Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen

Größe: px
Ab Seite anzeigen:

Download "Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen"

Transkript

1 Folie 1 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Mehrgitter-Verfahren für DG Finite-Elemente-Diskretisierungen von turbulenten Strömungen Marcel Wallraff, Tobias Leicht DLR Braunschweig (AS - C 2 A 2 S 2 E)

2 Motivation Folie 2 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Heutige CFD Löser basieren zum grössten Teil auf Finite Volumen Verfahren zweiter Ordnung. Verfahren höherer Ordnung versprechen höhere Genauigkeit und Effizienz.

3 Motivation Folie 2 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Heutige CFD Löser basieren zum grössten Teil auf Finite Volumen Verfahren zweiter Ordnung. Verfahren höherer Ordnung versprechen höhere Genauigkeit und Effizienz. Discontinuous Galerkin (DG) Verfahren

4 Motivation Folie 2 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Heutige CFD Löser basieren zum grössten Teil auf Finite Volumen Verfahren zweiter Ordnung. Verfahren höherer Ordnung versprechen höhere Genauigkeit und Effizienz. Discontinuous Galerkin (DG) Verfahren Um Verfahren höherer Ordnung in der Praxis anwenden zu können, müssen alle Vorteile, die diese bieten, auch genutzt werden:

5 Motivation Folie 2 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Heutige CFD Löser basieren zum grössten Teil auf Finite Volumen Verfahren zweiter Ordnung. Verfahren höherer Ordnung versprechen höhere Genauigkeit und Effizienz. Discontinuous Galerkin (DG) Verfahren Um Verfahren höherer Ordnung in der Praxis anwenden zu können, müssen alle Vorteile, die diese bieten, auch genutzt werden: Jacobiblöcke sind lokal auf jeder Gitterzelle. Keine besondere Behandlung für unstrukturierte Netze nötig. Einfache h- und p-adaption des Netzes ist möglich. Hängende Knoten im Netz sind zulässig.

6 Mehrgitter Folie 3 > STAB Workshop, > Marcel Wallraff, Tobias Leicht

7 Folie 4 > STAB Workshop, > Marcel Wallraff, Tobias Leicht DG Diskretisierung Basisfunktionen nicht parametrische ortho-normale Basisfunktionen formuliert direkt im physikalischen Raum d.h. keine Nutzung von Referenzelementen

8 Folie 4 > STAB Workshop, > Marcel Wallraff, Tobias Leicht DG Diskretisierung Basisfunktionen nicht parametrische ortho-normale Basisfunktionen formuliert direkt im physikalischen Raum d.h. keine Nutzung von Referenzelementen RANS Gleichungen zweites Schema von Bassi und Rebay (BR2) für die viskosen Terme Roe-Fluss für die konvektiven Terme

9 Folie 4 > STAB Workshop, > Marcel Wallraff, Tobias Leicht DG Diskretisierung Basisfunktionen nicht parametrische ortho-normale Basisfunktionen formuliert direkt im physikalischen Raum d.h. keine Nutzung von Referenzelementen RANS Gleichungen zweites Schema von Bassi und Rebay (BR2) für die viskosen Terme Roe-Fluss für die konvektiven Terme Turbulenzmodell kω-zweigleichungsmodell Spalart-Allmaras-Eingleichungsmodell (2012)

10 Folie 5 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Nichtlineares Mehrgitter Hierarchie von linearen Funktionenräumen V lmin V lmin +1 V lmax 1 V lmax R n l min R n l min +1 R n lmax 1 R n lmax Transfer-Operatoren: Der Prolongations-Operator ist die natürliche Injektion: Il 1 l : Rn l 1 R n l ( ) Restriktions-Operator: I l 1 := I l l 1 l Das nichtlineare Mehrgitter benötigt ausserdem: Restriktion des nichtlinearen Lösungsvektors: Orthogonale L 2 -Projektion Îl 1 in den Raum V l l 1

11 Folie 6 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Nichtlineares Mehrgitter Sei das nichtlineare Problem auf dem höchsten Level l max definiert als: L lmax (u lmax ) = f lmax. Restriktion der Lösung u l 1 := Îl 1 u l l Berechnung der neuen rechten Seite für das gröbere Level: f l 1 f l 1 + I l 1 (f l l L l (u l )) (f l 1 L l 1 (u 0 l 1 ) ) Galerkin-Transfer für die Jacobimatrix: R l 1 = I l 1 l R l I l l 1

12 Folie 7 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Nichtlineare Glätter / Löser Glätter / Löser Backward-Euler-Verfahren Löse [ (α i t) 1 M + R l ] (ul,i u l,i 1 ) = [ f l L l (u l,i 1 ) ], wobei R l die volle implizite Jacobimatrix, M die Massematrix und u l,j der Lösungsvektor, mit u l,j V l j N, sind. Verwendung eines lokalen Pseudo-Zeitschritts und einer adaptiven CFL-Zahl-Steuerung

13 Folie 8 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Linearer Glätter / Löser Krylov-Verfahren als linearer Löser (GMRES Methode) Linien-Jacobi-Verfahren als Vorkonditionierer / Glätter im linearen Mehrgitter Sei L l,k (u l,k ) = f l,k das lineare Problem auf Linie k, Löse δu l,k,i := u l,k,i u l,k,i 1 = R 1 l,k (f l,k L l,k u l,k,i 1 ) u l,k,i := u l,k,i 1 + δu l,k,i, wobei R 1 l,k die Inverse der Jacobimatrix auf Linie k ist.

