Eine Menge G zusammen mit einer Verknüpfung + (+ : G x G folgende Axiome erfüllt sind:

Größe: px
Ab Seite anzeigen:

Download "Eine Menge G zusammen mit einer Verknüpfung + (+ : G x G folgende Axiome erfüllt sind:"

Transkript

1 Defntonen und Formelsmmlung Für de Voreretung der Lnere Alger Klusur I e Prof. Krcher Chrstoph Tornu toff@gfoot.de Alle Angen we mmer ohne Gewehr. Defntonen von Mengen mt Verknüpfungen : : Verson Defnton: Gruppe Ene Menge G zusmmen mt ener Verknüpfung + (+ : G x G folgende Axome erfüllt snd: G) heßt Gruppe, wenn G: ( + ) + c = + ( + c ),,c G (Assoztvgesetz) G: Es gt en e G (neutrles Element) ds folgende Egenschften G erfüllt:. e + =. Zu jedem G gt es en G (nverses Element) mt + = e Defnton: elsche/kommuttve Gruppe Ene Gruppe heßt kommuttv, flls ußerdem uch noch + = + (Kommuttvgesetz), G glt Immer mehr Axome gelten Defnton: Rng Ene Menge R zusmmen mt zwe Verknüpfungen (R,+,*) +: R x R R *: R x R R heßt Rng, wenn folgendes glt: R: R zusmmen mt der Addton + st ene elsche/kommuttve Gruppe R: (*)*c = *(*c),,c R (Multplkton (*) ssoztv) R: Es gelten de Dstrutvgesetze R:,,c R: ( + ) * c = *c + *c R:,,c R: *( + c ) = *c + *c Defnton: Rng mt R (neutrles Element / Enselement) für ds für R glt: *= Es gt noch ken Kommuttvgesetz Defnton: Kommuttver Rng, R: = * (Kommuttvgesetz) Her gt es ken Enselement Defnton: Schefkörper Dese eden Rngxome werden häufg zusmmen genommen und heßen dnn Kommuttver Rng mt Enselement De Kommuttvtät glt her ncht. Dfür gt es er Inverse ezüglch der Multplkton: R -, so dß glt: * - = Defnton: Körper De Menge K st en Körper, wenn es en Rng st, ndem ds -Element vorkommt, ndem ds Kommuttvgesetz der Multplkton glt, n dem es Inverse der Multplkton gt und ndem es ds neutrle Element ezüglch der Multplkton gt. Sete

2 Surjektv, Injektv und Bjektv: Defnton: Surjektv Se de Aldung f: V W surjektv w W v V, so dß f(v)=w (jedes Element wrd getroffen) Menge A 4 Menge B 4 Defnton: Injektv Ene Aldung f: V W st njektv f(x)=f(y) <=> x=y x y <=> f(x) f(y) (jedes Element wrd nur enml getroffen, es drf Elemente geen, de gr ncht getroffen werden) Menge A Menge B 4 Defnton: Bjektv Surjektv und Injektv Menge A Menge B Aldungen / Homomorphsmen : Defnton: Lner / (Genuer K-Lner oder Homomorphsmus von Vektorräumen) Se f ene Aldung f: V W V, W snd Vektorräume üer demselen Körper K. Glt für x,y V und r K: f(rx+y) = rf(x) + f(y) so heßt f lner. Defnton: Gruppenhomomorphsmus Se f ene Aldung f: G H G,H snd Gruppen und es exsteren de Verknüpfungen G und uf G und H.Glt für, G f( )=f() f() G H so st f en Gruppenhomomorphsmus H Sete

3 Defnton: Rnghomomorphsmus Se f ene Aldung f: V W V,W snd Rnge und es exsteren de Verknüpfungen V und W + W uf W. Glt für, V f( V )=f() W f() f( + V )=f() + W f() so st f en Rnghomomorphsmus + V uf V F ene lnere Aldung V W ; V,W snd Vektorräume Isomorphsmus, wenn F jektv st. Endomorphsmus, wenn V=W Automorphsmus, wenn V=W und F jektv st. Untergruppe und Untervektorrum : Defnton: Untergruppe Se G ene Gruppe mt der Verknüpfung + und G G ene Telmenge. G heßt Untergruppe, wenn für, G glt: + G (geschlossen ezüglch der Verknüpfung +) - G (nverses Element vorhnden) Defnton: Untervektorrum Se V en K-Vektorrum und W V ene Telmenge. W heßt Untervektorrum von V flls folgendes glt: UV: W UV: v, w W v + w W (geschlossen gegenüer der Addton) UV: v W, λ K λv W (geschlossen gegenüer der Multplkton mt Sklren) Der Nullvektor st n jedem Untervektorrum vorhnden. Zu jedem v gt es en v W Jeder UVR ht zwe Untervektorräume: Enml sch selst und enml {0}, woe der Untervektorrum {0} ntürlch nur enen Untervektorrum, nämlch sch selst ht. Defntonen n Hnscht uf Vektorrum : : Defnton: Lner unhängg Se V en K- Vektorrum. Ene endlche Fmle (v,v,...v r ) von Vektoren us V heßt lner unhängg, flls glt: Snd λ,..., λ k K und st λ v λ k v k = 0 so folgt λ =... = λ k = 0 Anders usgedrückt, snd de Vektoren lner unhängg, wenn sch der Nullvektor nur trvl us den v,v,...v r komneren läßt. Defnton: Lner unhängg Se V en K-Vektorrum. Ene endlche Fmle (v,v,...v r ) von Vektoren us V heßt lner hängg, flls glt: Snd λ,..., λ k K und st λ v λ k v k = 0 so folgt: Es gt λ k 0, so dß dese Glechung uf nchttrvle Wese erfüllt wrd. Sete

