Lineare Abbildungen - I

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Lineare Abbildungen - I"

Transkript

1 Lineare Abbildungen - I Definition. Seien V und W K-Vektorräume (über demselben K). Eine Abbildung F : V W heißt K-linear, wenn L1) F (v + w) = F (v) + F (w) v, w V L2) F (λv) = λf (v) v V, λ K. Somit ist eine lineare Abbildung verträglich mit den Vektorraumstrukturen. Man sieht leicht, dass die Bedingungen L1) und L2) gleichbedeutend sind mit L) F (λv + µw) = λf (v) + µf (w) v, w V, λ, µ K Mittels vollständiger Induktion kann man dann zeigen, dass aus der Linearität von F : V W folgt, dass F (λ 1 v 1 + λ 2 v λ n v n ) = λ 1 F (v 1 ) + λ 2 F (v 2 ) λ n F (v n ) gilt für v 1,..., v n V und λ 1,..., λ n K. In anderen Worten: eine lineare Abbildung führt eine Linearkombination von Vektoren in V in die entsprechende Linearkombination der Bildvektoren über. Grundlegende Eigenschafen. Sei F : V W linear. F (0) = 0, F (v w) = F (v) F (w) v, w V Beweis: Wähle v V. Wegen 0 = 0 v gilt dann F (0) = F (0 v) = 0 F (v) = 0. Weiters ist F (v w) = F (v + ( 1)w) = F (v) + ( 1)F (w) = F (v) F (w). (v i ) linear abhängig in V (F (v i )) linear abhängig in W Beweis: folgt sofort aus λ 1 v i λ k v ik = 0 λ 1 F (v i1 ) λ k F (v ik ) = F (0) = 0. 1

2 (F (v i )) linear unabhängig in W (v i ) linear unabhängig in V Beweis: folgt sofort aus der vorigen Aussage. V V F (V ) W Beweis: Seien w 1, w 2 F (V ) und λ 1, λ 2 K. Dann existieren v 1, v 2 V mit F (v 1 ) = w 1 und F (v 2 ) = w 2. Nun gilt λ 1 w 1 + λ 2 w 2 = λ 1 F (v 1 ) + λ 2 F (v 2 ) = F (λ 1 v 1 + λ 2 v 2 ) F (V ), weil λ 1 v 1 + λ 2 v 2 V. W W F 1 (W ) V Beweis: Seien v 1, v 2 F 1 (W ) und λ 1, λ 2 K. Dann gilt F (v 1 ), F (v 2 ) W und damit auch F (λ 1 v 1 + λ 2 v 2 ) = λ 1 F (v 1 ) + λ 2 F (v 2 ) W. Dies bedeutet aber, dass λ 1 v 1 + λ 2 v 2 F 1 (W ). dimf (V ) dimv Beweis: folgt unmittelbar aus der dritten Aussage. Man beachte weiters, dass aus der linearen Unabhängigkeit von (v i ) i.a. nicht folgt, dass (F (v i )) linear unabhängig ist (siehe Nullabbildung). Beispiele. 1) Die Nullabbildung F : V W mit F (v) = 0 v V ist linear. 2) Die identische Abbildung F : V V mit F (v) = v v V ist linear. 3) Sei λ K fest. Dann ist die Abbildung F : V V mit F (v) = λ v linear. 4) Sei X eine beliebige Menge, V = Abb(X, R) und ϕ : X X eine beliebige Abbildung. Dann ist F : V V mit F (f) = f ϕ linear. 5) Die Abbildung D(R) Abb(R, R) mit f f ist linear. 2

3 6) Für festes x 0 R ist die Abbildung Abb(R, R) R mit f f(x 0 ) linear. Eine Schreibweise. : Für v = (v 1,..., v n ), w = (w 1,..., w n ) K n wir v, w = v 1 w 1 + v 2 w v n w n = n v j w j K Dann sind offenbar folgende Eigenschaften erfüllt: v, 0 = 0, v, w = w, v v, w K n v + v, w = v, w + v, w λv, w = v, λw = λ v, w v, v, w K n v, w K n, λ K setzen Mit dieser Notation können nun folgende wichtige Beispiele für lineare Abbildungen angegeben werden. 1) Für jedes feste w K n ist die Abbildung F : K n K mit F (v) = v, w = n v j w j linear. 2) Sei A M(m n; K). Wir wollen damit eine Abbildung F : K n K m definieren. Für v = (x 1,..., x n ) K n sei F (v) = ( n n a 1j x j,..., a mj x j ) = ( a 1, v, a 2, v,..., a m, v ) wobei a 1, a 2,..., a m die Zeilenvektoren von A bezeichnen. Dann ist F : K n K m linear und somit kann jeder m n Matrix auf natürliche Weise eine lineare Abbildung F : K n K m zugeordnet werden! F (v + v ) = ( a 1, v + v, a 2, v + v,..., a m, v + v ) = ( a 1, v + a 1, v, a 2, v + a 2, v,..., a m, v + a m, v ) = ( a 1, v, a 2, v,..., a m, v ) + ( a 1, v, a 2, v,..., a m, v ) = F (v) + F (v ) F (λv) = ( a 1, λv, a 2, λv,..., a m, λv ) = (λ a 1, v, λ a 2, v,..., λ a m, v ) = λ( a 1, v, a 2, v,..., a m, v ) = λf (v) 3

