlichkeit, dass eine S Bahn Verspätung hat, betrage.3.

Mehr

KAPITEL 5. Erwartungswert

KAPITEL 5. Erwartungswert KAPITEL 5 Erwartungswert Wir betrachten einen diskreten Wahrscheinlichkeitsraum (Ω, P) und eine Zufallsvariable X : Ω R auf diesem Wahrscheinlichkeitsraum. Die Grundmenge Ω hat also nur endlich oder abzählbar

Mehr

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1).

ist reelles lineares Funktional. x(t) ϕ(t) dt ist reelles lineares Funktional für alle ϕ L 2 (0, 1). Kapitel 4 Stetige lineare Funktionale 4.1 Der Satz von Hahn - Banach Definition 4.1. Sei X ein linearer normierter Raum über dem Körper K (R oder C). Ein linearer Operator f : X K heißt (reelles oder komplexes)

Mehr

Kapitel II - Wahrscheinlichkeitsraum

Kapitel II - Wahrscheinlichkeitsraum Institut für Volkswirtschaftslehre (ECON) Lehrstuhl für Ökonometrie und Statistik Kapitel II - Wahrscheinlichkeitsraum Wahrscheinlichkeitstheorie Prof. Dr. W.-D. Heller Hartwig Senska Carlo Siebenschuh

Mehr

Mathematische Ökonometrie

Mathematische Ökonometrie Mathematische Ökonometrie Ansgar Steland Fakultät für Mathematik Ruhr-Universität Bochum, Germany ansgar.steland@ruhr-uni-bochum.de Skriptum zur LV im SoSe 2005. Diese erste Rohversion erhebt keinen Anspruch

Mehr

Exkurs: Polnische Räume

Exkurs: Polnische Räume Ein normaler Hausdorff-Raum mit abzählbarer Basis kann auf viele Weisen metrisiert werden; man kann insbesondere eine einmal gewonnene Metrik in vielerlei Weise abändern, ohne die von ihr erzeugte Topologie

Mehr