4 Defnton: Vektorrum Se K en Körper. Ene Menge V zusmmen mt den Verknüpfungen + und * +: V x V V *: R x V wrd Vektorrum gennnt, wenn folgendes glt: (V,+) se ene elsche Gruppe S: λ,µ K, v V λ*(µ*v)= (λ*µ)*v (ssoztv) S: K: v V : * v = v (neutrles Element) D: (λ*µ)*v = λ*v +µ*v (dstrutv) D: λ*(v+w)= λ*v +µ*v ( ) Defnton: Spn Es se V en Vektorrum üer dem Körper K und v,v,...v n V. Jeder Vektor der Form v + v n v n n V mt K heßt Lnerkomnton von v,v,...v n. De Menge solcher Lnerkomntonen ezechnet durch spn (v,v,...v n ) heßt lnere Hülle oder Spn von v,v,...v n. De Vektoren snd ncht zwngend lner unhängg. Defnton: Erzeugendensystem De Vektoren {v,v,...v n } heßen Erzeugendensystem von V, wenn se den Vektorrum gnz ufspnnen: V = spn {v,v,...,v n } Tpp: De Vektoren müssen ncht lner unhängg sen, jedoch müssen mndestens dm V zuennder lner unhängge Vektoren vorhnden sen, dmt se den Vektorrum ufspnnen können. De nderen snd dnn noch so Just for Fun de. Defnton: Bss De lner unhänggen Vektoren {v,v,...v n } heßen Bss von V, wenn se den Vektorrum gnz ufspnnen: V = spn {v,v,...,v n } Es müssen dm V lner unhängge Vektoren vorhnden sen. (Krterum für Bss) Defnton: Kern Se f: V W; V, W snd Vektorräume Kern (f) = {v V f(v) = 0} Defnton: Bld Se f: V W; V, W snd Vektorräume Bld (f) = f(v) = { w W v V mt f(v) = w} Stz: Bssergänzungsstz In enem endlch erzeugten Vektorrum V seen lner unhängge Vektoren w,...,w n gegeen. Dnn knn mn w n+,...,w r fnden, so dß B = { w,...,w n, w n+,...,w r } ene Bss von V st. Sete 4

5 Defnton: Dmenson Ist V en K-Vektorrum, so defneren wr dm K V :=, Flls V kene endlche Bss estzt r, Flls V ene Bss der Länge r estzt / Anzhl der Vektoren n der Bss Bemerke: Alle Bsen snd glech lng dm K V heßt Dmenson von V üer K. Defnton: Rng Ist F ene lnere Aldung F:V W, so st rng f := dm Bld F Sätze uf Vektorräumen: F st njektv <=> Ker (F) = 0 => : D F njektv ht jedes Bld genu nur en Urld. Urld von 0 se n <=> Ker(F) = {n} => F(n) = 0 D F lner muß gelten F(x) + F(n) = F (x + n) <=> F(x) = F(x + n) => n=0 Also Ker (F) = 0 <= : Ker (F) = 0 <=> {v V F(v)=0} Bewes der Injektvtät F(v )=F(v ) <=> F(v ) F(v ) = 0 <=> F(v -v )=0 D Ker (F) = F(n) = F(0) = 0, snd somt v =v L njektv <=> lner unhängg L lner unhängg <= zz: L(v)=L(w) =>... => v = w se V={v,v,...,v n } Bss v,w V, de Bss st lner unhängg und uch L(v ) st lner unhängg L(v)=L(w) <=> L( λ v ) = L ( µ v ) <=> λ L v ) = µ L v ) ( => λ µ ) L( v ) = 0 ( ( => ( λ µ ) v =0 => v=w => zz: L( λ v ) = 0 λ v = µ v <=> λ L v ) = µ L v ) ( => λ µ ) L( v ) = 0 ( => λ ) = 0 ( µ ( Sete 5

6 Stz: Dmensonstz Se f: V W (V,W K-Vektorräume) ene lnere Aldung. Dnn glt: dm V = dm Bld (f) + dm Ker (f) Anzhl der Elemente der Bss n V Anzhl der Elemente der Bss des UVR des Bldes von f Anzhl der Elemente der Bss des UVR des Kerns von f () () D der Kern en UVR von V st, knn mn de Bss {k,k,...,k n } des UVR des Kernes durch Hnzunhme von lner unhänggen Vektoren zur Bss {k,k,...,k n,v n+,...v k } von V ergänzen. (Bssergänzungsstz). Wr lssen de lnere Aldung uf den Bssvektoren von V lufen: k n Bld (f) = µ f ( k ) + λ f ( v ) = = = n+ k k λ f ( ) λ,µ K v = n+. λ L( v ) = 0 Alle λ = 0, d kener der Vektoren m Kern legt. q.e.d. = + n =0 Sete 6

7 Defnton: Äqvlenzrelton Ene Relton uf X heßt Äqvlenzrelton, wenn für elege x,y,z X glt: A: x x (reflexv) A: x y => y x (symmetrsch) A: x y und y z => x z (trnstv) Defnton: Sklrprodukt / Innenproduktrum Ene Aldung <,>: R n x R n R, (x,y) <x,y> heßt Sklrprodukt, wenn x,x,y R n folgendes glt: S: <x+x,y> = <x,y> + <x,y> (Lnertät) S: <x,y> = <y,x> (Symmetre) S: <x,x> 0 und <x,x> = 0 => x=0 (Postv und defnt) Defnton: Norm Ene Aldung : R n R +, heßt Norm, wenn folgende Axome gelten N: x = 0 <=> x= 0 N: λx = λ * x N: x+y x + y z.b. st x x := < x, x > ene Norm. Defnton: Cuchy-Schwrzsche Unglechung <x,y> x * y Defnton: Permutton Ene Permutton ρ der Menge {,,...,n} st ene endeutge jektve Aldung der Menge uf sch selst oder entsprechend ene Umordnung der Zhlen,,...,n. Sete 7

8 Rechnen uf Mtrxen: Verfhren: Mtrxmultplkton = Verfhren: Determnntenestmmung Ene x Determnnte folgendermßen estmmt werden): det = - Verfhren: Determnntenestmmung mt Hlfe von Lplce Mn wählt + und schchrettmusterrtg. Wenn wr ds oerste lnke Element etrchten, dnn ekommt es en +, lle nderen folgen dnn schchrettmusterrtg: det 4 + det - det = det det det det = det det Des knn mn nun m nächsten Schrtt weterführen, s mn uf x Mtrxen kommt. Von desen knn mn gnz enfch (oen eschreen) Determnnten usrechnen. Mn knn uch Determnnten von x Mtrxen so usrechnen. Aer de Formel st komplzerter und so lohnt es sch ncht dese uswendg zu lernen. Sete 8

9 Gesetze zur Verenfchung der Determnntenestmmung De Determnnte ener Mtrx und de hrer Trnsponerten A T snd glech;ds heßt det A = det A T (Ene Trnsponerte st de Speglung n der Dgonlen) Wenn ene Zele oder Splte der Mtrx us Nullen esteht, so st det A =0 Wenn A zwe gleche zw. lner hängge Zelen (Splten) estzt, dnn glt eenflls det A = 0 Wenn A ene Dreecksmtrx st, d.h. oerhl und unterhl der Dgonlen nur Nullen ht, dnn st det A glech dem Produkt hrer Dgonlelemente. Defnton: klsssche Adjunkte (ncht so wchtg) Für jeden Wert n der Mtrx wrd de Determnnte der Mtrx estmmt, de entsteht, wenn mn de Zele und Splte strecht, n der der Wert steht. Ds Vorzechen lternert. Ds ergt dnn ene neue Mtrx glechen Ausmßes: (Bespel für ene x Mtrx) det dj = det det = det det det det det det Verfhren: Grm Schdtsches Orthogonlserungsverfhren w = v < v, w > w = v - w w < v, w > w = v - w w... < v, w > w - w < v w n = v n - n, w > w w < v n, w > w - - w w < v n, w > < vn, wn > w w n w n Sete 9

10 Dgonlserung: Defnton: Chrkterstsches Polynom X A (t) = det (ti n -A) A: Ausgngsmtrx I: Identtätsmtrx Defnton: Egenwert Se F en Endomorphsmus des K-Vektorrums V. De Mtrx zu desem Endomorphsmus se A. En λ K heßt Egenwert von F, wenn es en v V mt v 0 gt, so dß glt A v = λ v Defnton: Egenvektor Se F en Endomorphsmus des K-Vektorrums V. De Mtrx zu desem Endomorphsmus se A. λ K st Egenwert von F. Allev V, v 0 heßen Egenvektoren, wenn glt A v = λ v Defnton: Egenrum De Menge Stz: Dgonlserr Eλ ller Egenvektoren, de zu λ gehören, st en Unterrum von K n gennnt Egenrum. Ene n-qudrtsche Mtrx A st ener Dgnolmtrx D dnn und nur dnn ähnlch (A st dgonlserr), wenn A n lner unhängge Egenvektoren ht. Verfhren: Dgonlserung De Enge st ene n-qudrtsche Mtrx A Schrtt : Ermttle ds Chrkterstsche Polynom von A Schrtt : Ermttle de Nullstellen deses Polynoms, um de Egenwerte (λ) von A zu erhlten Schrtt : Wederhole de folgenden Schrtte für jeden Egenwert. Blde M= A-λd (Der Egenwert wrd von llen Werten n der Dgonlen gezogen. So erhält mn M). Ermttle de Bss für de Lösungsmenge des homogenen Systems MX=0 (Des snd de lner unhänggen Egenvektoren von A) Schrtt 4: Betrchte de Menge S = {v,...,v m } ller Egenvektoren. Wenn dm S n, so st de Mtrx ncht dgonlserr.. Wenn dm S = n, dnn st P de Mtrx deren Splten de Egenvektoren snd und λ D = P AP = λ... λ n Sete 0

SS 2017 Torsten Schreiber

SS 2017 Torsten Schreiber SS Torsten Schreber e den Ebenen unterscheden wr de und de prmeterfree Drstellung. Wenn wr ene Ebenenglechung durch dre Punkte bestmmen wollen, so müssen de zugehörgen Vektoren sen, d es sonst nur ene

Mehr

Übungsblatt 4 - Lösung

Übungsblatt 4 - Lösung Formle Sprchen und Automten Üungsltt 4 - Lösung 26. M 2013 1 Whr oder flsch? Begründe kurz dene Antwort! 1. In enem determnstschen endlchen Automten gt es für jedes Wort w Σ mxml enen kzepterenden Pfd.

Mehr

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung

Fachbereich Mathematik Prof. K. Grosse-Brauckmann D. Frisch WS 2007/08 10./ Gruppenübung Fachberech Mathematk Prof. K. Grosse-Brauckmann D. Frsch WS 27/8./.. 6. Übungsblatt zur Lnearen Algebra für Physker Gruppenübung Aufgabe G7 (Kern, Bld, Rang und Orthogonaltät) Gegeben se ene lneare Abbldung

Mehr

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1

Stephan Brumme, SST, 2.FS, Matrikelnr konvergiert und der Grenzwert 1 ist, d.h. es gilt: 1. k 1 Stehn Brumme, SST,.FS, Mtrelnr. 7 5 44 Aufge... Zegen Se, dss de Folge onvergert und der Grenwert st, d.h. es glt lm Es st u egen, dss ene Nullfolge st D ene Nullfolge st, stellt ene onvergente Folge mt

Mehr

9 Integration von Funktionen in mehreren Variablen

9 Integration von Funktionen in mehreren Variablen 9 Integrton von Funktonen n mehreren Vrlen 9 9 Integrton von Funktonen n mehreren Vrlen Der Integrlegrff für Funktonen n mehreren Vrlen st wesentlch velfältger ls der e Funktonen n ener Vrlen. Dem unestmmten

Mehr

3.3 Lineare Abbildungen und Matrizen

3.3 Lineare Abbildungen und Matrizen 33 LINEARE ABBILDUNGEN UND MATRIZEN 87 33 Lneare Abbldungen und Matrzen Wr wollen jetzt de numersche Behandlung lnearer Abbldungen zwschen Vektorräumen beschreben be der vorgegebene Basen de Hauptrolle

Mehr

Es ist dann nämlich 2 2 2

Es ist dann nämlich 2 2 2 Ege Bemerkuge zum Sklrprodukt See U,V,W Vektorräume üer eem Körper K. Ee Aldug ϕ :U V W heßt ler, we λ, λ, µ, µ K, u, u U, v, v V : ϕ( λ u + λ u, µ v + µ v ) = λ µ ϕ( u, v ) + λ µ ϕ( u, v ) + λ µ ϕ( u,

Mehr

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel

Multilineare Algebra und ihre Anwendungen. Nr. 6: Normalformen. Verfasser: Yee Song Ko Adrian Jenni Rebecca Huber Damian Hodel ultlneare Algebra und hre Anwendungen Nr. : Normalformen Verfasser: Yee Song Ko Adran Jenn Rebecca Huber Daman Hodel 9.5.7 - - ultlneare Algebra und hre Anwendungen Jordan sche Normalform Allgemene heore

Mehr

Lineare Gleichungssysteme und ihre Lösung

Lineare Gleichungssysteme und ihre Lösung III Lnee Glechungssysteme und he Lösung In den Kpteln II. und II. wude de Bedeutung von Lneen Glechungssysteme (LGS) fü Poleme de Anlytschen Geomete deutlch. eshl stellt sch de Fge nch systemtschen Lösungsvefhen.

Mehr

3. Lineare Algebra (Teil 2)

3. Lineare Algebra (Teil 2) Mathematk I und II für Ingeneure (FB 8) Verson /704004 Lneare Algebra (Tel ) Parameterdarstellung ener Geraden Im folgenden betrachten wr Geraden m eukldschen Raum n, wobe uns hauptsächlch de Fälle n bzw

Mehr

4. Musterlösung. Problem 1: Kreuzende Schnitte **

4. Musterlösung. Problem 1: Kreuzende Schnitte ** Unverstät Karlsruhe Algorthmentechnk Fakultät für Informatk WS 05/06 ITI Wagner 4. Musterlösung Problem 1: Kreuzende Schntte ** Zwe Schntte (S, V \ S) und (T, V \ T ) n enem Graph G = (V, E) kreuzen sch,

Mehr

erfüllen. In diesem Fall ist dies auch die komplexe Ableitung. = f x (a).

erfüllen. In diesem Fall ist dies auch die komplexe Ableitung. = f x (a). Dfferenzerbrket 6.2 125 zwr lner n h, ber ncht lner n h und ds st en wesentlcher Untersched. Ds sehen wr glech noch genuer nhnd der Cuchy-Remnn- Glechungen..Ò De Cuchy-Remnn-Glechungen We berets erwähnt,

Mehr

Lösungen zur Probeklausur Lineare Algebra 1

Lösungen zur Probeklausur Lineare Algebra 1 Prof. Dr. Ktrin Wendlnd Dr. Ktrin Leschke WS 2006/2007 Lösungen zur Probeklusur Linere Algebr Ausgbe: 2. Dezember 2006 Aufgbe.. Geben Sie die Definition des Begriffs Gruppe n. Eine Gruppe ist eine Menge

Mehr

1 Der Uncovering-by-bases-Algorithmus

1 Der Uncovering-by-bases-Algorithmus De Komplextät des Uncoverng-y-ases-Algorthmus Peer Hlderandt 1 Der Uncoverng-y-ases-Algorthmus 1.1 Defnton (Der Algorthmus) Se G ene Gruppe, U en Uncoverng durch Basen und w = w 1... w n en empfangenes

Mehr

6. Übung zur Linearen Algebra II

6. Übung zur Linearen Algebra II Unverstät Würzburg Mathematsches Insttut Prof. Dr. Peter Müller Dr. Peter Fleschmann SS 2006 30.05.2006 6. Übung zur Lnearen Algebra II Abgabe: Bs Mttwoch, 14.06.2006, 11:00 Uhr n de Brefkästen vor der

Mehr

5. Das Finite-Element und die Formfunktion

5. Das Finite-Element und die Formfunktion 5. Ds Fnte-lement nd de Formfnkton Prof. Dr.-Ing. Uwe Renert Fcherech Prof. Dr.-Ing. Mschnen Uwe Renert telng Mschnen HOCHSCHU BRMN 5. Bespel des ensetg engespnnten nd f Zg ensprchten Blkenelements Bestmmng

Mehr

50 Matrixnormen und Eigenwertabschätzungen

50 Matrixnormen und Eigenwertabschätzungen 50 Matrxnormen und Egenwertabschätzungen 501 Motvaton De Berechnung der Egenwerte ener Matrx st aufwändg (vgl Kaptel 45, Kaptel 51) Kann man de Egenwerte ener Matrx mt gerngem Aufwand abschätzen? Des spelt

Mehr

Terme und Formeln Komplexe Zahlen

Terme und Formeln Komplexe Zahlen Terme und Formeln Komplexe Zhlen e ϕ + = 0 Rchrd Feynmn nnnte dese Glechung n senem Notzbuch de bemerkenswerteste Formel der Welt ; ndere nennen se de schönste Formel der Mthemtk. De Eulersche Identtät

Mehr

1.1 Grundbegriffe und Grundgesetze 29

1.1 Grundbegriffe und Grundgesetze 29 1.1 Grundbegrffe und Grundgesetze 9 mt dem udrtschen Temperturkoeffzenten 0 (Enhet: K - ) T 1 d 0. (1.60) 0 dt T 93 K Betrchtet mn nun den elektrschen Wderstnd enes von enem homogenen elektrschen Feld

Mehr

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ

P RS S. Definition : Beispiel : PQ und RS sind Repräsentanten des gleichen Vektors v. Man schreibt kurz, aber leider nicht ganz richtig : v = PQ I. Vektorräume ================================================================== 1. Geometrische Definition von Vektoren -----------------------------------------------------------------------------------------------------------------

Mehr

Einführung: Sequence Alignment

Einführung: Sequence Alignment lgorthmsche nendungen - Prktkum WS 7/8 ynmsche Progrmmerung / reedy-lgorthmen ufgen 8 - Hener Klocke Fchhochschule Köln Informtk Prktkum: ynmsche Progrmmerung / reedy-lgorthmen ufgen 8 9 ufge Kptel ynmsche

Mehr

1 Definition und Grundbegriffe

1 Definition und Grundbegriffe 1 Defnton und Grundbegrffe Defnton: Ene Glechung n der ene unbekannte Funkton y y und deren Abletungen bs zur n-ten Ordnung auftreten heßt gewöhnlche Dfferentalglechung n-ter Ordnung Möglche Formen snd:

Mehr

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan

Lineare Algebra IIa Vorlesung - Prof. Dr. Daniel Roggenkamp & Sven Balnojan Lneare Algebra IIa - 04 orlesung - Pro Dr Danel Roggenkamp & Sen Balnojan 93 Untäre ektorräume hermtesche Form au enem C ektorraum sesqulnear (ant-lnear m ersten lnear m zweten Argument (, w (w, (, 2 R

Mehr

Algebra - Lineare Abbildungen

Algebra - Lineare Abbildungen Algebr - Linere Abbildungen oger Burkhrdt (roger.burkhrdt@fhnw.ch) 8 Hochschule für Technik . Der Vektorrum Hochschule für Technik Hochschule für Technik 4 Vektorrum Definition: Ein Vektorrum über einen

Mehr

3 g-adische Ziffernentwicklung reeller Zahlen

3 g-adische Ziffernentwicklung reeller Zahlen 1 3 g-adche Zffernentwcklung reeller Zahlen In deem Kaptel e tet 2 g N und Z g = {0, 1, 2, 3,..., g 1} N. Motvaton: Wr wollen jede potve reelle Zahl x > 0 n der Ba g 2 dartellen (g-adche Dartellung von

Mehr

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA

Kleiner Fermatscher Satz, Chinesischer Restsatz, Eulersche ϕ-funktion, RSA Klener Fermatscher Satz, Chnesscher Restsatz, Eulersche ϕ-funkton, RSA Manfred Gruber http://www.cs.hm.edu/~gruber SS 2008, KW 15 Klener Fermatscher Satz Satz 1. Se p prm und a Z p. Dann st a p 1 mod p

Mehr

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x,

Analysis I. Vorlesung 17. Logarithmen. R R, x exp x, Prof. Dr. H. Brenner Osnabrück WS 2013/2014 Analyss I Vorlesung 17 Logarthmen Satz 17.1. De reelle Exponentalfunkton R R, x exp x, st stetg und stftet ene Bjekton zwschen R und R +. Bewes. De Stetgket

Mehr

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder -

Seminar Analysis und Geometrie Professor Dr. Martin Schmidt - Markus Knopf - Jörg Zentgraf. - Fixpunktsatz von Schauder - Unverstät Mannhem Fakultät für Mathematk und Informatk Lehrstuhl für Mathematk III Semnar Analyss und Geometre Professor Dr. Martn Schmdt - Markus Knopf - Jörg Zentgraf - Fxpunktsatz von Schauder - Ncole

Mehr

Copyright, Page 1 of 5 Der Faktorraum

Copyright, Page 1 of 5 Der Faktorraum www.mthemtik-netz.de Copright, Pge of 5 Der Fktorrum Ein sehr wichtiges Konstrukt, welches üerll in der Mthemtik Verwendung findet, ist der Fktorrum, oft uch Quotientenrum gennnt. Dieser ist selst ein

Mehr

Konkave und Konvexe Funktionen

Konkave und Konvexe Funktionen Konkave und Konvexe Funktonen Auch wenn es n der Wrtschaftstheore mest ncht möglch st, de Form enes funktonalen Zusammenhangs explzt anzugeben, so kann man doch n velen Stuatonen de Klasse der n Frage

Mehr

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013

5. Gruppenübung zur Vorlesung. Höhere Mathematik 1. Wintersemester 2012/2013 O. Alaya, S. Demrel M. Fetzer, B. Krnn M. Wed 5. Gruppenübung zur Vorlesung Höhere Mathematk Wntersemester /3 Dr. M. Künzer Prof. Dr. M. Stroppel Lösungshnwese zu den Hausaufgaben: Aufgabe H 6. Darstellungen

Mehr

18. Dynamisches Programmieren

18. Dynamisches Programmieren 8. Dynamsches Programmeren Dynamsche Programmerung we gerge Algorthmen ene Algorthmenmethode, um Optmerungsprobleme zu lösen. We Dvde&Conquer berechnet Dynamsche Programmerung Lösung enes Problems aus

Mehr

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung)

a) x 0, (Nichtnegativität) b) x = 0 x = 0, (Eindeutigkeit) c) αx = α x, (Skalierung) Definition 1.20 Ein metrischer Rum besteht us einer Menge X und einer Abbildung d : X X R, die jedem geordneten Pr von Elementen us X eine reelle Zhl zuordnet, d.h. (x,y) X X d(x,y) R. Diese Abbildung

Mehr

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren.

1.2. Orthogonale Basen und Schmistsche Orthogonalisierungsverfahren. .. Orthogonle Bsen und Schmistsche Orthogonlisierungsverfhren. Definition.. Eine Bsis B = { b, b,..., b n } heit orthogonl, wenn die Vektoren b i, i =,,..., n, prweise orthogonl sind, d.h. bi b j = fur

Mehr

MATRIZEN ... ::: =... 6) Nullmatrix 0: Alle Elemente sind gleich Null. Für jeden Typ gibt es genau eine Nullmatrix.

MATRIZEN ... ::: =... 6) Nullmatrix 0: Alle Elemente sind gleich Null. Für jeden Typ gibt es genau eine Nullmatrix. Fchhochschule Jen Mthemt-Formelsmmlung Prof Dr Johnnes Grütmnn MATRIZEN A m m ::: n n mn ) (m,n) wrd ls Tp der Mtr eechnet ) Ene Mtr vom Tp (,n) heßt Zelenvetor (-mtr) Ene Mtr vom Tp (m,) heßt Spltenvetor

Mehr

Diskrete Mathematik 1 WS 2008/09

Diskrete Mathematik 1 WS 2008/09 Ruhr-Unverstät Bochum Lehrstuhl für Kryptologe und IT-Scherhet Prof. Dr. Alexander May M. Rtzenhofen, M. Mansour Al Sawad, A. Meurer Lösungsblatt zur Vorlesung Dskrete Mathematk 1 WS 2008/09 Blatt 7 /

Mehr

Probeklausur Mathematik für Ingenieure C3

Probeklausur Mathematik für Ingenieure C3 Deprtment Mthemtik Dr. rer. nt. Lrs Schewe Mthis Sirvent Wintersemester 013/014 Probeklusur Mthemtik für Ingenieure C3 Anmerkungen zur Klusur: Die Arbeitszeit wird 90 Minuten betrgen. Sie können sämtliche

Mehr

Kapitel IV Euklidische Vektorräume. γ b

Kapitel IV Euklidische Vektorräume. γ b Kpitel IV Euklidische Vektorräume 1 Elementrgeometrie in der Eene Sei E die Zeicheneene In der Schule lernt mn: (11) Stz des Pythgors: Sei E ein Dreieck mit den Seiten, und c, und sei γ der c gegenüerliegende

Mehr

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten.

Das Bayessche Theorem ist ein Ergebnis aus der Wahrscheinlichkeitstheorie und liefert einen Zusammenhang zwischen bedingten Wahrscheinlichkeiten. ayessches Theorem Das ayessche Theorem st en Ergens aus der ahrschenlchetstheore und lefert enen Zusammenhang zwschen edngten ahrschenlcheten.. ayessches Theorem für Eregnsse Senen und zwe elege Eregnsse.

Mehr

1 Mehrdimensionale Analysis

1 Mehrdimensionale Analysis 1 Mehrdmensonale Analyss Bespel: De Gesamtmasse der Erde st ene Funton der Erddchte ρ Erde und des Erdradus r Erde De Gesamtmasse der Erde st dann m Erde = V Erde ρ Erde Das Volumen ener Kugel mt Radus

Mehr

Die Jordansche Normalform

Die Jordansche Normalform De Jordansche Normalform Danel Hug 29. Aprl 211 KIT Unverstät des Landes Baden-Württemberg und natonales Forschungszentrum n der Helmholtz-Gemenschaft www.kt.edu 1 Zerlegung n Haupträume 2 Fazt und nächstes

Mehr

Lineare Algebra und Numerische Mathematik für D-BAUG

Lineare Algebra und Numerische Mathematik für D-BAUG R Käppeli L Herrmnn W Wu Herbstsemester 206 Linere Algebr und Numerische Mthemtik für D-BAUG Beispiellösung für Serie 5 ETH Zürich D-MATH Aufgbe 5 5) Seien u und v Lösungen des LGS Ax = b mit n Unbeknnten

Mehr

2 Rohrleitungsnetzberechnung

2 Rohrleitungsnetzberechnung Vorlesungsskrpt Hydrulk II - Rohrletungsnetzberechnung. Krchhoffsche Regeln En Netz besteht us mehreren Rohsträngen, de n mehreren Punkten mtennder hydrulsch verbunden snd. (Sehe Abb. -) Abb. -: Rohrletungsnetz

Mehr

4.6 Das Pumping-Lemma für reguläre Sprachen:

4.6 Das Pumping-Lemma für reguläre Sprachen: Theoretsche Informatk 1 Vorlesungsskrpt vom Fretag, 30 Jun 000 Index: Erstellt von: (Matrkelnummer: 70899) Sete : 46 Das Pumpng-Lemma für reguläre Sprachen 1 Satz W 1 Zugrundelegende Idee des Pumpng-Lemma

Mehr

Brückenkurs Lineare Gleichungssysteme und Vektoren

Brückenkurs Lineare Gleichungssysteme und Vektoren Brückenkurs Linere Gleichungssysteme und Vektoren Dr Alessndro Cobbe 30 September 06 Linere Gleichungssyteme Ws ist eine linere Gleichung? Es ist eine lgebrische Gleichung, in der lle Vriblen nur mit dem

Mehr

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel!

z.b. Münzwurf: Kopf = 1 Zahl = 2 oder z.b. 2 Würfel: Merkmal = Summe der Augenzahlen, also hier: Bilde die Summe der Augenzahlen der beiden Würfel! Aufgabe : Vorbemerkung: Ene Zufallsvarable st ene endeutge Funkton bzw. ene Abbldungsvorschrft, de angbt, auf welche Art aus enem Elementareregns ene reelle Zahl gewonnen wrd. x 4 (, ) z.b. Münzwurf: Kopf

Mehr

Spiele und Codes. Rafael Mechtel

Spiele und Codes. Rafael Mechtel Spele und Codes Rafael Mechtel Koderungstheore Worum es geht Über enen Kanal werden Informatonen Übertragen. De Informatonen werden dabe n Worte über enem Alphabet Q übertragen, d.h. als Tupel w = (w,,

Mehr

2 Matrizen (A + B) + C = A + (B + C) (A + B)C = AC + BC. Seien A R m n und B = (b (1)... b (p) ) R n p zwei Matrizen. Dann gilt

2 Matrizen (A + B) + C = A + (B + C) (A + B)C = AC + BC. Seien A R m n und B = (b (1)... b (p) ) R n p zwei Matrizen. Dann gilt Lneare Algebra Wel Gao September Gauss sches Elmnatonsverfahren a x + a x + + a n x n = b a x + a x + + a n x n = b a m x + a m x + + a mnx n = b m Das LGS mt m Glechungen und n Unbekannten n ene erweterte

Mehr

Lineare Regression (1) - Einführung I -

Lineare Regression (1) - Einführung I - Lneare Regresson (1) - Enführung I - Mttels Regressonsanalysen und kompleeren, auf Regressonsanalysen aserenden Verfahren können schenar verschedene, jedoch nenander üerführare Fragen untersucht werden:

Mehr

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet.

Determinanten - I. den i-ten Zeilenvektor der n n-matrix A bezeichnet. Determnanten - I Ene Determnante st ene Abbldung, welche ener quadratschen (!) Matrx ene Zahl zuordnet. Wr verwenden n desem Zusammenhang de Schrebwese A = a 2, wobe den -ten Zelenvektor der n n-matrx

Mehr

Kennlinienaufnahme des Transistors BC170

Kennlinienaufnahme des Transistors BC170 Kennlnenufnhme des Trnsstors 170 Enletung polre Trnsstoren werden us zwe eng benchbrten pn-übergängen gebldet. Vorrusetzung für ds Funktonsprnzp st de gegensetge eenflussung beder pn-übergänge, de nur

Mehr

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski Tel.:

MST Übung 3 Mathematik 2 Prof.Dr.B.Grabowski   Tel.: MST Übug Mthemtk Prof.Dr.B.Grbowsk e-ml: grbowsk@htw-srld.de Tel.: 87- Iverse Mtrze ufgbe : Bereche Se de Iverse Mtr zu folgede Mtrze. Prüfe Se Ihr Ergebs, dem Se - bereche! b dg-,,-,,-, c 7 d ufgbe :

Mehr

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM)

6. Hilbertraum und lineare Operatoren (mathematische Grundlagen QM) 6. Hlbertraum und lneare Operatoren (mathematsche Grundlagen QM) 6.1 Hlbertraum Raum = mathematsches Konstrukt: Vektorraum a) Der lneare komplexe Raum st de Menge von mathematschen Objekten mt folgenden

Mehr

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n

Regressionsgerade. x x 1 x 2 x 3... x n y y 1 y 2 y 3... y n Regressonsgerade x x x x 3... x n y y y y 3... y n Bem Auswerten von Messrehen wrd häufg ene durch theoretsche Überlegungen nahegelegte lneare Bezehung zwschen den x- und y- Werten gesucht, d.h. ene Gerade

Mehr

Elemente der Mathematik - Sommer 2016

Elemente der Mathematik - Sommer 2016 Elemente der Mathematk - Sommer 2016 Prof Dr Matthas Lesch, Regula Krapf Lösungen Übungsblatt 3 Aufgabe 9 (10 Punkte) Das Horner-Schema st ene Methode zum Auswerten enes Polynoms n a0 x an der Stelle s

Mehr

Konstruktionen mit Zirkel und Lineal

Konstruktionen mit Zirkel und Lineal Konstruktonen mt Zrkel und Lnel Wlnd Schmle mehrfch üerretetes Skrpt zuletzt gerngfügg geändert m Dezemer 008 Voremerkungen De klssschen Konstruktonsproleme, um de es m Folgenden geht, snd: Qudrtur des

Mehr

Lineare Algebra B. Herzog, Universität Leipzig, Institut für Mathematik und Informatik, Vorlesung des ersten Studienjahrs im Herbstsemester 2007

Lineare Algebra B. Herzog, Universität Leipzig, Institut für Mathematik und Informatik, Vorlesung des ersten Studienjahrs im Herbstsemester 2007 Lneare Algebra B. Herzog, Unverstät Lepzg, Insttut für Mathematk und Informatk, Vorlesung des ersten Studenjahrs m Herbstsemester 2007 Hnwese Aufgaben Am Anfang jeder Woche werden jewels 3 Aufgaben ns

Mehr

Automaten und formale Sprachen Notizen zu den Folien

Automaten und formale Sprachen Notizen zu den Folien 3 Endliche Automten Automten und formle Sprchen Notizen zu den Folien Üerführungsfunction eines DFA (Folie 92) Wie sieht die Üerführungfunktion us? δ : Z Σ Z Ds heißt: Ein Pr us Zustnd und Alphetsymol

Mehr

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m.

Satz 6.5 (Mittelwertsatz der Integralrechnung) Sei f : [a, b] R stetig. Dann gibt es ein ξ [a, b], so dass. b a. f dx = (b a)f(ξ) f dx (b a)m. Stz 6.5 (Mittelwertstz der Integrlrechnung) Sei f : [, b] R stetig. Dnn gibt es ein ξ [, b], so dss 9:08.06.2015 gilt. f dx = (b )f(ξ) Lemm 6.6 Sei f : [, b] R stetig und m f(x) M für lle x [, b]. Dnn

Mehr

Jonglieren und Mathematik

Jonglieren und Mathematik Prof. Dr. Mchel Esermnn Wllkommen! Insttut für Geometre und Topologe Jongleren und Mthemtk 002 Ich begrüße Se und Euch herzlch zum Mthemtk-Tg! Es geht we mmer um Mthemtk... heute spezell ums Jongleren.

Mehr

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik

Projekt 2HEA 2005/06 Formelzettel Elektrotechnik Projekt 2HEA 2005/06 Formelzettel Elektrotechnk Telübung: nbelsteter Spnnungsteler Gruppentelnehmer: jnovc, Pcr Abgbedtum: 25.01.2006 jnovc, Pcr Inhltsverzechns 2HEA INHALTSVEZEICHNIS 1. Aufgbenstellung...

Mehr

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog

Das zum dualen Problem (10.2) gehörige Barriere-Problem lautet analog 60 Kaptel 2. Lneare Optmerung 10 Innere-Punkte-Verfahren Lteratur: Geger, Kanzow, 2002, Kaptel 4.1 Innere-Punkte-Verfahren (IP-Verfahren) oder nteror pont methods bewegen sch m Gegensatz zum Smplex-Verfahren

Mehr

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab

Lösungen zu Übungsaufgaben Angewandte Mathematik MST Blatt 6 Matlab Lösungen zu Übungsufgben Angewndte Mthemtk MST Bltt Mtlb Prf.Dr.B.rbwsk Zu Aufgbe ) Errbeten Se sch begefügtes Mterl zur Trpezmethde und zur Smpsnschen Fssregel! (us Ppul, Mthemtk für Ingeneure, Bnd Kp.V.)

Mehr

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig:

4.5 Lemma Das folgende Problem Par{ 1, 0, 1}max p ist NP-vollständig: 4.5 Lemma Das folgende Problem Par, 0, }max st NP-vollständg: Inut: d, m N mt m d, α N und x,...,x m, 0, } d l.u.. Frage: Exsteren κ,...,κ m, }, sodass m κ x α? Bemerkung: Beachte, dass wegen Satz 4.2

Mehr

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf.

Rekurrenz. Algorithmen rufen sich selbst (rekursiv) auf. Rekurrez Rekurso: Algorthme rue sch selst rekursv u. Rekurrez: Ds Luzetverhlte zw. der Specherpltzedr vo rekursve Algorthme k der Regel durch ee Rekursosormel recurrece, RF eschree werde. Rekurrez Bespel:

Mehr

1.1 Das Prinzip von No Arbitrage

1.1 Das Prinzip von No Arbitrage Fnanzmärkte H 2006 Tr V Dang Unverstät Mannhem. Das Prnzp von No Arbtrage..A..B..C..D..E..F..G..H Das Framework Bespele Das Fundamental Theorem of Fnance Interpretaton des Theorems und Zustandsprese No

Mehr

Kurzzusammenfassung wichtiger mathematischer Formeln

Kurzzusammenfassung wichtiger mathematischer Formeln Enführung n de theoretsche Physk II, Sommersemester 205 mrtn.ecksten@mpsd.cfel.de Kurusmmenfssung wchtger mthemtscher Formeln Krummlnge Koordntensysteme m R n Ene dfferenerbre, umkehrbr endeutge Abbldung

Mehr

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen

Näherungsverfahren. Wiederhole den Algorithmusbegriff. Erläutere die Begriffe: Klasse der NP-Probleme. Probleme. