Labor zur Vorlesung Physik

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Labor zur Vorlesung Physik"

Transkript

1 Labor zur Vorlesung Physik Versuch 1: Massenträgheitsmoment 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Schwingungsdauer, Winkelrichtgröße, Massenträgheitsmoment, Hooksches Gesetz, Steinerscher Satz. MTM.doc Seite 1 von 9 Stand:

2 Versuch 1:Massenträgheitsmoment Inhaltsverzeichnis 1. Zur Vorbereitung...1. Gerätebeschreibung....1 Reflexions-Lichttaster LTK Hameg Triple Power Supply Hameg Universal Counter: Theoretische Grundlagen Einführung Herleitungen Versuchsdurchführung Verdrahtung Messtechnik: Hinweise zur Bestimmung der Schwingungsdauer: Bestimmung der statischen Winkelrichtgröße c* Dynamische Bestimmung der Winkelrichtgröße Bestimmung Trägheitsmoment Bestimmung Trägheitsmoment Scheibe Bestimmung Trägheitsmoment Vollzylinder Bestimmung Trägheitsmoment Kugel Versuch zum Satz von Steiner Arbeitsprogramm Literatur Gerätebeschreibung 1.1 Reflexions-Lichttaster LTK Schaltabstand (auf mattweisses Papier): 3mm - Spannungsbereich U B : 1-36VDC - Ausgangsstrom I A : ma max - hellschaltend - Gelbe LED = Schaltzustand - Grüne LED = Funktionsreserve - Eingebautes Potentiometer für Einstellung des Schaltabstands MTM.doc Seite von 9 Stand:

3 Versuch 1:Massenträgheitsmoment MTM.doc Seite 3 von 9 Stand:

4 Versuch 1:Massenträgheitsmoment. Hameg Triple Power Supply (1) Output: Ein/Ausschalten aller Stromausgänge () Voltage: Einstellung der Spannung V (3) V: Sicherheitsbuchsen, V-Ausgang (4) Current: Strombegrenzung I max,5a (5) 5V / 1A: Sicherheitsbuchsen, 5V-Ausgang.3 Hameg Universal Counter: (6) Gate Time: Die Torzeit ist in Schritten von,1s bis 1s einstellbar. Bitte auf 1s einstellen! (7) Funktionsanzeigen: LED s (8) Reset: Durch drücken dieser Taste wird eine laufende Messanzeige unterbrochen und auf Null gestellt. (9) Auto Trigger: Es wird in der Mitte des Messwertes getriggert (1) Input A: BNC-Buchse (11) Trigger Level: Einstellung des DC-Triggerpegels (1) 8-stellige Digitalanzeige: (13) Hz: bei Frequenzmessungen Sec.: bei Zeitmessungen MTM.doc Seite 4 von 9 Stand:

5 Versuch 1:Massenträgheitsmoment 3 Theoretische Grundlagen 3.1 Einführung Sollen zwei gleich schwere, formgleiche Körper zum Drehen gebracht werden, der eine aus Stahl, der andere aus Holz, so könnte man annehmen, dass man wegen derselben Masse auch dasselbe Drehmoment (=Kraft mal Hebelarm) aufbringen muss. Dies ist jedoch nicht der Fall: Denn je weiter außen (Entfernung des Schwerpunkts vom Zentrum der Drehachse) die Masse sitzt, desto größer ist das benötigte Drehmoment, um die beiden Körper in gleichschnelle Drehung zu versetzen. Da der Holzkörper bei gleicher Masse viel größer ist, benötigen wir hier ein größeres Drehmoment. Diese Eigenschaft der beiden Körper, wie schwer sie in Drehung zu versetzen sind, nennt man Trägheitsmoment. Sie können die Änderung des Trägheitsmoments bei konstanter Masse selbst ausprobieren: Setzen Sie sich auf einen drehbaren Schreibtischstuhl, strecken Sie Arme und Beine nach außen und versetzen Sie sich anschließend in Drehung. Durch das Anziehen Ihrer Arme und Beine nimmt Ihr Trägheitsmoment ab, was zur Folge hat, dass die Drehbewegung schneller wird. Wenn Sie nun Ihre Arme und Beine ausstrecken, werden Sie wieder langsamer. Ein weiteres gutes Beispiel hierfür ist ein Schlittschuhläufer beim Pirouettendrehen. Sobald er bei den Drehungen um seine eigene Achse die Arme einzieht, dreht er sich schneller; das Prinzip ist immer das Gleiche: dem System "Körper" wird hier keinerlei Energie zugeführt, dennoch verändert sich seine Drehgeschwindigkeit durch die Änderung seines Massenträgheitsmoments. 3. Herleitungen Massenträgheitsmomente können experimentell mit Hilfe von Drehschwingungen bestimmt werden. Allgemeine Differentialgleichung eines reibfreien Schwingungssystems ɺɺ β = c * β Wenn man die Gleichung durch dividiert, erhält man für den Faktor vor β * c ω = Daraus folgt: T = π (1) c * und nach aufgelöst: c * T = Summe der Massenträgheitsmomente aller beteiligten Körper c * Winkelrichtgröße der Spiralfeder MTM.doc Seite 5 von 9 Stand:

6 Versuch 1:Massenträgheitsmoment In den folgenden Versuchen ist das Massenträgheitsmoment des Systems zusammengesetzt aus den einzelnen Trägheitsmomenten des s ( ), den beiden Hohlzylindern ( Zyl ) und der Drillachse ( Drill ). Für die zwei Zylinder gilt nach Steiner: Zyl = Zyl ( S) + mzylr () 1 1 Zyl ( S) = mzyl ( ra + ri + l ) (3) 4 3 Zyl (S) Massenträgheitsmoment des Zylinders mit Schwerpunkt auf der Drillachse r.. Abstand des Zylinderschwerpunkts von der Drillachse r i.. Innenradius des Hohlzylinders r a.. Aussenradius des Hohlzylinders l.. Länge des Hohlzylinders Und somit für das Gesamtsystem: = + + = + + ( S) + m r = + m r Ges Zyl Drill Drill Zyl Zyl const Zyl Nach Gleichung (1) erhält man für unterschiedliche Abstände der Zylinder zur Mitte der Achse r 1 und r T = und: c * 1 Ges 1 T = (4) c * Ges Durch eliminieren von const ist es nun möglich, eine Gleichung für die Winkelrichtgröße c* herzuleiten, die nur noch von den direkt gemessenen Größen abhängt. c* r1 r = 8π mzyl (5) T1 T MTM.doc Seite 6 von 9 Stand:

7 Versuch 1:Massenträgheitsmoment 4. Versuchsdurchführung 4.1 Verdrahtung Verbinden Sie als erstes den +5V Ausgang der Lichtschranke mit der roten Sicherheitsbuchse des 5V Ausgangs des Power Supplys. Dann verbinden Sie entsprechend die beiden V Buchsen. Legen Sie eine Brücke von V zum Stecker der BNC-Buchse des Universal Counters und verbinden Sie zum Schluss noch den Signalausgang der Lichtschranke mit dem Signaleingang des Stecker an der BNC- Buchse. Der Reflexionslichttaster wird für die folgenden Messungen nach dem gleichen Prinzip wie die Lichtschranke angeschlossen. 4. Messtechnik: Bitte messen Sie alle Massen mit der Digitalwaage und tragen Sie die Werte in die dazugehörige Tabelle ein. Sie werden diese im weiteren Verlauf des Versuchs für Berechnungs- und Vergleichszwecke benötigen. 4.3 Hinweise zur Bestimmung der Schwingungsdauer: Eine Unterbrechung der Lichtschranke bzw. ein Signal am Lichttaster schaltet das Gate des Zählers ein oder aus. Da das Signal in der Ruhelage übergeben wird, wird immer die doppelte Frequenz gemessen. Diese sollte anschließend in die Schwingungsdauer T umgerechnet werden. Deshalb muss man beachten, dass: die gemessene Frequenz zu halbieren ist, um den eigentlichen Wert zu erhalten. Umrechnung in Schwingungsdauer T die Lichtschranke bzw. Lichttaster möglichst genau in die Gleichgewichtslage des Drehschwingers positioniert wird. der Lichtstrahl nur von einem dünnen Stäbchen oder im Falle des Sensors von einem kleinen Reflexionsblättchen durchbrochen werden sollte. Sie sollten die Schwingungsdauer mehrmals messen, d.h. den Körper mehrmals um die gleiche Amplitude auslenken und durch die Lichtschranke schwingen lassen ( Amplitude: ca. 9 nach links, RESET-Knopf drücken, erster Wert aufnehmen, wiederholen mit ca. 9 rechts und danach den Mittelwert zur Berechnung nehmen.) 4.4 Bestimmung der statischen Winkelrichtgröße c* Um die statische Winkelrichtgröße zu messen, wird der vorerst ohne die zwei Gewichte in die Halterung an der Drillachse eingesetzt. Dann lenkt man den um die Winkel φ = π/, π, 3π/, π aus der Gleichgewichtslage aus und misst mit Hilfe des Federkraftmessers die Tangentialkraft für die Verdrillung der Achse an jeweils zwei verschiedenen Radien r 1 und r. MTM.doc Seite 7 von 9 Stand:

8 Versuch 1:Massenträgheitsmoment 4.5 Dynamische Bestimmung der Winkelrichtgröße aus Drehschwingungen Man bestimmt zunächst die Schwingungsdauern des es mit den beiden Massen m z, die in symmetrischer Lage im Abstand r von der mitte befestigt sind. Danach misst man die Schwingungsdauern T 1 und T. Nun kann das c* der Feder zur Überprüfung von Versuch 4.4 mit Hilfe der Gleichung (4) ermittelt werden. c* r1 r = 8π mz (6) T1 T 4.6 Bestimmung Trägheitsmoment Zuerst bestimmt man das Trägheitsmoment des es indem man den Versuch ohne die zwei am befestigten Massen aufbaut. Man misst die Schwingungsdauer T und berechnet dann nach Gleichung (1) das Massenträgheitsmoment. T c * T = π = (7) c * Nun kann man mit Hilfe der Ergebnisse aus Versuch 4.5 das Massenträgheitsmoment des Federdrehschwingers ( + Gewichte) bestimmen (entweder mit T 1 oder T ). T = π c * Beachten Sie: c * T = = + * Zyl (S) [ + Drill ] Drill ist das Massenträgheitsmoment vom Achsbolzen bzw. Drehachse. Dieses wird hier bei der theoretischen Berechnung jedoch nicht extra berücksichtigt, da er mit einer Masse von 48g ein Trägheitsmoment von 4,3*1-6 kgm² =,5 % besitzt! In unserem Versuch wurde das Moment durch das gemessene T beim mit hineingerechnet. 4.7 Bestimmung Trägheitsmoment Scheibe Nach Bestimmung der Masse m und des Radius R der Schreibe wird nun das Trägheitsmoment einer Scheibe gemessen, indem man die Scheibe direkt auf der Drillachse befestigt und die Schwingungsdauer T misst. Da die Scheibe als sehr flacher Vollzylinder betrachtet werden kann nehmen wir hier die Gleichung: R Radius der Zylinders m Masse des Zylinders 1 mr = (8) MTM.doc Seite 8 von 9 Stand:

9 Versuch 1:Massenträgheitsmoment 4.8 Bestimmung Trägheitsmoment Vollzylinder Die Bestimmung des Massenträgheitsmoments des Zylinders erfolgt nach dem gleichen Prinzip wie in Versuch 4.7. Zur theoretischen Ermittlung des Trägheitsmoments nimmt man hier wiederum die Gleichung: R Radius der Zylinders m Masse des Zylinders 1 mr = (9) 4.9 Bestimmung Trägheitsmoment Kugel Bestimmung des Massenträgheitsmoments einer Kugel aus der Schwingungsdauer T und Vergleich mit dem theoretischen Wert: mr 5 Kugel = (1) 4.1 Versuch zum Satz von Steiner Nun werden die Schwingungsdauern der dünnen metallischen Lochscheibe für 5 verschiedene Drehachsen von der Mitte ab beginnend (d.h. 5 verschiedene Einspannstellen) gemessen. Man fängt mit der zentrischen Befestigung an und bestimmt damit das Trägheitsmoment für die Scheibe. Dann werden die Schwingungsdauern für die verschiedenen Abstände (a) des Schwerpunkts von der Drillachse gemessen und das Ergebnis mit dem Satz von Steiner verglichen: + ma = (11) Trägheitsmoment des Körpers bei Drehung um den Schwerpunkt a.abstand Drehpunkt zum Schwerpunkt 5. Arbeitsprogramm Finden Sie in der Excel-Datei MTM.xls 6. Literatur 1. Physik für Ingenieure Hering, Martin, Stohrer Springer Verlag. Technische Mechanik Mayr 3. Phywe Versuchsbeschreibung MTM.doc Seite 9 von 9 Stand:

Versuch dp : Drehpendel

Versuch dp : Drehpendel U N I V E R S I T Ä T R E G E N S B U R G Naturwissenschaftliche Fakultät II - Physik Anleitung zum Physikpraktikum für Chemiker Versuch dp : Drehpendel Inhaltsverzeichnis Inhaltsverzeichnis 1 Einführung

Mehr

M1 Maxwellsches Rad. 1. Grundlagen

M1 Maxwellsches Rad. 1. Grundlagen M1 Maxwellsches Rad Stoffgebiet: Translations- und Rotationsbewegung, Massenträgheitsmoment, physikalisches Pendel. Versuchsziel: Es ist das Massenträgheitsmoment eines Maxwellschen Rades auf zwei Arten

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Physikalisches A-Praktikum Versuch 3 Das Trägheitsmoment Praktikanten: Julius Strake Niklas Bölter Gruppe: 17 Betreuer: Hendrik Schmidt Durchgeführt: 10.07.2012 Unterschrift: Inhaltsverzeichnis 1 Einleitung

Mehr

Trägheitsmoment (TRÄ)

Trägheitsmoment (TRÄ) Physikalisches Praktikum Versuch: TRÄ 8.1.000 Trägheitsmoment (TRÄ) Manuel Staebel 3663 / Michael Wack 34088 1 Versuchsbeschreibung Auf Drehtellern, die mit Drillfedern ausgestattet sind, werden die zu

Mehr

Drehbewegungen. Lerninhalte

Drehbewegungen. Lerninhalte Physik Lerninhalte man informiere sich über: Winkelgeschwindigkeit, Winkelbeschleunigung Drehmoment, Drehimpuls, Drehimpulserhaltung Trägheitsmoment, Steiner scher Satz gleichmäßig beschleunigte Drehbewegung

Mehr

Laborversuche zur Physik 1 I - 7. Trägheitsmomente

Laborversuche zur Physik 1 I - 7. Trägheitsmomente FB Physik Laborversuche zur Physik 1 I - 7 Trägheitsmomente Reyher Trägheitsmomente Ziele Beobachtung von Drehschwingungen, Bestimmung von Trägheitsmomenten, Verifizierung und Anwendung des Steiner'schen

Mehr

Labor zur Vorlesung Physik

Labor zur Vorlesung Physik Labor zur Vorlesung Physik 1. Zur Vorbereitung Die folgenden Begriffe sollten Sie kennen und erklären können: Gravitationsgesetz, Gravitationswaage, gedämpfte Torsionsschwingung, Torsionsmoment, Drehmoment,

Mehr

Laborversuche zur Physik I. Versuch I-02: Trägheitsmomente

Laborversuche zur Physik I. Versuch I-02: Trägheitsmomente Laborversuche zur Physik I Versuch I-02: Trägheitsmomente Versuchsleiter: Autoren: Podlozhenov Kai Dinges Michael Beer Gruppe: 15 Versuchsdatum: 28. November 2005 Inhaltsverzeichnis 2 Aufgaben und Hinweise

Mehr

Gekoppelte Schwingung

Gekoppelte Schwingung Versuch: GS Fachrichtung Physik Physikalisches Grundpraktikum Erstellt: C. Blockwitz am 01. 07. 000 Bearbeitet: E. Hieckmann J. Kelling F. Lemke S. Majewsky i.a. Dr. Escher Aktualisiert: am 16. 09. 009

Mehr

Versuch P1-20 Pendel Vorbereitung

Versuch P1-20 Pendel Vorbereitung Versuch P1-0 Pendel Vorbereitung Gruppe Mo-19 Yannick Augenstein Versuchsdurchführung: 9. Januar 01 Inhaltsverzeichnis Aufgabe 1 1.1 Reduzierte Pendellänge............................. 1. Fallbeschleunigung

Mehr

S1 Bestimmung von Trägheitsmomenten

S1 Bestimmung von Trägheitsmomenten Christian Müller Jan Philipp Dietrich S1 Bestimmung von Trägheitsmomenten Versuch 1: a) Versuchserläuterung b) Messwerte c) Berechnung der Messunsicherheit ud u Versuch 2: a) Erläuterungen zum Versuchsaufbau

Mehr

4.9 Der starre Körper

4.9 Der starre Körper 4.9 Der starre Körper Unter einem starren Körper versteht man ein physikalische Modell von einem Körper der nicht verformbar ist. Es erfolgt eine Idealisierung durch die Annahme, das zwei beliebig Punkte

Mehr

Trägheitsmomente aus Drehschwingungen

Trägheitsmomente aus Drehschwingungen M0 Name: Trägheitsmomente aus Drehschwingungen Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer: Endtestat: Dieser Fragebogen muss von jedem Teilnehmer eigenständig

Mehr

Mechanische Energieerhaltung / Maxwellsches Rad TEP

Mechanische Energieerhaltung / Maxwellsches Rad TEP Verwandte Begriffe Maxwellsches Rad, Translationsenergie, Rotationsenergie, potentielle Energie, Trägheitsmoment, Winkelgeschwindigkeit, Winkelbeschleunigung, Momentangeschwindigkeit, Gyroskop. Prinzip

Mehr

Physikalisches Anfaengerpraktikum. Trägheitsmoment

Physikalisches Anfaengerpraktikum. Trägheitsmoment Physikalisches Anfaengerpraktikum Trägheitsmoment Ausarbeitung von Marcel Engelhardt & David Weisgerber (Gruppe 37) Montag, 1. März 005 email: Marcel.Engelhardt@mytum.de Weisgerber@mytum.de 1 1. Einleitung

Mehr

M 7 - Trägheitsmoment

M 7 - Trägheitsmoment 18..8 PHYSIKALISCHES PAKTIKU FÜ ANFÄNGE LGyGe ersuch: 7 - Trägheitsmoment Das Trägheitsmoment regelmäßiger Körper sollen gemessen werden. Literatur Gerthsen-Kneser-ogel: Physik; Kap.: Dynamik des starren

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Julian Merkert ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Julian Merkert (1999) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Das einfachste Modell, um einen Pendelversuch zu beschreiben,

Mehr

Fachhochschule Flensburg. Torsionsschwingungen

Fachhochschule Flensburg. Torsionsschwingungen Name : Fachhochschule Flensburg Fachbereich Technik Institut für Physik und Werkstoffe Name: Versuch-Nr: M5 Torsionsschwingungen Gliederung: Seite 1. Das Hookesche Gesetz für Torsion 1 1.1 Grundlagen der

Mehr

Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen

Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen Versuch M6 für Nebenfächler Trägheitsmoment und Drehschwingungen I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 Generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben

Mehr

Physikalisches Praktikum

Physikalisches Praktikum MI2AB Prof. Ruckelshausen Versuch 1.6: Bestimmung von Trägheitsmomenten mit dem Torsionspendel Gruppe 2, Mittwoch: Patrick Lipinski, Sebastian Schneider Patrick Lipinski, Sebastian Schneider Seite 1 von

Mehr

A5 Trägheitsmoment. Inhaltsverzeichnis. Physikpraktikum Version: 1.0

A5 Trägheitsmoment. Inhaltsverzeichnis. Physikpraktikum Version: 1.0 Tobias Krähling email: Homepage: 13.3.27 Version: 1. Stichworte: Literatur: rehmoment, rehimpuls, Trägheitsmoment, Berechnung von Trägheitsmomenten, ifferentialgleichung

Mehr

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar

Physikprotokoll: Massenträgheitsmoment. Issa Kenaan Torben Zech Martin Henning Abdurrahman Namdar Physikprotokoll: Massenträgheitsmoment Issa Kenaan 739039 Torben Zech 738845 Martin Henning 736150 Abdurrahman Namdar 739068 1. Juni 2006 1 Inhaltsverzeichnis 1 Vorbereitung zu Hause 3 2 Versuchsaufbau

Mehr

Physikalisches Pendel

Physikalisches Pendel Physikalisches Pendel Nach einer kurzen Einführung in die Theorie des physikalisch korrekten Pendels (ausgedehnte Masse) wurden die aus der Theorie gewonnenen Formeln in praktischen Messungen überprüft.

Mehr

Physikalisches Praktikum I

Physikalisches Praktikum I Fachbereich Physik Physikalisches Praktikum I Name: Bestimmung der Gravitationskonstanten mit der Gravitations-Drehwaage Matrikelnummer: Fachrichtung: Mitarbeiter/in: Assistent/in: Versuchsdatum: Gruppennummer:

Mehr

M,dM &,r 2 dm bzw. M &,r 2!dV (3)

M,dM &,r 2 dm bzw. M &,r 2!dV (3) - A8.1 - ersuch A 8: Trägheitsmoment und Steinerscher Satz 1. Literatur: Walcher, Praktikum der Physik Bergmann-Schaefer, Lehrbuch der Physik, Bd.I Gerthsen-Kneser-ogel, Physik Stichworte: 2. Grundlagen

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1

Naturwissenschaftliches Praktikum. Rotation. Versuch 1.1 Naturwissenschaftliches Praktikum Rotation Versuch 1.1 Inhaltsverzeichnis 1 Versuchsziel 3 2 Grundlagen 3 2.1 Messprinzip............................. 3 2.2 Energiesatz............................. 3 2.3

Mehr

Aus der Schwingungsdauer eines physikalischen Pendels.

Aus der Schwingungsdauer eines physikalischen Pendels. 2.4 Trägheitsmoment aus Winkelbeschleunigung 69 2.4. Trägheitsmoment aus Winkelbeschleunigung Ziel Bestimmung des Trägheitsmomentes eines Rades nach zwei Methoden: Aus der Winkelbeschleunigung, die es

Mehr

Trägheitsmoment - Steinerscher Satz

Trägheitsmoment - Steinerscher Satz Trägheitsmoment - Steinerscher Satz Gruppe 4: Daniela Poppinga, Jan Christoph Bernack Betreuerin: Natalia Podlaszewski 13. Januar 2009 1 Inhaltsverzeichnis 1 Theorieteil 3 1.1 Frage 2................................

Mehr

Versuch 3: Das Trägheitsmoment

Versuch 3: Das Trägheitsmoment Versuch 3: Das Trägheitsmoment Inhaltsverzeichnis 1 Einleitung 3 2 Theorie 3 2.1 Trägheitsmoment und Satz von Steiner.................... 3 2.2 Kinematik der Rotationsbewegung...................... 3 3

Mehr

1.2 Schwingungen von gekoppelten Pendeln

1.2 Schwingungen von gekoppelten Pendeln 0 1. Schwingungen von gekoppelten Pendeln Aufgaben In diesem Experiment werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken

Mehr

Vektorrechnung in der Physik und Drehbewegungen

Vektorrechnung in der Physik und Drehbewegungen Vektorrechnung in der Physik und Drehbewegungen 26. November 2008 Vektoren Vektoren sind bestimmt durch a) Betrag und b) Richtung Beispiel Darstellung in 3 Dimensionen: x k = y z Vektor in kartesischen

Mehr

Physikalisches Grundlagenpraktikum Versuch Massenträgheitsmoment

Physikalisches Grundlagenpraktikum Versuch Massenträgheitsmoment Physikalisches Grundlagenpraktikum Versuch Name:... Matrikelnummer:... Gruppe:... Antestat Datum bestanden nicht Unterschrift Prüfer bestanden Termin Nachholtermin 1. Protokollabgabe Datum Unterschrift

Mehr

4.3 Schwingende Systeme

4.3 Schwingende Systeme Dieter Suter - 217 - Physik B3 4.3 Schwingende Systeme Schwingungen erhält man immer dann, wenn die Kraft der Auslenkung entgegengerichtet ist. Ist sie außerdem proportional zur Kraft, so erhält man eine

Mehr

Themengebiet: Mechanik. Tabelle 1: Gegenüberstellung der sich entsprechenden Größen bei Translation und Rotation

Themengebiet: Mechanik. Tabelle 1: Gegenüberstellung der sich entsprechenden Größen bei Translation und Rotation Seite 1 1 Literatur Themengebiet: Mechanik W. Kranzer, So interessant ist Physik, Köln, 1982, S. 63-65, 331-335 R. L. Page, The Physics of Human Movement, Exeter, 1978, S. 45-56 2 Grundlagen 2.1, Drehmoment,

Mehr

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel

0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1 Versuch 4C: Bestimmung der Gravitationskonstante mit dem physikalischen Pendel 0.1.1 Aufgabenstellung Man bestimme die Fallbeschleunigung mittels eines physikalischen Pendels und berechne hieraus die

Mehr

Versuch M6 für Physiker Trägheitsmoment und Drehschwingungen

Versuch M6 für Physiker Trägheitsmoment und Drehschwingungen Versuch M6 für Physiker Trägheitsmoment und Drehschwingungen I. Physikalisches Institut, Raum HS126 Stand: 21. Oktober 2015 Generelle Bemerkungen bitte Versuchsaufbau (rechts, mitte, links) angeben bitte

Mehr

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum

HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum HAW Hamburg Fakultät Life Sciences - Physiklabor Physikalisches Praktikum Bestimmung von Massenträgheitsmomenten I. Allgemeines Zur Beschreibung der Drehbewegung starrer Körper um eine feste Achse führt

Mehr

Experimentalphysik für ET. Aufgabensammlung

Experimentalphysik für ET. Aufgabensammlung Experimentalphysik für ET Aufgabensammlung 1. Drehbewegung Ein dünner Stab der Masse m = 5 kg mit der Querschnittsfläche A und der Länge L = 25 cm dreht sich um eine Achse durch seinen Schwerpunkt (siehe

Mehr

PP Physikalisches Pendel

PP Physikalisches Pendel PP Physikalisches Pendel Blockpraktikum Frühjahr 2007 (Gruppe 2) 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Ungedämpftes physikalisches Pendel.......... 2 2.2 Dämpfung

Mehr

Abbildung 1.1: Versuchsaufbau für die Messung von Trägheitsmomenten.

Abbildung 1.1: Versuchsaufbau für die Messung von Trägheitsmomenten. 24 1.3 Trägheitsmomente Abbildung 1.1: Versuchsaufbau für die Messung von Trägheitsmomenten. Physikalische Grundlagen Definition des Trägheitsmomentes, Satz von Steiner, Direktionsmoment, Schwingungen

Mehr

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text)

5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 203. Abbildung 5.12: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4. KINETISCHE ENERGIE EINES STARREN KÖRPERS 03 ρ α r α R Abbildung 5.1: Koordinaten zur Berechnung der kinetischen Energie (siehe Diskussion im Text) 5.4 Kinetische Energie eines Starren Körpers In diesem

Mehr

Massenträgheitsmomente homogener Körper

Massenträgheitsmomente homogener Körper http://www.youtube.com/watch?v=naocmb7jsxe&feature=playlist&p=d30d6966531d5daf&playnext=1&playnext_from=pl&index=8 Massenträgheitsmomente homogener Körper 1 Ma 1 Lubov Vassilevskaya Drehbewegung um c eine

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 18. November 2016 Daniel Bick Physik für Biologen und Zahnmediziner 18. November 2016 1 / 27 Stoß auf Luftkissenschiene

Mehr

Physik für Biologen und Zahnmediziner

Physik für Biologen und Zahnmediziner Physik für Biologen und Zahnmediziner Kapitel 6: Drehimpuls, Verformung Dr. Daniel Bick 24. November 2017 Daniel Bick Physik für Biologen und Zahnmediziner 24. November 2017 1 / 28 Versuch: Newton Pendel

Mehr

6 Mechanik des Starren Körpers

6 Mechanik des Starren Körpers 6 Mechanik des Starren Körpers Ein Starrer Körper läßt sich als System von N Massenpunkten m (mit = 1,...,N) auffassen, die durch starre, masselose Stangen miteinander verbunden sind. Dabei ist N M :=

Mehr

Versuch 4 - Trägheitsmoment und Drehimpuls

Versuch 4 - Trägheitsmoment und Drehimpuls UNIVERSITÄT REGENSBURG Naturwissenschaftliche Fakultät II - Physik Anleitung zum Anfängerpraktikum A1 Versuch 4 - Trägheitsmoment und Drehimpuls 23. überarbeitete Auflage 2009 Dr. Stephan Giglberger Prof.

Mehr

3.2 Das physikalische Pendel (Körperpendel)

3.2 Das physikalische Pendel (Körperpendel) 18 3 Pendelschwingungen 32 Das physikalische Pendel (Körperpendel) Ein starrer Körper (Masse m, Schwerpunkt S, Massenträgheitsmoment J 0 ) ist um eine horizontale Achse durch 0 frei drehbar gelagert (Bild

Mehr

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18)

Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Universität Siegen Wintersemester 2017/18 Naturwissenschaftlich-Technische Fakultät Department Physik Klausur zur Vorlesung Physik I für Chemiker (WS 2017/18) Datum: Dienstag, 13.02.2017, 10:00-12:00 Prof.

Mehr

Physik 1 für Chemiker und Biologen 7. Vorlesung

Physik 1 für Chemiker und Biologen 7. Vorlesung Physik 1 für Chemiker und Biologen 7. Vorlesung 04.12.2017 https://xkcd.com/1438/ Prof. Dr. Jan Lipfert Jan.Lipfert@lmu.de Heute: - Wiederholung: Impuls, Stöße - Raketengleichung - Drehbewegungen Wiederholungs-/Einstiegsfrage:

Mehr

Resonanz Versuchsvorbereitung

Resonanz Versuchsvorbereitung Versuche P1-1,, Resonanz Versuchsvorbereitung Thomas Keck, Gruppe: Mo-3 Karlsruhe Institut für Technologie, Bachelor Physik Versuchstag: 0.1.010 1 1 Vorwort Im Praktikumsversuch,,Resonanz geht es um freie

Mehr

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M.

Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Physikalisches Praktikum I Bachelor Physikalische Technik: Lasertechnik, Biomedizintechnik Prof. Dr. H.-Ch. Mertins, MSc. M. Gilbert M04 Energieumwandlung am Maxwellrad (Pr_PhI_M04_Maxwellrad_6, 14.7.014)

Mehr

Versuch P2-71,74: Kreisel. Auswertung. Von Jan Oertlin und Ingo Medebach. 25. Mai Drehimpulserhaltung 2. 2 Freie Achse 2

Versuch P2-71,74: Kreisel. Auswertung. Von Jan Oertlin und Ingo Medebach. 25. Mai Drehimpulserhaltung 2. 2 Freie Achse 2 Versuch P2-71,74: Kreisel Auswertung Von Jan Oertlin und Ingo Medebach 25. Mai 2010 Inhaltsverzeichnis 1 Drehimpulserhaltung 2 2 Freie Achse 2 3 Kräftefreie Kreisel 2 4 Dämpfung des Kreisels 3 5 Kreisel

Mehr

TRÄ TRÄGHEITSMOMENT 67

TRÄ TRÄGHEITSMOMENT 67 TRÄGHEITSMOMENT 67 TRÄGHEITSMOMENT Das Trägheitsmoment ist eine physikalische Größe, der bei Drehbewegungen von Körpern eine wesentliche Bedeutung zukommt. Es entspricht der Masse bei einer geradlinigen

Mehr

Unregelmäßig geformte Scheibe Best.- Nr. MD02256

Unregelmäßig geformte Scheibe Best.- Nr. MD02256 Unregelmäßig geformte Scheibe Best.- Nr. MD02256 Momentenlehre Ziel Die unregelmäßig geformte Scheibe wurde gewählt, um den Statik-Kurs zu vervollständigen und um einige praktische Versuche durchzuführen.

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M1) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

Labor für Technische Akustik

Labor für Technische Akustik Labor für Technische Akustik Bestimmung der Wellenlänge von Schallwellen mit einer Abbildung 1: Experimenteller Aufbau zur Bestimmung der Wellenlänge von Schallwellen mit einer. 1. Versuchsziel Wenn sich

Mehr

Versuch M1: Feder- und Torsionsschwingungen

Versuch M1: Feder- und Torsionsschwingungen Versuch M1: Feder- und Torsionsschwingungen Aufgaben: Federschwingungen: 1 Bestimmen Sie durch Messung der Dehnung in Abhängigkeit von der Belastung die Richtgröße D (Federkonstante k) von zwei Schraubenfedern

Mehr

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum

Rotation. Versuch: Inhaltsverzeichnis. Fachrichtung Physik. Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010. Physikalisches Grundpraktikum Fachrichtung Physik Physikalisches Grundpraktikum Versuch: RO Erstellt: U. Escher A. Schwab Aktualisiert: am 29. 03. 2010 Rotation Inhaltsverzeichnis 1 Aufgabenstellung 2 2 Allgemeine Grundlagen 2 2.1

Mehr

Physikalisches Grundpraktikum. Versuch 3. Das Trägheitsmoment. Marten Düvel

Physikalisches Grundpraktikum. Versuch 3. Das Trägheitsmoment. Marten Düvel Physikalisches Grundpraktikum Versuch 3 Das Trägheitsmoment Praktikanten: Alexander Osterkorn Tobias Wegener E-Mail: a.osterkorn@stud.uni-goettingen.de tobias.wegener@stud.uni-goettingen.de Tutor: Gruppe:

Mehr

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze

Versuch P1-15 Pendel Auswertung. Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuch P1-15 Pendel Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze 3.1.11 1 Inhaltsverzeichnis 1 Reversionspendel 3 1.0 Eichmessung................................... 3 1.1 Reduzierte Pendellänge.............................

Mehr

2.3.5 Dynamik der Drehbewegung

2.3.5 Dynamik der Drehbewegung 2.3.5 Dynamik der Drehbewegung 2.3.5.1 Drehimpuls Drehimpuls Betrachte einen Massepunkt m mit Geschwindigkeit v auf irgendeiner Bahn (es muss keine Kreisbahn sein); dabei ist r der Ort der Massepunkts,

Mehr

2. Physikalisches Pendel

2. Physikalisches Pendel 2. Physikalisches Pendel Ein physikalisches Pendel besteht aus einem starren Körper, der um eine Achse drehbar gelagert ist. A L S φ S z G Prof. Dr. Wandinger 6. Schwingungen Dynamik 2 6.2-1 2.1 Bewegungsgleichung

Mehr

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016

Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Karlsruher Institut für Technologie Institut für Theorie der Kondensierten Materie Klassische Theoretische Physik II (Theorie B) Sommersemester 2016 Prof. Dr. Alexander Mirlin Musterlösung: Blatt 12. PD

Mehr

5.3 Drehimpuls und Drehmoment im Experiment

5.3 Drehimpuls und Drehmoment im Experiment 5.3. DREHIMPULS UND DREHMOMENT IM EXPERIMENT 197 5.3 Drehimpuls und Drehmoment im Experiment Wir besprechen nun einige Experimente zum Thema Drehimpuls und Drehmoment. Wir betrachten ein System von N Massenpunkten,

Mehr

Trägheitsmoment, Steiner scher Satz. Torsionspendel zum Nachweis des Steiner schen Satzes Version vom 6. September 2012

Trägheitsmoment, Steiner scher Satz. Torsionspendel zum Nachweis des Steiner schen Satzes Version vom 6. September 2012 Trägheitsmoment, Steiner scher Satz Torsionspendel zum Nachweis des Steiner schen Satzes Version vom 6. September 01 Inhaltsverzeichnis 1 Drehscheiben-Torsionspendel 1 1.1 Grundlagen...................................

Mehr

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers.

Schwingungen. a. Wie lautet die Gleichung für die Position der Masse als Funktion der Zeit? b. Die höchste Geschwindigkeit des Körpers. Schwingungen Aufgabe 1 Sie finden im Labor eine Feder. Wenn Sie ein Gewicht von 100g daran hängen, dehnt die Feder sich um 10cm. Dann ziehen Sie das Gewicht 6cm herunter von seiner Gleichgewichtsposition

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Seite 1 Theoretische Physik: Mechanik Blatt 4 Fakultät für Physik Technische Universität München 27.09.2017 Inhaltsverzeichnis 1 Trägheitsmoment & Satz von Steiner 2 2 Trägheitstensor einer dünnen Scheibe

Mehr

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel

Anfänger-Praktikum I WS 11/12. Michael Seidling Timo Raab. Praktikumsbericht: Gekoppelte Pendel Anfänger-Praktikum I WS 11/1 Michael Seidling Timo Raab Praktikumsbericht: Gekoppelte Pendel 1 Inhaltsverzeichnis Inhaltsverzeichnis I. Einführung 4 II. Grundlagen 4 1. Harmonische Schwingung 4. Gekoppelte

Mehr

Übungsaufgaben Physik II

Übungsaufgaben Physik II Fachhochschule Dortmund Blatt 1 1. Ein Auto hat leer die Masse 740 kg. Eine Nutzlast von 300 kg senkt den Wagen in den Radfedern um 6 cm ab. Welche Periodendauer hat die vertikale Schwingung, die der Wagen

Mehr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr

Eine Kreis- oder Rotationsbewegung entsteht, wenn ein. M = Fr Dynamik der ebenen Kreisbewegung Eine Kreis- oder Rotationsbewegung entsteht, wenn ein Drehmoment:: M = Fr um den Aufhängungspunkt des Kraftarms r (von der Drehachse) wirkt; die Einheit des Drehmoments

Mehr

Probeklausur zur Theoretischen Physik I: Mechanik

Probeklausur zur Theoretischen Physik I: Mechanik Prof. Dr. H. Friedrich Physik-Department T3a Technische Universität München Probeklausur zur Theoretischen Physik I: Mechanik Montag, 2.7.29 Hörsaal 1 1:15-11:5 Aufgabe 1 (8 Punkte) Geben Sie möglichst

Mehr

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich

Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester Physik-Institut der Universität Zürich Anleitung zum Physikpraktikum für Oberstufenlehrpersonen Einführungsversuch (EV) Herbstsemester 2017 Physik-Institut der Universität Zürich Inhaltsverzeichnis 1 Einführungsversuch (EV) 11 11 Einleitung

Mehr

Kraft- und Drehmomentsensoren von CLA

Kraft- und Drehmomentsensoren von CLA Kraft- und Drehmomentsensoren von CLA SC-002 LC-01 LC-10 TSF-000 TSF-05 TSF-1 TSF-100 Mikro-Kraftsensor Kraftsensor Mikro-Drehmomentsensor Drehmomentsensor Tel. +41 32 421 44 90, Fax +41 32 421 44 91,

Mehr

(a) In welcher Zeit nach einem Nulldurchgang ist der Betrag der Auslenkung

(a) In welcher Zeit nach einem Nulldurchgang ist der Betrag der Auslenkung Schwingungen SW1: 2 Ein Körper bewegt sich harmonisch. Bei einer Auslenkung aus der Ruhelage um x = 7,5 mm erfährt er eine Beschleunigung von a = 1,85 m s 2. Wie viele Schwingungen pro Sekunde führt er

Mehr

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte)

Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 08/09 K 2. Aufgabe 1 (5 Punkte) Institut für Technische und Num. Mechanik Technische Mechanik III Prof. Dr.-Ing. Prof. E. h. P. Eberhard WS 8/9 K 6. Februar 9 Klausur in Technische Mechanik III Nachname Vorname Aufgabe (5 Punkte) Der

Mehr

120 Gekoppelte Pendel

120 Gekoppelte Pendel 120 Gekoppelte Pendel 1. Aufgaben 1.1 Messen Sie die Schwingungsdauer zweier gekoppelter Pendel bei gleichsinniger und gegensinniger Schwingung. 1.2 Messen Sie die Schwingungs- und Schwebungsdauer bei

Mehr

Robert-Bosch-Gymnasium

Robert-Bosch-Gymnasium Seite - 1 - Gedämpfte, Resonanz am Drehpendel 1. Theoretische und technische Grundlagen Ein flaches Kupferspeichenrad ist in der Mitte leicht drehbar gelagert; die Gleichgewichtslage wird dabei durch zwei

Mehr

3. Versuch M2 - Trägheitsmomente. zum Physikalischen Praktikum

3. Versuch M2 - Trägheitsmomente. zum Physikalischen Praktikum HUMBOLDT-UNIVERSITÄT ZU BERLIN INSTITUT FÜR PHYSIK 3. Versuch M2 - Trägheitsmomente zum Physikalischen Praktikum Bearbeitet von: Andreas Prang 504337 Jens Pöthig Abgabe in der Übung am 10.05.2005 Anlagen:

Mehr

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund

Fadenpendel (M1) Ziel des Versuches. Theoretischer Hintergrund Fadenpendel M) Ziel des Versuches Der Aufbau dieses Versuches ist denkbar einfach: eine Kugel hängt an einem Faden. Der Zusammenhang zwischen der Fadenlänge und der Schwingungsdauer ist nicht schwer zu

Mehr

A7 Physikalisches Pendel

A7 Physikalisches Pendel Tobias Krähling email: Homepage: 21.03.2007 Version: 1.0 Stichworte: Literatur: Kräfte und Drehmomente am Pendel, Trägheitsmoment, Schwingungsdifferentialgleichung,

Mehr

Versuch 3 Das Trägheitsmoment

Versuch 3 Das Trägheitsmoment Grundpraktikum der Fakultät für Physik Georg August Universität Göttingen ersuch 3 Das Trägheitsmoment Praktikant: Joscha Knolle Ole Schumann E-Mail: joscha@htilde.de Durchgeführt am: 8.6.22 Abgabe: 25.6.22

Mehr

Auswertung Elastizität Versuch P1-11. Stefanie Falk und Corinna Roy

Auswertung Elastizität Versuch P1-11. Stefanie Falk und Corinna Roy Auswertung Elastizität Versuch P1-11 Stefanie Falk und Corinna Roy 1. Bestimmung von E durch Balkenbiegung Mit dem in der Prinzipskizze dargestellten Aufbau maßen wir für die Materialien Messing, Aluminium,

Mehr

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1

AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN 1. AUFGABE 1 AUSWERTUNG: SCHWINGUNGEN, RESONANZVERHALTEN TOBIAS FREY & FREYA GNAM, GRUPPE 6, DONNERSTAG 1. AUFGABE 1 An das Winkel-Zeit-Diagramm (Abb. 1) haben wir eine einhüllende e-funktion der Form e = Ae βt angelegt.

Mehr

Übungen zum Ferienkurs Theoretische Mechanik

Übungen zum Ferienkurs Theoretische Mechanik Übungen zum Ferienkurs Theoretische Mechanik Starre Körper Übungen, die mit einem Stern markiert sind, werden als besonders wichtig erachtet. 3.1 Trägheitstensor eines homogenen Quaders Bestimmen Sie den

Mehr

M13. Gekoppeltes Pendel

M13. Gekoppeltes Pendel M3 Gekoppeltes Pendel In diesem Versuch werden die Schwingungen von zwei Pendeln untersucht, die durch eine Feder miteinander gekoppelt sind. Für verschiedene Kopplungsstärken werden die Schwingungsdauern

Mehr

Theoretische Physik: Mechanik

Theoretische Physik: Mechanik Ferienkurs Theoretische Physik: Mechanik Blatt 4 - Lösung Technische Universität München 1 Fakultät für Physik 1 Zwei Kugeln und der Satz von Steiner Nehmen Sie zwei Kugeln mit identischem Radius R und

Mehr

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1

2.1 Kinematik 2.2 Momentensatz 2.3 Arbeit und Energie. 2. Kreisbewegung. Prof. Dr. Wandinger 3. Kinematik und Kinetik TM 3.2-1 2.1 inematik 2.2 Momentensatz 2.3 Arbeit und Energie 2. reisbewegung Prof. Dr. Wandinger 3. inematik und inetik TM 3.2-1 2.1 inematik Bahngeschwindigkeit und Winkelgeschwindigkeit: Für den auf einer reisbahn

Mehr

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( )

Pendel. Versuch: P Vorbereitung - Inhaltsverzeichnis. Physikalisches Anfängerpraktikum 1 Wintersemester 2005/06 Jens Küchenmeister ( ) Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 005/06 Jens Küchenmeister (153810) Versuch: P1-0 Pendel - Vorbereitung - Vorbemerkung Da die Schwingung sowohl in der Natur als auch in der

Mehr

Trägheitsmomente starrer Körper

Trägheitsmomente starrer Körper Trägheitsmomente starrer Körper Mit Hilfe von Drehschwingungen sollen für einen Würfel und einen Quader die Trägheitsmomente für verschiedene Drehachsen durch den Schwerpunkt gemessen werden. Das zugehörige

Mehr

Elastizität und Torsion

Elastizität und Torsion INSTITUT FÜR ANGEWANDTE PHYSIK Physikalisches Praktikum für Studierende der Ingenieurswissenschaften Universität Hamburg, Jungiusstraße 11 Elastizität und Torsion 1 Einleitung Ein Flachstab, der an den

Mehr

Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch

Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch PeP Vom Kerzenlicht zum Laser Versuchsanleitung Versuch 3: Messung der Lichtgeschwindigkeit Messung der Lichtgeschwindigkeit mit dem Foucault schen Drehspiegelversuch Theoretische Grundlagen: Drehbewegungen

Mehr

Physik 1 für Ingenieure

Physik 1 für Ingenieure Physik 1 für Ingenieure Othmar Marti Experimentelle Physik Universität Ulm Othmar.Marti@Physik.Uni-Ulm.de Skript: http://wwwex.physik.uni-ulm.de/lehre/physing1 Übungsblätter und Lösungen: http://wwwex.physik.uni-ulm.de/lehre/physing1/ueb/ue#

Mehr

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei

Anstelle der Geschwindigkeit v tritt die Winkelgeschwindigkeit ω, wobei Inhalt 1 9 Dynamik der Drehbewegung 9.1 Rotation eines Massenpunktes um eine feste Achse 9. Arbeit und Leistung bei der Drehbewegung 9.3 Erhaltungssätze 9.4 Übergang vom Massenpunkt zum starren Körper

Mehr

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den

Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch. Münster, den M1 Pendel Versuchsprotokoll von Thomas Bauer, Patrick Fritzsch Münster, den 15.01.000 INHALTSVERZEICHNIS 1. Einleitung. Theoretische Grundlagen.1 Das mathematische Pendel. Das Federpendel.3 Parallel- und

Mehr

5. Mechanische Schwingungen und Wellen. 5.1 Mechanische Schwingungen

5. Mechanische Schwingungen und Wellen. 5.1 Mechanische Schwingungen 5. Mechanische Schwingungen und Wellen Der Themenbereich mechanische Schwingungen und Wellen ist ein Teilbereich der klassischen Mechanik, der sich mit den physikalischen Eigenschaften von Wellen und den

Mehr

4.5 Gekoppelte LC-Schwingkreise

4.5 Gekoppelte LC-Schwingkreise 4.5. GEKOPPELTE LC-SCHWINGKEISE 27 4.5 Gekoppelte LC-Schwingkreise 4.5. Versuchsbeschreibung Ein elektrischer Schwingkreis kann induktiv mit einem zweiten erregten Schwingkreis 2 koppeln. Der Kreis wird

Mehr

IM3. Modul Mechanik. Maxwell sches Rad

IM3. Modul Mechanik. Maxwell sches Rad IM3 Modul Mechanik Maxwell sches Rad In dem vorliegenden Versuch soll die Energieerhaltung anhand des Maxwell schen Rades untersucht werden. Das Maxwell sche Rad ist ein Metallrad mit grossem Trägheitsmoment,

Mehr

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND.

BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND. Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTOMWIDESTANDES IN EINEM STOMKEIS MIT IN- DUKTIVEM UND OHMSCHEM WIDESTAND. Bestimmung von Amplitude und Phase des

Mehr