4 3) Sei nun F : K n K m linear und (e 1, e 2,..., e n ) die kanonische Basis von K n. Für j = 1,.., n sei F (e j ) = (a 1j, a 2j,..., a mj ) und bilde damit eine m n- Matrix A, wobei offenbar die j-te Spalte von A gleich F (e j ) ist. Damit kann einer linearen Abbildung F : K n K m eine m n Matrix A zugeordnet werden. auf natürliche Weise Für v = (x 1,..., x n ) K n gilt v = x 1 e x n e n und damit F (v) = x 1 F (e 1 ) x n F (e n ) = x 1 (a 11,..., a m1 ) + x 2 (a 12,..., a m2 ) x n (a 1n,..., a mn ) = ( n n n a 1j x j, a 2j x j,..., a mj x j ) Dies bedeutet aber, dass die dieser Matrix A nach 2) zugeordnete lineare Abbildung genau jene Abbildung ist, von der wir gestartet sind! Zur Bestimmung von linearen Abbildungen F : V W ist folgende Aussage von Bedeutung, welche besagt, dass eine lineare Abbildung bereits dadurch eindeutig bestimmt ist, wenn die Bilder von Basisvektoren bekannt sind. Satz. Seien V und W K-Vektorräume, (v i ) eine Basis in V und (w i ) eine beliebige Familie in W. mit der Eigen- Dann gibt es genau eine lineare Abbildung F : V W schaft F (v i ) = w i i I. Beweis. (Verwende die Schreibweise v = λ i v i ) i) Eindeutigkeit: Seien F, G : V W mit F (v i ) = G(v i ) = w i i I. Für v = λ i v i gilt dann G( λ i v i ) = G(v). Also ist F = G. F (v) = F ( λ i v i ) = λ i F (v i ) = λ i w i = λ i G(v i ) = 4

5 ii) Existenz: Sei v V. Dann ist v = λ i v i. Definiere nun F (v) = λ i w i. Für v, v V seien v = λ i v i und v = µ i v i. Dann ist v+v = (λ i + µ i )v i und damit F (v+v ) = F ( (λ i + µ i )v i ) = (λ i + µ i )w i = λ i w i + µ i w i = F (v) + F (v ). Analog zeigt man, dass F (λv) = λf (v). F ist somit linear und hat offenbar die Eigenschaft, dass F (v i ) = w i alle i I. für Bemerkung. Ist dimv = n und (v 1, v 2,..., v n ) eine Basis von V, (w 1, w 2,..., w n ) eine beliebige Familie aus W, dann gilt für v V mit v = n λ i v i damit F (v) = n λ i w i. i=1 i=1 Bemerkung. Unter den Voraussetzungen des vorigen Satzes gilt weiters a) F (V ) = Span(w i ) b) F ist injektiv (w i ) ist linear unabhängig Beweis. zu a) : Offenbar ist F (V ) Span(w i ). Sei nun w Span(w i ), etwa w = λ i w i. Setze v = λ i v i V. Dann ist F (v) = w, also ist auch Span(w i ) F (V ) und damit F (V ) = Span(w i ). zu b) : : Sei λ 1 w i λ r w ir = 0. Setze v = λ 1 v i λ r v ir. Dann ist F (v) = 0. Weil F injektiv ist und bereits F (0) = 0 ist, muß v = 0 sein. Weil (v i1,..., v ir ) linear unabhängig ist, muß λ 1 =... = λ r = 0 sein. Also ist (w i ) linear unabhängig. : Sei F (v) = 0 und v = λ 1 v i λ r v ir. Dann ist λ 1 w i λ r w ir = 0, und laut Voraussetzung folgt damit λ 1 =... = λ r = 0. Somit 5

6 gilt v = 0. Ist nun F (v) = F (v ), dann F (v v ) = 0 und somit v v = 0 bzw. v = v. Dies heißt, dass F injektiv ist. Beispiel. Sei V = W = R 2. v 1 = (1, 1), v 2 = (0, 1) bilden eine Basis von V. Sei w 1 = (2, 3), w 2 = (1, 2). Dann gibt es gemäß vorher genau eine lineare Abbildung F : R 2 R 2 mit F (v 1 ) = w 1 und F (v 2 ) = w 2. Frage: F (v) =? für beliebiges v R 2 Sei v = (x 1, x 2 ) = λ 1 v 1 + λ 2 v 2 = λ 1 (1, 1) + λ 2 (0, 1) = (λ 1, λ 1 + λ 2 ). Dann gilt λ 1 = x 1 und λ 1 + λ 2 = x 2 bzw. λ 2 = x 2 x 1. F (v) = λ 1 w 1 + λ 2 w 2, also F (x 1, x 2 ) = x 1 (2, 3) + (x 2 x 1 )(1, 2) = (x 1 + x 2, 5x 1 + 2x 2 ). 6

09. Lineare Abbildungen und Koordinatentransformationen

09. Lineare Abbildungen und Koordinatentransformationen 09. Lineare Abbildungen und Koordinatentransformationen Definition. Seien V und W Vektorräume. Unter einer linearen Abbildung versteht man eine Abbildung F : V W, v F v w mit folgender Eigenschaft: F λ

Mehr

02. Vektorräume und Untervektorräume

02. Vektorräume und Untervektorräume 02. Vektorräume und Untervektorräume Wir kommen nun zur eigentlichen Definition eines K-Vektorraums. Dabei ist K ein Körper (bei uns meist R oder C). Informell ist ein K-Vektorraum eine Menge V, auf der

Mehr

Summen und direkte Summen

Summen und direkte Summen Summen und direkte Summen Sei V ein K-Vektorraum. Wie früher erwähnt, ist für beliebige Teilmengen M, N V die Teilmenge M +N V wie folgt definiert M +N = {v+w : v M, w N}. Man sieht leicht, dass i.a. M

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen Seien V und W K-Vektorräume mit dimv = n und dimw = m Im folgenden wollen wir jeder m n Matrix eine lineare Abbildung V W zuordnen, und umgekehrt jeder linearen Abbildung

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Lineare Abbildungen und Matrizen In diesem Kapitel geht es um den grundlegenden Zusammenhang zwischen linearen Abbildungen und Matrizen. Die zentrale Aussage ist, dass nach anfänglicher Wahl von Basen

Mehr

Euklidische und unitäre Vektorräume

Euklidische und unitäre Vektorräume Euklidische und unitäre Vektorräume In allgemeinen Vektorräumen gibt es keine Möglichkeit der Längenmessung von Vektoren und der Winkelmessung zwischen zwei Vektoren. Dafür ist eine zusätzliche Struktur

Mehr

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren

Basis und Dimension. Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren Basis und Dimension Definition. Sei V ein K-Vektorraum und (v i ) i I eine Familie von Vektoren aus V. 1) (v i ) i I heißt ein Erzeugendensystem von V, wenn Span(v i ) = V. 2) (v i ) i I heißt Basis von

Mehr

13 Partielle Ableitung und Richtungsableitung

13 Partielle Ableitung und Richtungsableitung 3 PARTIELLE ABLEITUNG UND RICHTUNGSABLEITUNG 74 3 Partielle Ableitung und Richtungsableitung 3 Definition und Notiz Sei B R n offen, f : B R m, v R n, so heißt für γ x,v (t) = x + tv d dt f(x + tv) f(x)

Mehr

2.4 Lineare Abbildungen und Matrizen

2.4 Lineare Abbildungen und Matrizen 24 Lineare Abbildungen und Matrizen Definition 24 Seien V, W zwei K-Vektorräume Eine Abbildung f : V W heißt lineare Abbildung (lineare Transformation, linearer Homomorphismus, Vektorraumhomomorphismus

Mehr

Lineare Abhängigkeit

Lineare Abhängigkeit Lineare Abhängigkeit Vorbemerkung. Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung I X, i x i. I heißt dabei Indexmenge. Man verwendet dabei oft die Schreibweise (x i ) oder (x

Mehr

Mathematik I. Vorlesung 12. Lineare Abbildungen

Mathematik I. Vorlesung 12. Lineare Abbildungen Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 12 Lineare Abbildungen Definition 12.1. Es sei K ein Körper und es seien V und W K-Vektorräume. Eine Abbildung heißt lineare Abbildung,

Mehr

1 Lineare Abbildungen

1 Lineare Abbildungen 1 Lineare Abbildungen Definition 1 Sei K ein Körper und V und W K-Vektoräume. Eine Abbildung f : V W heisst linear oder Homomoprhismus, wenn gilt: fv 1 + v 2 = fv 1 + fv 2 v 1, v 2 V fλv = λfv λ K, v V

Mehr

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 7. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 7. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November 9, 27 Erinnerung 2 Vektoräume Sei V ein Vektorraum, U V, U {}. U hiesst Untervektorraum, Unterraum,

Mehr

3 Bilinearformen und quadratische Formen

3 Bilinearformen und quadratische Formen 3 Bilinearformen und quadratische Formen Sei V ein R Vektorraum. Definition: Eine Bilinearform auf V ist eine Abbildung s : V V R, welche linear in beiden Variablen ist, d.h.: Für u, v, w V und λ, µ R

Mehr

Lineare Algebra I. Probeklausur - Lösungshinweise

Lineare Algebra I. Probeklausur - Lösungshinweise Institut für Mathematik Wintersemester 2012/13 Universität Würzburg 19. Dezember 2012 Prof. Dr. Jörn Steuding Dr. Anna von Heusinger Frederike Rüppel Lineare Algebra I Probeklausur - Lösungshinweise Aufgabe

Mehr

2 Die Dimension eines Vektorraums

2 Die Dimension eines Vektorraums 2 Die Dimension eines Vektorraums Sei V ein K Vektorraum und v 1,..., v r V. Definition: v V heißt Linearkombination der Vektoren v 1,..., v r falls es Elemente λ 1,..., λ r K gibt, so dass v = λ 1 v 1

Mehr

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen

Orthonormalisierung. ein euklidischer bzw. unitärer Vektorraum. Wir setzen Orthonormalisierung Wie schon im Falle V = R n erwähnt, erhalten wir durch ein Skalarprodukt eine zugehörige Norm (Länge) eines Vektors und in weiterer Folge eine Metrik (Abstand zwischen zwei Vektoren).

Mehr

Eigenwerte und Diagonalisierung

Eigenwerte und Diagonalisierung Eigenwerte und Diagonalisierung Wir wissen von früher: Seien V und W K-Vektorräume mit dim V = n, dim W = m und sei F : V W linear. Werden Basen A bzw. B in V bzw. W gewählt, dann hat F eine darstellende

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung ϕ : V W

Mehr

Lineare Algebra I Lösung der Probeklausur

Lineare Algebra I Lösung der Probeklausur David Blottière Patrick Schützdeller WS 6/7 Universität Paderborn Lineare Algebra I Lösung der Probeklausur Aufgabe : M i) M ist linear unabhängig. Seien a,b,c R mit Daraus folgt : Also gilt a = b = c

Mehr

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007

KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 15. Dezember 2007 KLAUSUR ZUR LINEAREN ALGEBRA I MUSTERLÖSUNG 5. Dezember 007 Name: Studiengang: Aufgabe 3 4 5 Summe Punktzahl /40 Allgemeine Hinweise: Bitte schreiben Sie Ihre Lösungen jeweils unter die Aufgabenstellung

Mehr

Lineare Algebra I (WS 13/14)

Lineare Algebra I (WS 13/14) Lineare Algebra I (WS 13/14) Alexander Lytchak Nach einer Vorlage von Bernhard Hanke 15.11.2013 Alexander Lytchak 1 / 12 Erinnerung Eine Abbildung f : V W zwischen reellen Vektorräumen ist linear, wenn

Mehr

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( )

Ferienkurs Mathematik für Physiker I Skript Teil 2 ( ) Ferienkurs Mathematik für Physiker I WS 206/7 Ferienkurs Mathematik für Physiker I Skript Teil 2 (28.03.207) Vektorräume Bevor wir zur Definition eines Vektorraumes kommen erinnern wir noch einmal kurz

Mehr

Grundlagen der Mathematik 1

Grundlagen der Mathematik 1 Fachbereich Mathematik Sommersemester 2010, Blatt 14 Thomas Markwig Stefan Steidel Grundlagen der Mathematik 1 Die Lösungen müssen nicht eingereicht werden und werden auch nicht korrigiert. Die Aufgaben

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f(v) = u} (Andere Bezeichnung: f(v) wird in Analysis-Vorlesung

Mehr

Ein Skript für Lineare Algebra I und II

Ein Skript für Lineare Algebra I und II Ein Skript für Lineare Algebra I und II Chris Preston 2003/04 1 2 Dies ist ein Skript für die Vorlesungen Lineare Algebra I und II. Die Texte von Jänich [5] und Fischer [3] haben die Darstellung beeinflusst.

Mehr

Lineare Abbildungen und Matrizen

Lineare Abbildungen und Matrizen Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 31. Mai 2016 Stefan Ruzika 9: Lineare Abbildungen und Matrizen 31. Mai 2016 1 / 16 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume

Mehr

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}.

Definitionen. b) Was bedeutet V ist die direkte Summe von U und W? V ist direkte Summe aus U und W, falls V = U + W und U W = {0}. Technische Universität Berlin Wintersemester 7/8 Institut für Mathematik 9. April 8 Prof. Dr. Stefan Felsner Andrea Hoffkamp Lösungsskizzen zur Nachklausur zur Linearen Algebra I Aufgabe ++ Punkte Definieren

Mehr

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j.

Lösung zu Serie 24. a ij b i b j. v = j=1. v = v j b j. Lineare Algebra D-MATH, HS 2014 Prof. Richard Pink Lösung zu Serie 24 1. Zeige: Ist 1 n := min{dim K (V 1 ), dim K (V 2 )} < für Vektorräume V 1 und V 2, so ist jeder Tensor in V 1 K V 2 eine Summe von

Mehr

Aufgaben zu Kapitel 20

Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Aufgaben zu Kapitel 20 Verständnisfragen Aufgabe 20 Sind die folgenden Produkte Skalarprodukte? (( R ) 2 ( R 2 )) R : v w,, v v 2 w w 2 (( R ) 2 ( R 2 )) R : v w, 3 v v 2 w w + v

Mehr

Wiederholung: lineare Abbildungen

Wiederholung: lineare Abbildungen Wiederholung: lineare Abbildungen Def Es seien (V,+, ) und (U, +, ) zwei Vektorräume Eine Abbildung f : V U heißt linear, falls für alle Vektoren v 1, v 2 V und für jedes λ R gilt: (a) f (v 1 + v 2 ) =

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen Mathematik I für inf/swt, Wintersemester /, Seite 8 4 Lineare Abbildungen und Matrizen 4 Kern und Injektivität 4 Definition: Sei : V W linear Kern : {v V : v } ist linearer eilraum von V Ü68 und heißt

Mehr

Übungen zum Ferienkurs Lineare Algebra WS 14/15

Übungen zum Ferienkurs Lineare Algebra WS 14/15 Übungen zum Ferienkurs Lineare Algebra WS 14/15 Matrizen und Vektoren, LGS, Gruppen, Vektorräume 1.1 Multiplikation von Matrizen Gegeben seien die Matrizen A := 1 1 2 0 5 1 8 7 Berechnen Sie alle möglichen

Mehr

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Bild, Faser, Kern. Stefan Ruzika. 23. Mai Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 23. Mai 2016 Stefan Ruzika 7: Bild, Faser, Kern 23. Mai 2016 1 / 11 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume 4 Basis

Mehr

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen)

x y f : R 2 R 3, Es gilt: Bild f = y : wobei x,y R Kern f = 0 (wird auf der nächsten Folie besprochen) Def Wiederholung Sei f : V U eine lineare Abbildung Das Bild von f ist die folgende Teilmenge von U: Bild f = {u U so dass es gibt ein Element v V mit f (v) = u} (Andere Bezeichnung: f (V) wird in Analysis-Vorlesung

Mehr

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom

Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eigenwerte, Diagonalisierbarkeit, charakteristisches Polynom Eine Fragestellung, die uns im weiteren beschäftigen wird, ist das Finden eines möglichst einfachen Repräsentanten aus jeder Äquivalenzklasse

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana.

Lineare Algebra. 6. Übungsstunde. Steven Battilana. Lineare Algebra 6. Übungsstunde Steven attilana stevenb@student.ethz.ch November, 6 Lineare Abbildungen Eine Abbildung f : X Y heisst injektiv, falls x, x X : x x fx fx. In Worten: erschiedene Elemente

Mehr

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016

Mathematik II für Studierende der Informatik. Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 und Wirtschaftsinformatik (Analysis und lineare Algebra) im Sommersemester 2016 18. April 2016 Übersicht über die Methoden Seien v 1,..., v r Vektoren in K n. 1. Um zu prüfen, ob die Vektoren v 1,...,

Mehr

x 2 + y 2 = f x y = λ

x 2 + y 2 = f x y = λ Lineare Abbildungen Def Es seien (V 1,+, ) und (V 2,+, ) zwei Vektorräume Eine Abbildung f : V 1 V 2 heißt linear, falls für alle Vektoren u,v V 1 und für jedes λ R gilt: f (u + v) = f (u) + f (v), f (λu)

Mehr

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K).

Matrizen - I. Sei K ein Körper. Ein rechteckiges Schema A = wobei a ij K heißt Matrix bzw. eine m n Matrix (mit Elementen aus K). Matrizen - I Definition. Sei K ein Körper. Ein rechteckiges Schema A = a 11 a 12...... a 1n a 21 a 22...... a 2n............ a m1 a m2...... a mn wobei j K heißt Matrix bzw. eine m n Matrix (mit Elementen

Mehr

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $

$Id: vektor.tex,v /01/21 14:35:13 hk Exp $ Mathematik für Physiker I, WS 2/2 Freitag 2 $Id: vektortex,v 5 2//2 4:35:3 hk Exp $ Vektorräume 2 Untervektorräume und Erzeugendensysteme Am Ende der letzten Sitzung hatten wir wieder einmal den Lösungsraum

Mehr

Einführung in die Mathematik für Informatiker

Einführung in die Mathematik für Informatiker Einführung in die Mathematik für Informatiker Prof. Dr. www.math.tu-dresden.de/ baumann 12.12.2016 9. Vorlesung Eigenschaften linearer Abbildungen Beschreibung linearer Abbildungen durch Matrizen... Eigenschaften

Mehr

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen

2. Dezember Lineare Algebra II. Christian Ebert & Fritz Hamm. Skalarprodukt, Norm, Metrik. Matrizen. Lineare Abbildungen Algebra und Algebra 2. Dezember 2011 Übersicht Algebra und Algebra I Gruppen & Körper Vektorräume, Basis & Dimension Algebra Norm & Metrik Abbildung & Algebra I Eigenwerte, Eigenwertzerlegung Singulärwertzerlegung

Mehr

Vektorräume und lineare Abbildungen

Vektorräume und lineare Abbildungen Kapitel 11. Vektorräume und lineare Abbildungen 1 11.1 Vektorräume Sei K ein Körper. Definition. Ein Vektorraum über K (K-Vektorraum) ist eine Menge V zusammen mit einer binären Operation + einem ausgezeichneten

Mehr

Lösung 7: Bilinearformen

Lösung 7: Bilinearformen D-MATH Lineare Algebra II FS 207 Dr. Meike Akveld Lösung 7: Bilinearformen. a). Seien u, u 2 V, λ K, dann gelten nach Voraussetzung: L v (u + λu 2 ) =β(v, u + λu 2 ) = β(v, u ) + β(v, λu 2 ) =β(v, u )

Mehr

7 Vektorräume und Körperweiterungen

7 Vektorräume und Körperweiterungen $Id: vektor.tex,v 1.3 2009/05/25 15:03:47 hk Exp $ 7 Vektorräume und Körperweiterungen Wir sind gerade bei der Besprechung derjenigen Grundeigenschaften des Tensorprodukts, die mit vergleichsweise wenig

Mehr

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz

Vektorräume. Stefan Ruzika. 24. April Mathematisches Institut Universität Koblenz-Landau Campus Koblenz Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 24. April 2016 Stefan Ruzika 3: Vektorräume 24. April 2016 1 / 20 Gliederung 1 Schulstoff 2 Körper 3 Vektorräume Erinnerung:

Mehr

Mathematik und Logik

Mathematik und Logik Mathematik und Logik 9. Übungsaufgaben 2007-01-23 1. Beweisen Sie geometrisch, daß die Addition von Vektoren in der Ebene assoziativ ist. Beweis. Man zeichnet die entsprechenden Parallelogramme. 2. Der

Mehr

5 Lineare Algebra (Teil 3): Skalarprodukt

5 Lineare Algebra (Teil 3): Skalarprodukt 5 Lineare Algebra (Teil 3): Skalarprodukt Der Begriff der linearen Abhängigkeit ermöglicht die Definition, wann zwei Vektoren parallel sind und wann drei Vektoren in einer Ebene liegen. Daß aber reale

Mehr

Äquivalenz von Matrizen

Äquivalenz von Matrizen Äquivalenz von Matrizen Wir befassen uns jetzt mit der Fragestellung, ob man zu einer gegebenen linearen Abbildung F : V W geeignete Basen für V und W finden kann, sodass die darstellende Matrix von F

Mehr

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall

44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 Spektralzerlegung normaler Operatoren im endlichdimensionalen Fall 44 1 Zusammenfassung Dieser Paragraf richtet sich im Aufbau weitgehend nach 42, um den Zerlegungssatz (44.7) analog zum Satz über die

Mehr

4 Lineare Abbildungen und Matrizen

4 Lineare Abbildungen und Matrizen 4.1 Lineare Abbildungen Definition 4.1. Es seien V, W K-Vektorräume. Eine Abbildung f : V W heißt linear oder Homomorphismus, wenn für alle u, v V und λ K gilt Beispiel 4.2. L1 f(u + v) = f(u) + f(v),

Mehr

Formale Grundlagen 2008W. Vorlesung im 2008S Institut für Algebra Johannes Kepler Universität Linz

Formale Grundlagen 2008W. Vorlesung im 2008S  Institut für Algebra Johannes Kepler Universität Linz Formale Grundlagen Institut für Algebra Johannes Kepler Universität Linz Vorlesung im 2008S http://www.algebra.uni-linz.ac.at/students/win/fg Inhalt Vektoren in der Ebene Zwei Punkten P, Q in der Ebene

Mehr

6. Normale Abbildungen

6. Normale Abbildungen SKALARPRODUKE 1 6 Normale Abbildungen 61 Erinnerung Sei V ein n-dimensionaler prä-hilbertraum, also ein n-dimensionaler Vektorraum über K (R oder C) versehen auch mit einer Skalarprodukt, ra K Die euklidische

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme Definition. Sei K ein Körper, a ij K für 1 i m, 1 j n und b 1,..., b m K. Dann heißt a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2......

Mehr

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung

Viele wichtige Operationen können als lineare Abbildungen interpretiert werden. Beispielsweise beschreibt die lineare Abbildung Kapitel 3 Lineare Abbildungen Lineare Abbildungen sind eine natürliche Klasse von Abbildungen zwischen zwei Vektorräumen, denn sie vertragen sich per definitionem mit der Struktur linearer Räume Viele

Mehr

3 Systeme linearer Gleichungen

3 Systeme linearer Gleichungen 3 Systeme linearer Gleichungen Wir wenden uns nun dem Problem der Lösung linearer Gleichungssysteme zu. Beispiel 3.1: Wir betrachten etwa das folgende System linearer Gleichungen: y + 2z = 1 (1) x 2y +

Mehr

Lösungsskizze zur Hauptklausur Lineare Algebra I

Lösungsskizze zur Hauptklausur Lineare Algebra I Lösungsskizze zur Hauptklausur Lineare Algebra I Aufgabe Seien V und W zwei K-Vektorräume für einen Körper K. a) Wann heißt eine Abbildung f : V W linear? b) Wann heißt eine Abbildung f : V W injektiv?

Mehr

Mathematik I. Vorlesung 14. Rang von Matrizen

Mathematik I. Vorlesung 14. Rang von Matrizen Prof Dr H Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 14 Rang von Matrizen Definition 141 Es sei K ein Körper und sei M eine m n-matrix über K Dann nennt man die Dimension des von den Spalten

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 2 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 2 Definition Eine Abbildung

Mehr

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v

Kap 1: VEKTORRÄUME. (c) (λµ) v = λ (µ v) (b) λ (v + w) = (λ v) + (λ w) (d) 1 v = v Kap 1: VEKTORRÄUME Es sei X eine Menge. Eine Familie von Elementen von X ist eine Abbildung ϕ : I X, i ϕ(i) = x i, wobei die Menge I in diesem Zusammenhang auch Indexmenge genannt wird. Man schreibt vereinfacht

Mehr

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt.

(1) In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. () In dieser Aufgabe kreuzen Sie bitte nur die Antworten an, die Sie für richtig halten. Eine Begründung wird nicht verlangt. a) Es seien A und B beliebige n n-matrizen mit Einträgen in einem Körper K.

Mehr

β 1 x :=., und b :=. K n β m

β 1 x :=., und b :=. K n β m 44 Lineare Gleichungssysteme, Notations Betrachte das lineare Gleichungssystem ( ) Sei A = (α ij ) i=,,m j=,n α x + α x + + α n x n = β α x + α x + + α n x n = β α m x + α m x + + α mn x n = β m die Koeffizientenmatrix

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit

Mathematik I. Vorlesung 11. Lineare Unabhängigkeit Prof. Dr. H. Brenner Osnabrück WS 2009/2010 Mathematik I Vorlesung 11 Lineare Unabhängigkeit Definition 11.1. Es sei K ein Körper und V ein K-Vektorraum. Dann heißt eine Familie von Vektoren v i, i I,

Mehr

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching

Lineare Algebra. 6. Übungsstunde. Steven Battilana. battilana.uk/teaching Lineare Algebra 6. Übungsstunde Steven Battilana stevenb@student.ethz.ch battilana.uk/teaching November, 7 Vektoräume Eine Menge E zusammen mit zwei Verknüpfungen + : E E E, x, y x + y Addition : E E E,

Mehr

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte

Ferienkurs - Lineare Algebra. Hanna Schäfer. Merkinhalte Technische Universität München, Fakultät für Physik Ferienkurs - ineare Algebra Hanna Schäfer 03. März 04 0. inearität. f : M N, x : y = f(x) Merkinhalte. f(x + λy) = f(x) + λf(y), x, y V, λ K 3. ineare

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra 2014/15 Seite 59 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen

Kapitel 2 Lineare Algebra II. 2.1 Lineare Abbildungen Kapitel 2 Lineare Algebra II 21 Lineare Abbildungen Die mit der Vektorraumstruktur verträglichen Abbildungen zwischen Vektorräumen werden als linear bezeichnet Genauer definiert man: 21 Definition Eine

Mehr

Mathematik für Anwender I

Mathematik für Anwender I Prof. Dr. H. Brenner Osnabrück WS 2011/2012 Mathematik für Anwender I Vorlesung 9 Lineare Abbildungen Definition 9.1. Es sei K ein Körper und es seien V und W Vektorräume über K. Eine Abbildung heißt lineare

Mehr

Lineare Abbildungen. i=0 c ix i n. K n K m

Lineare Abbildungen. i=0 c ix i n. K n K m Kapitel 4 Lineare Abbildungen In diesem Abschnitt lernen Sie erstmals eine Klasse von strukturerhaltenden Abbildungen kennen. Diese Konzept ist von zentraler Bedeutung in der Algebra. Grob gesagt geht

Mehr

1 Euklidische und unitäre Vektorräume

1 Euklidische und unitäre Vektorräume 1 Euklidische und unitäre Vektorräume In diesem Abschnitt betrachten wir reelle und komplexe Vektorräume mit Skalarprodukt. Dieses erlaubt uns die Länge eines Vektors zu definieren und (im Fall eines reellen

Mehr

Lineare Algebra 1. Roger Burkhardt

Lineare Algebra 1. Roger Burkhardt Lineare Algebra 1 Roger Burkhardt roger.burkhardt@fhnw.ch Fachhochschule Nordwestschweiz Hochschule für Technik Institut für Geistes- und Naturwissenschaft HS 2008/09 4 Einführung Vektoren und Translationen

Mehr

7 Lineare Abbildungen und Skalarprodukt

7 Lineare Abbildungen und Skalarprodukt Mathematik II für inf/swt, Sommersemester 22, Seite 121 7 Lineare Abbildungen und Skalarprodukt 71 Vorbemerkungen Standard Skalarprodukt siehe Kap 21, Skalarprodukt abstrakt siehe Kap 34 Norm u 2 u, u

Mehr

Affine Eigenschaften ( stets K = R)

Affine Eigenschaften ( stets K = R) Affine Eigenschaften ( stets K = R) Def. 15 Sei M eine Teilmenge eines affinen Raums A über V (über K). Eine Eigenschaft der Menge M heißt affin, wenn für jede Affinität F : A A 1 die Bildmenge {F(a)wobei

Mehr

2 Euklidische Vektorräume

2 Euklidische Vektorräume Sei V ein R Vektorraum. 2 Euklidische Vektorräume Definition: Ein Skalarprodukt auf V ist eine Abbildung σ : V V R, (v, w) σ(v, w) mit folgenden Eigenschaften ( Axiome des Skalarprodukts) (SP1) σ ist bilinear,

Mehr

Lineare Algebra I/II LVA ,

Lineare Algebra I/II LVA , Lineare Algebra I/II LVA 401-1151-00,401-1152-00 Prof. G. Wüstholz, C. Fuchs Lösungen zur Basisprüfung, HS08/FS09 09.02.2010 1. a) (1 Punkt) Wir beginnen mit dem charakteristischen Polynom der Matrix A:

Mehr

Kapitel III. Lineare Abbildungen

Kapitel III. Lineare Abbildungen Kapitel III. Lineare Abbildungen Beispiele: 1 Lineare Abbildungen a) Seien c 1,..., c n K vorgegeben. Betrachte die Funktion F (x 1,..., x n ) = c 1 x 1 + c 2 x 2 +... + c n x n in den Variablen x 1,...,

Mehr

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper.

4 Vektorräume. 4.1 Definition. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48. Sei K ein Körper. 4 Vektorräume Pink: Lineare Algebra 2014/15 Seite 48 4 Vektorräume 4.1 Definition Sei K ein Körper. Definition: Ein Vektorraum über K, oder kurz ein K-Vektorraum, ist ein Tupel (V,+,, 0 V ) bestehend aus

Mehr

35 Matrixschreibweise für lineare Abbildungen

35 Matrixschreibweise für lineare Abbildungen 35 Matrixschreibweise für lineare Abbildungen 35 Motivation Wir haben gesehen, dass lineare Abbildungen sich durch ihre Wirkung auf die Basisvektoren ausdrücken lassen Mithilfe von Matrizen können wir

Mehr

Determinanten. I. Permutationen

Determinanten. I. Permutationen Determinanten Durch Bildung der Determinante wird einer quadratischen (! Matrix eine gewisse Zahl zuordnet. Die Determinante tritt besonders bei Fragen der Flächen- bzw. Volumsberechnung auf (siehe auch

Mehr

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum,

In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa. Unterraum, 2 Vektorräume In diesem Kapitel wird der Vektorraumbegriff axiomatisch eingeführt und einige grundlegende Begriffe erläutert, etwa Unterraum, Linearkombination, lineare Unabhängigkeit und Erzeugendensystem.

Mehr

3 Lineare Abbildungen und Matrizen

3 Lineare Abbildungen und Matrizen 3 Lineare Abbildungen und Matrizen Definition 3.1. Es seien V und W zwei Vektorräume über demselben Zahlkörper k. Eine Abbildung heisst linear, falls gilt i) [ λ k ] [ v V ] [ f (λ v) = λ f ( v) ] ii)

Mehr

Mathematische Erfrischungen III - Vektoren und Matrizen

Mathematische Erfrischungen III - Vektoren und Matrizen Signalverarbeitung und Musikalische Akustik - MuWi UHH WS 06/07 Mathematische Erfrischungen III - Vektoren und Matrizen Universität Hamburg Vektoren entstanden aus dem Wunsch, u.a. Bewegungen, Verschiebungen

Mehr

6.5 Lineare Abhängigkeit, Basis und Dimension

6.5 Lineare Abhängigkeit, Basis und Dimension 6.5. Lineare Abhängigkeit, Basis und Dimension 123 6.5 Lineare Abhängigkeit, Basis und Dimension Seien v 1,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von

Mehr

Kapitel 15. Aufgaben. Verständnisfragen

Kapitel 15. Aufgaben. Verständnisfragen Kapitel 5 Aufgaben Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation einen K-Vektorraum bildet

Mehr

Skalarprodukt, Norm & Metrik

Skalarprodukt, Norm & Metrik Skalarprodukt, Norm & Metrik Stefan Ruzika Mathematisches Institut Universität Koblenz-Landau Campus Koblenz 11. Mai 2016 Stefan Ruzika 5: Skalarprodukt, Norm & Metrik 11. Mai 2016 1 / 13 Gliederung 1

Mehr

6 Hauptachsentransformation

6 Hauptachsentransformation 6 Hauptachsentransformation A Diagonalisierung symmetrischer Matrizen (6.1) Satz: Sei A M(n n, R) symmetrisch. Dann gibt es eine orthogonale n n-matrix U mit U t AU = D Diagonalmatrix Es folgt: Die Spalten

Mehr

5.7 Lineare Abhängigkeit, Basis und Dimension

5.7 Lineare Abhängigkeit, Basis und Dimension 8 Kapitel 5. Lineare Algebra 5.7 Lineare Abhängigkeit, Basis und Dimension Seien v,...,v n Vektoren auseinemvektorraumv über einem KörperK. DieMenge aller Linearkombinationen von v,...,v n, nämlich { n

Mehr

5 Lineare Abbildungen

5 Lineare Abbildungen 5 Lineare Abbildungen Pink: Lineare Algebra HS 2014 Seite 56 5 Lineare Abbildungen 5.1 Definition Gegeben seien Vektorräume U, V, W über einem Körper K. Definition: Eine Abbildung f : V W heisst K-linear,

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Kapitel 2 Lineare Gleichungssysteme 21 Lineare Gleichungssysteme und Matrizen Lernziele 2 Lineare Gleichungssysteme definieren Matrizen, Matrizen definieren lineare Abbildungen, Lösen von linearen Gleichungssystemen

Mehr

Aufgaben zu Kapitel 15

Aufgaben zu Kapitel 15 Aufgaben zu Kapitel 5 Aufgaben zu Kapitel 5 Verständnisfragen Aufgabe 5 Zeigen Sie, dass die Menge K m n aller m n-matrizen über einem Körper K mit komponentenweiser Addition und skalarer Multiplikation

Mehr

3. Übungsblatt zur Lineare Algebra I für Physiker

3. Übungsblatt zur Lineare Algebra I für Physiker Fachbereich Mathematik Prof. Dr. Mirjam Dür Dipl. Math. Stefan Bundfuss. Übungsblatt zur Lineare Algebra I für Physiker WS 5/6 6. Dezember 5 Gruppenübung Aufgabe G (Basis und Erzeugendensystem) Betrachte

Mehr

a 1 a 1 A = a n . det = λ det a i

a 1 a 1 A = a n . det = λ det a i 49 Determinanten Für gegebene Vektoren a 1,,a n K n, betrachte die Matrix deren Zeilenvektoren a 1,,a n sind, also A = Ab sofort benutzen wir diese bequeme Schreibweise Definition Sei M : K n K }{{ n K

Mehr

Matrix. Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema. a m,1 a m,2 a m,n. A = (a i,j ) = Matrix 1-1

Matrix. Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema. a m,1 a m,2 a m,n. A = (a i,j ) = Matrix 1-1 Matrix Unter einer (m n)-matrix (m, n N) über einem Körper K versteht man ein Rechteckschema a 1,1 a 1,2 a 1,n a 2,1 a 2,2 a 2,n A = (a i,j ) =.... a m,1 a m,2 a m,n Matrix 1-1 Matrix Unter einer (m n)-matrix

Mehr

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2

U = U, v i λ i = o und (z.b.) λ 1 0. i=1 1 = i=2. i=2 7 Lineare Unabhängigkeit, asis Existenzsatz M Am Ende des vorigen Paragraphen betrachteten wir bei vorgegebener Teilmenge T eines K-Vektorraumes V das Erzeugnis U von T in V. Die ildung des Erzeugnisses

Mehr

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V.

[Nächste Frage: wie wissen wir, ob Spaltenvektoren eine Basis bilden? Siehe L6.1] , enthält eine Basis v. V, nämlich und somit das ganze V. Kriterien für Invertierbarkeit einer Matrix Eine lineare Abbildung falls und nur falls ist bijektiv, d.h. ihre Matrix ist invertierbar, (i) für jede Basis, die Bildvektoren auch eine Basis, bilden; (intuitiv

Mehr

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen

Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Kapitel 10. Lineare Abbildungen Definition linearer Abbildungen Eigenschaften und Beispiele Alle linearen Abbildungen R n V Bild von Unterräumen Vorschau: Lineare Abbildungen Wer Vektorräume studiert,

Mehr

3 Vektorräume abstrakt

3 Vektorräume abstrakt Mathematik I für inf/swt Wintersemester / Seite 7 Vektorräume abstrakt Lineare Unabhängigkeit Definition: Sei V Vektorraum W V Dann heißt W := LH(W := Menge aller Linearkombinationen aus W die lineare

Mehr

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit

3 Lineare Algebra (Teil 1): Lineare Unabhängigkeit 3 Lineare Algebra (Teil : Lineare Unabhängigkeit 3. Der Vektorraum R n Die Menge R n aller n-dimensionalen Spalten a reeller Zahlen a,..., a n R bildet bezüglich der Addition a b a + b a + b. +. :=. (53

Mehr