14 Folie 9 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Jacobi-/ System-Matrix Struktur Element-Diagonale Linien-Nachbar Nicht-Linien-Nachbar Matrix-Blöcke

15 Folie 10 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Lösungsverfahren Mögliche Löservarianten Ein-Level Backward-Euler-Verfahren Netz- oder Ordnungs-Sequenzierung zur Verbesserung der Startlösung auf dem höchsten Level Lineares MG als Vorkonditionierer Nichtlineares MG zur Beschleunigung des Lösers in der Pseudo-Zeit Nichtlineares MG mit einem linearen MG auf jedem Level

16 Folie 11 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Wahl der Parameter für das nichtlineare Problem Nichtlineares Mehrgitter V-Zyklus je ein Vor- und Nach-Glätterschritt auf jedem Level ein Glätterschritt auf dem niedrigsten Level Backward-Euler-Verfahren als Glätter SER-Zeitschritt-Steuerung für das Backward-Euler-Verfahren Galerkin-Transfer, um die Jacobimatrix auf den unteren Leveln zu erhalten

17 Folie 12 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Wahl der Parameter für das lineare Problem Parameter für das Lösen der linearen Probleme, welche aus dem Backward-Euler-Verfahren auf jedem Level resultieren: GMRES-Verfahren mit fester Anzahl an (maximalen) Schritten Lineares Mehrgitter als Vorkonditionierer für das GMRES-Verfahren Vier Glätterschritte auf jedem Level Linien-Jacobi-Verfahren als Glätter Galerkin-Transfer, um die Matrizen auf den unteren Leveln zu erhalten

18 Folie 13 > STAB Workshop, > Marcel Wallraff, Tobias Leicht MDA 30P-30N - 2D Hochauftriebsprofil Mach: 0.2 Reynolds-Zahl: 9,000,000 α = 16 Testfall des 2nd International Workshop on High-Order CFD Methods (2013)

19 Folie 14 > STAB Workshop, > Marcel Wallraff, Tobias Leicht MDA 30P-30N Lösung der RANS-kω Gleichungen. Dichte Residuum h-single grid h-lmg h-nmg h-nmg + LMG normalisierte CPU Zeit

20 Folie 15 > STAB Workshop, > Marcel Wallraff, Tobias Leicht MDA 30P-30N Lösung der RANS-kω Gleichungen. Dichte Residuum h-nmg + LMG (1e-12) h-nmg + LMG (1e-6) normalisierte CPU Zeit

21 Folie 16 > STAB Workshop, > Marcel Wallraff, Tobias Leicht MDA 30P-30N Lösung der RANS-SA Gleichungen. Dichte Residuum h-single grid h-lmg h-nmg h-nmg + LMG h-nmg + LMG (kω) normalisierte CPU Zeit

22 Folie 17 > STAB Workshop, > Marcel Wallraff, Tobias Leicht MDA 30P-30N Lösung der RANS-SA Gleichungen. Dichte Residuum h-single grid h-lmg h-nmg h-nmg + LMG h-nmg + LMG (kω) normalisierte CPU Zeit

23 Folie 18 > STAB Workshop, > Marcel Wallraff, Tobias Leicht MDA 30P-30N Lösung der RANS-SA Gleichungen. Dichte Residuum p-single grid p-lmg p-nmg p-nmg + LMG normalisierte CPU Zeit

24 Folie 19 > STAB Workshop, > Marcel Wallraff, Tobias Leicht Zusammenfassung Gezeigte Algorithmen wurden entwickelt zur Lösung der RANS-kω Gleichungen. Diese Algorithmen liefern auch gut Ergebnisse für die RANS-SA Gleichungen. Anpassung der Optimalen Start-CFL-Zahl für gleiche Performanz. Das Lineares Mehrgitter scheint die besten Ergebnisse zu liefern für diesen Testfall in Kombination mit den RANS-SA Gleichungen. Untersuchungen zur Robustheit des Lösers im RANS-SA Fall werden folgen.

Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen

Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen Entwicklung von p-mehrgitter-verfahren für turbulente Strömungen Institut für Aerodynamik und Strömungstechnik DLR 10.11.2011 1 / 24 Übersicht Motivation DG-Verfahren Gleichungen p-mehrgitter Voraussetzungen

Mehr

Vorkonditionierer. diskrete stationäre Eulergleichungen

Vorkonditionierer. diskrete stationäre Eulergleichungen Übersicht Bernhard Pollul,, RWTH Templergraben 55, 52056, E-mail: pollul@igpm.rwth-aachen.de Vorkonditionierer für diskrete stationäre Eulergleichungen 1/13 1., Teilprojekt B4 2. Vorkonditionierung 3.

Mehr

Simulation der instationären Strömung in einem Diffusionsofen mit Wärmestrahlung

Simulation der instationären Strömung in einem Diffusionsofen mit Wärmestrahlung Simulation der instationären Strömung in einem Diffusionsofen mit Wärmestrahlung R. Kessler DLR-AS-CASE Simulation der instationären Strömung in einem Diffusionsofen mit Wärmestrahlung Slide 1 > HPC 2009

Mehr

CFD-Simulation von Tonal- und Breitbandlärm als Folge u.a. von Schaufelschwingungen in Triebwerken

CFD-Simulation von Tonal- und Breitbandlärm als Folge u.a. von Schaufelschwingungen in Triebwerken www.dlr.de Folie 1 CFD-Simulation von Tonal- und Breitbandlärm als Folge u.a. von Schaufelschwingungen in Triebwerken Simulation von Vibration und Schall im Verkehrswesen Graham Ashcroft Numerische Methoden

Mehr

FEM isoparametrisches Konzept

FEM isoparametrisches Konzept FEM isoparametrisches Konzept /home/lehre/vl-mhs-/folien/vorlesung/5_fem_isopara/deckblatt.tex Seite von 25. p./25 Inhaltsverzeichnis. Interpolationsfunktion für die finiten Elemente 2. Finite-Element-Typen

Mehr

Lineare Gleichungssysteme Hierarchische Matrizen

Lineare Gleichungssysteme Hierarchische Matrizen Kompaktkurs Lineare Gleichungssysteme Hierarchische Matrizen M. Bebendorf, O. Steinbach O. Steinbach Lineare Gleichungssysteme SIMNET Kurs 24. 27.4.26 / 6 Numerische Simulation stationäre und instationäre

Mehr

Finite Elemente am Beispiel der Poissongleichung

Finite Elemente am Beispiel der Poissongleichung am Beispiel der Poissongleichung Roland Tomasi 11.12.2013 Inhalt 1 2 3 Poissongleichung Sei R n ein Gebiet mit abschnittsweise glattem Rand und f L 2 (). Wir suchen u : R, so dass u = f in, u = 0 Physikalische

Mehr

Berechnungsmethoden der Energie- und Verfahrenstechnik Methode der gewichteten Residuen

Berechnungsmethoden der Energie- und Verfahrenstechnik Methode der gewichteten Residuen Berechnungsmethoden der Energie- und Verfahrenstechnik Methode der gewichteten Residuen Giuseppe Bonfigli IFD, ETH-Zürich 3. Juni 21 Giuseppe Bonfigli (IFD, ETH-Zürich) Gewichtete Residuen 3. Juni 21 1

Mehr

Simulation reaktiver und nichtreaktiver Strömungen

Simulation reaktiver und nichtreaktiver Strömungen Statustreffen IWRMM, Karlsruhe, 15.4.2005 Simulation reaktiver und nichtreaktiver Strömungen Jochen Fröhlich Universität Karlsruhe Arbeitsbereiche des TCP Zusammenschluss 1.1.2004 Institut für Chemische

Mehr

Discontinuous-Galerkin-Verfahren

Discontinuous-Galerkin-Verfahren Discontinuous-Galerkin-Verfahren Dr. Gregor Gassner Institut für Aerodynamik und Gasdynamik der Universität Stuttgart. Stuttgart, 2013 Variationsformulierung 1 Ziel dieser Vorlesung ist es, das DG Verfahren

Mehr

Modellieren in der Angewandten Geologie II. Sebastian Bauer

Modellieren in der Angewandten Geologie II. Sebastian Bauer Modellieren in der Angewandten Geologie II Geohydromodellierung Institut für Geowissenschaften Christian-Albrechts-Universität zu Kiel CAU 3-1 Die Finite Elemente Method (FEM) ist eine sehr allgemeine

Mehr

Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen

Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen CAE Herbsttagung 2013 Numerische Strömungsberechnungen mit NX Herausforderungen und Lösungen bei Durchströmungs- und Umströmungs-Vorgängen Prof. Dr.-Ing. Alexander Steinmann Dr. Binde Ingenieure Design

Mehr

Finite Elemente Methoden (aus der Sicht des Mathematikers)

Finite Elemente Methoden (aus der Sicht des Mathematikers) Finite Elemente Methoden (aus der Sicht des Mathematikers) Alfred Schmidt Übersicht: Partielle Differentialgleichungen, Approximation der Lösung, Finite Elemente, lineare und höhere Ansatzfunktionen, Dünn

Mehr

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner.

Parallelrechnern. 12. März Technische Universität Chemnitz. Der Jacobi-Davidson Algorithmus auf. Parallelrechnern. Patrick Kürschner. Technische Universität Chemnitz 12. März 2008 - sweise Gliederung - sweise - sweise Eigenwertprobleme Ziel: Lösung von Eigenwertproblemen Dabei: Ax = λx Matrix A C n n sehr groß, dünnbesetzt (sparse) Gesucht:

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 4. Teil Finite-Volumen-Methode

Mehr

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen

Ein Eingitter-Ansatz für aeroakustische Simulationen bei kleinen Machzahlen ERCOFTAC-Technologietag, Stuttgart 2005 p. 1 Ein für aeroakustische Simulationen bei kleinen Machzahlen Achim Gordner und Prof. Gabriel Wittum Technische Simulation Universiät Heidelberg ERCOFTAC-Technologietag,

Mehr

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau,

Klausurlösung Einführung in Numerische Methoden und FEM Universität Siegen, Department Maschinenbau, Universität Siegen, Department Maschinenbau, 7.7. Aufgabe y 3 l 3 3 F l l x Das dargestellte Fachwerk soll statisch mit Hilfe der FEM untersucht werden. Die Knoten und Elemente sind in der Abbildung nummeriert.

Mehr

Discontinuous Galerkin Verfahren in der CFD

Discontinuous Galerkin Verfahren in der CFD Discontinuous Galerkin Verfahren in der CFD Dr. Manuel Keßler Universität Stuttgart Status Quo - Aerodynamik Verfahren Finite Volumen Codes 2. Ordnung im Raum Zeitintegration 1.-4. Ordnung (Runge-Kutta

Mehr

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n

Rückwärts-Einsetzen. Bei einem linearen Gleichungssystem in oberer Dreiecksform, nacheinander bestimmt werden: r n,n x n = b n. = x n = b n /r n,n Rückwärts-Einsetzen Bei einem linearen Gleichungssystem in oberer Dreiecksform, r 1,1 r 1,n x 1 b 1..... =., } 0 {{ r n,n } x n b n R mit det R = r 1,1 r n,n 0 können die Unbekannten x n,..., x 1 nacheinander

Mehr

1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung

1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung Fakultät Informatik > Angewandte Informatik > Technische Informationssysteme Studentischer Vortrag 1-, 2-, 3D-Modelle: Überblick, Vergleich und Anwendung Mai, Tuan Linh Dresden, 17.Jan.2011 Inhalt 1. Motivation

Mehr

Dynamisches Routing in der Logistik

Dynamisches Routing in der Logistik Informatik, Angewandte Informatik, Technische Informationssysteme Dynamisches Routing in der Logistik Tobias Dimmel Dresden, 24.05.2012 Agenda 1. Begriffe 2. Traveling Salesman Problem 3. Ameisenalgorithmus

Mehr

Iterative Methoden für lineare Gleichungssysteme

Iterative Methoden für lineare Gleichungssysteme Iterative Methoden für lineare Gleichungssysteme Seminar, Sommersemester 2012/13 Hans Georg Bock Andreas Potschka Ruprecht-Karls-Universität Heidelberg 17. April 2013 Iterative Methoden für lineare Gleichungssysteme

Mehr

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D;

Banach scher Fixpunktsatz. 1) D ist abgeschlossen und konvex; 2) f ist selbstabbildend, d.h. f(d) D; Institut für Geometrie und Praktische Mathematik Höhere Mathematik IV (für Elektrotechniker und Technische Informatiker) - Numerik - SS 2007 Dr. S. Börm, Dr. M. Larin Banach scher Fixpunktsatz Gegeben

Mehr

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide

Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Daniel Janocha Aus der Reihe: e-fellows.net stipendiaten-wissen e-fellows.net (Hrsg.) Band 1064 Schwache Lösung der Stokes-Gleichungen für nicht-newton'sche Fluide Weak solution of the Stokes equations

Mehr

Grundlagen und Grundgleichungen der Strömungsmechanik

Grundlagen und Grundgleichungen der Strömungsmechanik Inhalt Teil I Grundlagen und Grundgleichungen der Strömungsmechanik 1 Einführung... 3 2 Hydromechanische Grundlagen... 7 2.1 Transportbilanz am Raumelement... 7 2.1.1 Allgemeine Transportbilanz... 7 2.1.2

Mehr

Transport Einführung

Transport Einführung Transport Einführung home/lehre/vl-mhs-1/inhalt/folien/vorlesung/8_transport/deckblatt.tex Seite 1 von 24. p.1/24 1. Einführung 2. Transportgleichung 3. Analytische Lösung Inhaltsverzeichnis 4. Diskretisierung

Mehr

Adaptive Finite Elemente Simulationen Software-Entwicklung Anwendung Analyse

Adaptive Finite Elemente Simulationen Software-Entwicklung Anwendung Analyse Software-Entwicklung Anwendung Analyse Institut für Mathematik Universität Augsburg 1. TopMath-Workshop Iffeldorf 6. 9. Januar 2005 Inhalt Einführung in adaptive Finite Elemente Methoden Adaptive Diskretisierungen

Mehr

Einführung FEM 1D - Beispiel

Einführung FEM 1D - Beispiel p. 1/28 Einführung FEM 1D - Beispiel /home/lehre/vl-mhs-1/folien/vorlesung/4_fem_intro/deckblatt.tex Seite 1 von 28 p. 2/28 Inhaltsverzeichnis 1D Beispiel - Finite Elemente Methode 1. 1D Aufbau Geometrie

Mehr

Entwicklung von Differenzenschemata für geometrische Singularitäten

Entwicklung von Differenzenschemata für geometrische Singularitäten Entwicklung von Differenzenschemata für geometrische Singularitäten Graz, Österreich herwig.grogger@fh-joanneum.at DGLR-Fachausschußsitzung T 2.3 Strömungsakustik / Fluglärm DLR Braunschweig 4. Februar

Mehr

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover

Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover ! H W B - Bibliothek!nv.-Nr. p Institut für Strömungsmechanik und Elektron. Rechnen im Bauwesen der Universität Hannover BERICHT NR. 24/1987 Technische Universität Darmslacit Bibliothek Wasser und Umwelt

Mehr

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg

VORLESUNGEN. Numerische. Diplomarbeit. Strömungsmechanik Kolleg VORLESUNGEN Strömungslehre 5 Angewandte Strömungsmechanik Math. Methoden der Strömungslehre 6 Numerische Strömungsmechanik 7 Trainings-Kurs 8 Diplomarbeit Strömungsmechanik Kolleg Mathematische Methoden

Mehr

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5

3 Das Programm 3. 4 Dateien 4. 5 Aufgaben 4. 6 Ausblick 5 Contents 1 Ziele dieser Uebung 1 2 Finite-Differenzen-Methode 1 3 Das Programm 3 4 Dateien 4 5 Aufgaben 4 6 Ausblick 5 1 Ziele dieser Uebung 1.1 Einleitung Wir erweitern das Problem aus der letzten Uebung

Mehr

(d) das zu Grunde liegende Problem gut konditioniert ist.

(d) das zu Grunde liegende Problem gut konditioniert ist. Aufgabe 0: (6 Punkte) Bitte kreuzen Sie die richtige Lösung an. Es ist jeweils genau eine Antwort korrekt. Für jede richtige Antwort erhalten Sie einen Punkt, für jede falsche Antwort wird Ihnen ein Punkt

Mehr

Inhaltsverzeichnis Partielle Differentialgleichungen und ihre T ypeneinteilung B eispiele...

Inhaltsverzeichnis Partielle Differentialgleichungen und ihre T ypeneinteilung B eispiele... Inhaltsverzeichnis 1 Partielle Differentialgleichungen und ihre Typeneinteilung... 1 1.1 Beispiele... 1 1.2 Typeneinteilungen bei Gleichungen zweiter Ordnung... 5 1.3 Typeneinteilungen bei Systemen erster

Mehr

Überbestimmte Gleichungssysteme

Überbestimmte Gleichungssysteme Siebente Vorlesung, 8. Mai 2008, Inhalt Überbestimmte Gleichungssysteme Kleinste Quadrate: einfaches Beispiel, elementare Herleitung Normalengleichungen Transformation mit QR-Zerlegung und SVD Nichtlineare

Mehr

1 Die Problemstellung

1 Die Problemstellung Institut für Wissenschaftliches Rechnen Technische Universität Braunschweig Prof. Hermann G. Matthies, Ph.D. ScientifiComputing Wir wollen als erstes das in diesem Praktikum zu behandelnde Problem aus

Mehr

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme

Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Begleitmaterial zur Vorlesung Numerik linearer Gleichungssysteme Andreas Meister Universität Kassel, AG Analysis und Angewandte Mathematik Andreas Meister (Universität Kassel) Begleitmaterial Numerik 1

Mehr

Dominik Desmaretz Universität Trier

Dominik Desmaretz Universität Trier Dominik Desmaretz Universität Trier 25.11.2010 Inhaltsverzeichnis 1. Kurze Wiederholung/Einleitung 2. Die Lax-Friedrichs Methode 3. Die Richtmyer Zwei-Schritt Lax-Wendroff Methode 4. Upwind Methoden 5.

Mehr

Numerische Mathematik

Numerische Mathematik ».- Numerische Mathematik Von Dr. sc. math. Hans Rudolf Schwarz o. Professor an der Universität Zürich Mit einem Beitrag von Dr. sc. math. Jörg Waldvogel Titularprofessor an der Eidg. Technischen Hochschule

Mehr

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf

Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Institut für Numerische Simulation der Universität Bonn Prof. Dr. Mario Bebendorf Praktikum im Sommersemester 2012 Programmierpraktikum numerische Algorithmen (P2E1) (Numerische Lösung der Wärmeleitungsgleichung)

Mehr

Modellbildung und Simulation SS2011 Lineare Iterationsverfahren

Modellbildung und Simulation SS2011 Lineare Iterationsverfahren restart; with(plots): with(linearalgebra): Modellbildung und Simulation SS2 Lineare Iterationsverfahren Hilfsfunktionen: Bilder malen bild malt einen Vektor als stueckweise lineare Funktion ueber dem Einheitsintervall.

Mehr

1. Anfangswertprobleme 1. Ordnung

1. Anfangswertprobleme 1. Ordnung 1. Anfangswertprobleme 1. Ordnung 1.1 Grundlagen 1.2 Euler-Vorwärts-Verfahren 1.3 Runge-Kutta-Verfahren 1.4 Stabilität 1.5 Euler-Rückwärts-Verfahren 1.6 Differentialgleichungssysteme Prof. Dr. Wandinger

Mehr

7. Iterative Lösung. linearer Gleichungssysteme

7. Iterative Lösung. linearer Gleichungssysteme 7. Iterative Lösung linearer Gleichungssysteme 1 Grundlagen (1) Zur Erinnerung: Gesucht ist die Lösung eines linearen Gleichungssystems a 0,0 x 0 +a 0,1 x 1 + a 0,n 1 x n 1 = b 0 a 1,0 x 0 +a 1,1 x 1 +

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Nichtlineare Gleichungssysteme Jetzt: Numerische Behandlung nichtlinearer GS f 1 (x 1,..., x n ) =0. f n (x 1,..., x n ) =0 oder kurz f(x) = 0 mit f : R n R n Bemerkung: Neben dem direkten Entstehen bei

Mehr

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii

Inhaltsverzeichnis. Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Inhaltsverzeichnis Vorwort... v Vorwort zur ersten Auflage... vi Bezeichnungen... xiii Kapitel I Einführung 1 1. Beispiele und Typeneinteilung... 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte Probleme

Mehr

ANALYSE NUMERISCHER VERFAHREN

ANALYSE NUMERISCHER VERFAHREN ANALYSE NUMERISCHER VERFAHREN von Eugene Isaacson Professor für Mathematik Leiter des Rechenzentrums Courant Institute of Mathematical Sciences New York University und Herbert Bishop Keller Professor für

Mehr

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen

Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Algorithmik III Algorithmen und Modelle für kontinuierliche Datenstrukturen Iterationsverfahren: Konvergenzanalyse und Anwendungen Ulrich Rüde Lehrstuhl für Systemsimulation Sommersemester 2007 U. Rüde,

Mehr

Joel H. Ferziger. Milovan Petie. Numerische. Stromungsmechanik. ~ Springer

Joel H. Ferziger. Milovan Petie. Numerische. Stromungsmechanik. ~ Springer Joel H. Ferziger. Milovan Petie Numerische Stromungsmechanik ~ Springer Vorwort V 1. Physikalische Grundlagen der St.rdrnungen................ 1 1.1 Einftihrung :::... 1 1.2 Erhaltungsprinzipien... 3 1.3

Mehr

Inhaltsverzeichnis. 1 Einleitung... 1

Inhaltsverzeichnis. 1 Einleitung... 1 Inhaltsverzeichnis 1 Einleitung................................................. 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität...... 11 2.1 Kondition eines Problems................................

Mehr

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b.

VF-3: Es seien A R n n beliebig aber regulär, b R n und gesucht sei die Lösung x R n von A x = b. NumaMB F14 Verständnisfragen-Teil (24 Punkte) Es gibt zu jeder der 12 Aufgaben vier Teilaufgaben. Diese sind mit wahr bzw. falsch zu kennzeichnen (hinschreiben). Bewertung: Vier Fragen richtig beantwortet

Mehr

Numerische Integration

Numerische Integration A1 Numerische Integration Einführendes Beispiel In einem Raum mit der Umgebungstemperatur T u = 21.7 C befindet sich eine Tasse heissen Kaffees mit der anfänglichen Temperatur T 0 80 C. Wie kühlt sich

Mehr

6a. Iterative Verfahren: Nullstellen und Optima. Besser, schneller, höher, weiter!

6a. Iterative Verfahren: Nullstellen und Optima. Besser, schneller, höher, weiter! 6a. Iterative Verfahren: Nullstellen und Optima Besser, schneller, höher, weiter! Part-II - Reserve Page 1 of 15 Konjugierte Richtungen Anstelle der Residuen oder negativen Gradienten r (i) suchen wir

Mehr

Simulation der Wechselwirkung von Flugzeug und Böe mit dem DLR TAU-Code

Simulation der Wechselwirkung von Flugzeug und Böe mit dem DLR TAU-Code Simulation der Wechselwirkung von Flugzeug und Böe mit dem DLR TAU-Code Ralf Heinrich, DLR Institut für Aerodynamik und Strömungstechnik 18. DGLR-Fach-Symposium der STAB 06.11. 07.11.2012, Stuttgart Simulation

Mehr

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik'

Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' Übungen zu Meteorologische Modellierung Teil 'Grundlagen der Numerik' 1. Diskretisierung in der Zeit: Die Evolutionsgleichung Kurzzusammenfassung Zur Erprobung der Verfahren zur zeitlichen Diskretisierung

Mehr

Nichtlineare Gleichungssysteme

Nichtlineare Gleichungssysteme Kapitel 5 Nichtlineare Gleichungssysteme 51 Einführung Wir betrachten in diesem Kapitel Verfahren zur Lösung von nichtlinearen Gleichungssystemen Nichtlineares Gleichungssystem: Gesucht ist eine Lösung

Mehr

Modellreduktion für Grundwasserströmungen

Modellreduktion für Grundwasserströmungen Eine Anwendung der Reduzierte-Basis-Methode für Finite Volumen Verfahren Institut für Numerische und Angewandte Mathematik Universität Münster 7. Februar 29 Gliederung Grundwasserströmungen Grundwasserströmungen

Mehr

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit -

Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Modellierung und Simulation von Mischvorgängen in einem Rührer - Bachelorarbeit - Dies Mathematicus 211 25. November 211 Gliederung 1 Motivation: Mischvorgänge in einem Rührer 2 Mathematische Modellierung

Mehr

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10

Bildverarbeitung: Diffusion Filters. D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Bildverarbeitung: Diffusion Filters D. Schlesinger ()Bildverarbeitung: Diffusion Filters 1 / 10 Diffusion Idee Motiviert durch physikalische Prozesse Ausgleich der Konzentration eines Stoffes. Konzentration

Mehr

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2.

KLAUSUR zur Numerik I mit Lösungen. Aufgabe 1: (10 Punkte) [ wahr falsch ] 1. Die maximale Ordnung einer s-stufigen Quadraturformel ist s 2. MATHEMATISCHES INSTITUT PROF. DR. ACHIM SCHÄDLE 9.8.7 KLAUSUR zur Numerik I mit Lösungen Aufgabe : ( Punkte) [ wahr falsch ]. Die maximale Ordnung einer s-stufigen Quadraturformel ist s. [ ]. Der Clenshaw

Mehr

Angewandte Strömungssimulation

Angewandte Strömungssimulation Angewandte Strömungssimulation 7. Vorlesung Stefan Hickel Numerische Strömungsberechnung Physikalische Modellierung Mathematische Modellierung Numerische Modellierung Lösung Auswertung Parameter und Kennzahlen

Mehr

38 Iterative Verfahren für lineare Gleichungssysteme

38 Iterative Verfahren für lineare Gleichungssysteme 38 Iterative Verfahren für lineare Gleichungssysteme 38.1 Motivation Viele praktische Probleme führen auf sehr große lineare Gleichungssysteme, bei denen die Systemmatrix dünn besetzt ist, d. h. nur wenige

Mehr

Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden. Frederik Rabe, Anja Hofmann, Ulrich Krause

Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden. Frederik Rabe, Anja Hofmann, Ulrich Krause Vergleich von Computational Fluid Dynamics-Programmen in der Anwendung auf Brandszenarien in Gebäuden Frederik Rabe, Anja Hofmann, Ulrich Krause Gliederung Einleitung Grundlagen Grundlagen CFD NIST FDS

Mehr

Hydroinformatik II Prozess-Simulation und Systemanalyse

Hydroinformatik II Prozess-Simulation und Systemanalyse Version 7.01-10. August 2016 Hydroinformatik II Prozess-Simulation und Systemanalyse Prof. Dr.-Ing. Olaf Kolditz TU Dresden / UFZ Leipzig Angewandte Umweltsystemanalyse Department Umweltinformatik Sommersemester

Mehr

Inhaltsverzeichnis. 1 Einleitung... 1

Inhaltsverzeichnis. 1 Einleitung... 1 Inhaltsverzeichnis 1 Einleitung... 1 2 Fehleranalyse: Kondition, Rundungsfehler, Stabilität... 11 2.1 KonditioneinesProblems... 11 2.1.1 ElementareBeispiele... 12 2.1.2 Bemessen,Normen... 15 2.1.3 RelativeundAbsoluteKondition...

Mehr

Berechnungsmethoden der Energie- und Verfahrenstechnik

Berechnungsmethoden der Energie- und Verfahrenstechnik Institute of Fluid Dynamics Berechnungsmethoden der Energie- und Verfahrenstechnik Prof. Dr. Leonhard Kleiser c L. Kleiser, ETH Zürich Transition zur Turbulenz in einem drahlbehafteten Freistrahl. S. Müller,

Mehr

Seminar VSP Stephan Müller Makroskopische Verkehrsmodellierung mit der Einflussgröße Telematik. Stephan Müller

Seminar VSP Stephan Müller Makroskopische Verkehrsmodellierung mit der Einflussgröße Telematik. Stephan Müller www.dlr.de Folie 1 Seminar VSP Stephan Müller 07.6.2012 Makroskopische Verkehrsmodellierung mit der Einflussgröße Telematik Stephan Müller www.dlr.de Folie 2 Seminar VSP Stephan Müller 07.6.2012 Inhalt

Mehr

Entwicklung einer hp-fast-multipole-

Entwicklung einer hp-fast-multipole- Entwicklung einer hp-fast-multipole- Boundary-Elemente-Methode Übersicht: 1. Motivation 2. Theoretische Grundlagen a) Boundary-Elemente-Methode b) Fast-Multipole-Methode 3. Erweiterungen a) Elementordnung

Mehr

KAPITEL 1. Einleitung

KAPITEL 1. Einleitung KAPITEL 1 Einleitung Wir beschäftigen uns in dieser Vorlesung mit Verfahren aus der Numerischen linearen Algebra und insbesondere dem sogenannten Mehrgitterverfahren zur Lösung linearer Gleichungssysteme

Mehr

Turbulenzmodellierung und Detached Eddy Simulationen mit einem Discontinuous Galerkin Verfahren hoher Ordnung

Turbulenzmodellierung und Detached Eddy Simulationen mit einem Discontinuous Galerkin Verfahren hoher Ordnung Turbulenzmodellierung und Detached Eddy Simulationen mit einem Discontinuous Galerkin Verfahren hoher Ordnung Von der Fakultät Luft- und Raumfahrttechnik und Geodäsie der Universität Stuttgart zur Erlangung

Mehr

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q:

Serie 5. Lineare Algebra D-MATH, HS Prof. Richard Pink. 1. [Aufgabe] Invertieren Sie folgende Matrizen über Q: Lineare Algebra D-MATH, HS 214 Prof Richard Pink Serie 5 1 [Aufgabe] Invertieren Sie folgende Matrizen über Q: 1 a) 1 1 1 1 1 2 1 1 1 b) 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 1 c) 1 3 3 2 2 1 5 3 1 2 6 1 [Lösung]

Mehr

d) Produkte orthogonaler Matrizen sind wieder orthogonal.

d) Produkte orthogonaler Matrizen sind wieder orthogonal. Die orthogonale Matrizen Definition: Eine Matrix Q R n n heißt orthogonal, falls QQ T = Q T Q = I gilt. Die Eigenschaften orthogonaler Matrizen: a) det(q) = ±1; b) Qx 2 = x 2 für alle x R n, also Q 2 =

Mehr

Parareal. Ein paralleler Lösungsalgorithmus für gewöhnliche Differentialgleichungen. Johannes Reinhardt. Parareal 1 Johannes Reinhardt

Parareal. Ein paralleler Lösungsalgorithmus für gewöhnliche Differentialgleichungen. Johannes Reinhardt. Parareal 1 Johannes Reinhardt Ein paralleler Lösungsalgorithmus für gewöhnliche Differentialgleichungen Johannes Reinhardt 1 Johannes Reinhardt Übersicht Grundlagen Gewöhnliche Differentialgleichungen Numerische Methoden Der Algorithmus

Mehr

Lineares Gleichungssystem - Vertiefung

Lineares Gleichungssystem - Vertiefung Lineares Gleichungssystem - Vertiefung Die Lösung Linearer Gleichungssysteme ist das "Gauß'sche Eliminationsverfahren" gut geeignet - schon erklärt unter Z02. Alternativ kann mit einem Matrixformalismus

Mehr

3D-Simulationen magneto-hydrodynamischer Instabilitäten in Akkretionsscheiben

3D-Simulationen magneto-hydrodynamischer Instabilitäten in Akkretionsscheiben 3D-Simulationen magneto-hydrodynamischer Instabilitäten in Akkretionsscheiben Wilhelm Kley, Jochen Peitz Daniel Marik Institut für Astronomie & Astrophysik Universität Tübingen Andreas Dedner, Dietmar

Mehr

Finite Elemente Modellierung

Finite Elemente Modellierung Finite Elemente Modellierung Modellerstellung Diskretisierung des Kontinuums Methode der Finite Elemente Anwendungsbeispiele der FEM Zugstab: Kraftmethode Zugstab: Energiemethode Zugstab: Ansatzfunktion

Mehr

Numerische Mathematik 1

Numerische Mathematik 1 Springer-Lehrbuch Numerische Mathematik 1 Bearbeitet von A Quarteroni, R Sacco, F Saleri, L Tobiska 1. Auflage 2001. Taschenbuch. xiv, 370 S. Paperback ISBN 978 3 540 67878 6 Format (B x L): 15,5 x 23,5

Mehr

Iterative Algorithmen für die FSI Probleme II

Iterative Algorithmen für die FSI Probleme II Iterative Algorithmen für die FSI Probleme II Rebecca Hammel 12. Juli 2011 1 / 22 Inhaltsverzeichnis 1 2 3 2 / 22 Zur Wiederholung: Wir definieren unser Fluid-Gebiet Ω(t) durch Ω(t) = {(x 1, x 2 ) R 2

Mehr

Numerik partieller Differentialgleichungen für Ingenieure

Numerik partieller Differentialgleichungen für Ingenieure Numerik partieller Differentialgleichungen für Ingenieure Von ir. J. J.I.M. van Kan und ir. A. Segal Technische Universität Delft Aus dem Niederländischen übersetzt von Burkhard Lau, Technische Universität

Mehr

11. Quantenchemische Methoden

11. Quantenchemische Methoden Computeranwendung in der Chemie Informatik für Chemiker(innen) 11. Quantenchemische Methoden Jens Döbler 2004 "Computer in der Chemie", WS 2003-04, Humboldt-Universität VL11 Folie 1 Grundlagen Moleküle

Mehr

Hauptseminar Computergraphik

Hauptseminar Computergraphik MinCut = MaxFlow Hauptseminar Computergraphik Numerische Algorithmen in der Computergraphik There s beautiful math inside Dipl. Medieninf. Sören König Di 3.DS, INF E 009 K means im Eigenraum Gliederung

Mehr

Numerische Mathematik

Numerische Mathematik Numerische Mathematik Von Prof. Dr. sc. math. Hans Rudolf Schwarz Universität Zürich Mit einem Beitrag von Prof. Dr. sc. math. Jörg Waldvogel Eidg. Technische Hochschule Zürich 4., überarbeitete und erweiterte

Mehr

Seminar. Visual Computing. Poisson Surface Reconstruction. Peter Hagemann Andreas Meyer. Peter Eisert: Visual Computing SS 11.

Seminar. Visual Computing. Poisson Surface Reconstruction. Peter Hagemann Andreas Meyer. Peter Eisert: Visual Computing SS 11. Poisson Surface Reconstruction Peter Hagemann Andreas Meyer Seminar 1 Peter Eisert: SS 11 Motivation Zur 3D Darstellung von Objekten werden meist Scan-Daten erstellt Erstellung eines Dreieckmodells aus

Mehr

Mit den angegebenen Parametern ergeben sich folgend Kurven (analytische und numerische Lösung)

Mit den angegebenen Parametern ergeben sich folgend Kurven (analytische und numerische Lösung) Lösungen zur Übung 0/1: 'Evolutionsgleichung' Aufgabe 0/1: Der Code zur Berechnung der analytischen Lösung der Evolutionsgleichung findet sich im file evolution.f90, derjenige zur Berechnung der numerischen

Mehr

Inhaltsverzeichnis. Vorwort zur ersten Auflage. Bezeichnungen

Inhaltsverzeichnis. Vorwort zur ersten Auflage. Bezeichnungen Inhaltsverzeichnis Vorwort zur vierten Auflage Vorwort zur ersten Auflage Bezeichnungen v vi xv Kapitel I Einführung 1 1. Beispiele und Typeneinteilung 2 Beispiele 2 Typeneinteilung 7 Sachgemäß gestellte

Mehr

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12

Inhaltsverzeichnis. 2 Anwendungsfelder und Software Problemklassen Kommerzielle Software 12 Bernd Klein FEM Grundlagen und Anwendungen der Finite-Element-Methode im Maschinen- und Fahrzeugbau 8., verbesserte und erweiterte Auflage Mit 230 Abbildungen, 12 Fallstudien und 20 Übungsaufgaben STUDIUM

Mehr

3.2.5 Dualität der linearen Optimierung I

3.2.5 Dualität der linearen Optimierung I 3..5 Dualität der linearen Optimierung I Jedem linearen Programm in Standardform kann ein sogenanntes duales Programm zugeordnet werden. Es entsteht dadurch, daß man von einem Minimierungsproblem zu einem

Mehr

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme

Inhaltsverzeichnis. Kapitel 1: Rechnen mit Zahlen. Kapitel 2: Umformen von Ausdrücken. Kapitel 3: Gleichungen, Ungleichungen, Gleichungssysteme Kapitel 1: Rechnen mit Zahlen 1.1 Rechnen mit reellen Zahlen 1.2 Berechnen von Summen und Produkten 1.3 Primfaktorzerlegung 1.4 Größter gemeinsamer Teiler 1.5 Kleinstes gemeinsames Vielfaches 1.6 n-te

Mehr

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker.

Numerische Methoden. Thomas Huckle Stefan Schneider. Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker. Thomas Huckle Stefan Schneider Numerische Methoden Eine Einführung für Informatiker, Naturwissenschaftler, Ingenieure und Mathematiker 2. Auflage Mit 103 Abbildungen und 9 Tabellen 4Q Springer Inhaltsverzeichnis

Mehr

3.6 Eigenwerte und Eigenvektoren

3.6 Eigenwerte und Eigenvektoren 3.6 Eigenwerte und Eigenvektoren 3.6. Einleitung Eine quadratische n n Matrix A definiert eine Abbildung eines n dimensionalen Vektors auf einen n dimensionalen Vektor. c A x c A x Von besonderem Interesse

Mehr

Differentialgleichungen

Differentialgleichungen Differentialgleichungen Viele physikalische Probleme können mathematisch als gewöhnliche Differentialgleichungen formuliert werden nur eine unabhängige Variable (meist t), z.b. Bewegungsgleichungen: gleichmäßig

Mehr

Rechenaufwand der LR- und LDL T - Zerlegung

Rechenaufwand der LR- und LDL T - Zerlegung 6. Großübung Rechenaufwand der LR- und LDL T - Zerlegung Rückwärtseinsetzen Der Algorithmus kann der Folie 3.0 entnommen werden. Dieser kann in die folgenden Rechenoperationen aufgesplittet werden: Für

Mehr

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix

Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Inhaltsverzeichnis Matrizen, Gaußscher Algorithmus 1 Bestimmung der inversen Matrix Auf dieser Seite werden Matrizen und Vektoren fett gedruckt, um sie von Zahlen zu unterscheiden. Betrachtet wird das

Mehr

NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure

NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure NUMERISCHE VERFAHREN für Naturwissenschaftler und Ingenieure Eine computerorientierte Einführung Von Prof. Dr. sc. nat. HUBERT SCHWETLICK Prof. Dr. sc. nat. HORST KRETZSCHMAR Mit 74 Bildern und 34 Tabellen

Mehr

im Ottomotor mit der Large Eddy Simulation

im Ottomotor mit der Large Eddy Simulation Numerische Berechnung der Strömung im Ottomotor mit der Large Eddy Simulation F. Magagnato Übersicht Motivation Numerisches Schema von SPARC Netzgenerierung und Modellierung LES des ROTAX Motors bei 2000

Mehr

Kapitel 4: Nichtlineare Nullstellenprobleme

Kapitel 4: Nichtlineare Nullstellenprobleme Vorlesung Höhere Mathematik: Numerik (für Ingenieure) Kapitel 4: Nichtlineare Nullstellenprobleme Jun.-Prof. Dr. Stephan Trenn AG Technomathematik, TU Kaiserslautern Sommersemester 2015 HM: Numerik (SS

Mehr

Numerische Modellierung von Grundwasserströmungen

Numerische Modellierung von Grundwasserströmungen Numerische Modellierung von Grundwasserströmungen Heiko Berninger Berlin, 23. Juni 2004 Elbe Hochwasser August 2002 Ökosystem Untere Havel Unteres Havelland als natürliches Überschwemmungsgebiet Hydrologische

Mehr

Kurze Einführung in die Finite-Elemente-Methode

Kurze Einführung in die Finite-Elemente-Methode Kurze Einführung in die Finite-Elemente-Methode Stefan Girke Wissenschaftliches Rechnen 23 Die Finite-Elemente-Methode In diesem Skript soll eine kurze Einführung in die Finite-Elemente-Methode gegeben

Mehr

Simulationstechnik V

Simulationstechnik V Simulationstechnik V Vorlesung/Praktikum an der RWTH Aachen Numerische Simulation von Strömungsvorgängen B. Binninger Institut für Technische Verbrennung Templergraben 64 2. Teil 2-1 1) Welche Garantie

Mehr

Netzlose 3D CFD Einsatzpotenziale und Vorteile für die Praxis

Netzlose 3D CFD Einsatzpotenziale und Vorteile für die Praxis Netzlose 3D CFD Einsatzpotenziale und Vorteile für die Praxis Vortragender: Dr. Christof Rachor, MSC Software 24. April 2012 CFD & Mehr, Simulation im Armaturenbau VDMA Frankfurt a.m. MSC Software und

Mehr

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3.

4. Dämpfungsmodelle. 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung. Elastodynamik 3. 4. Dämpfungsmodelle 4.1 Grundlagen 4.2 Viskose Dämpfung 4.3 Modale Dämpfung 4.4 Rayleigh-Dämpfung 4.5 Strukturdämpfung 3.4-1 4.1 Grundlagen Dämpfung ist ein Prozess, bei dem Energie dissipiert wird. Dabei

Mehr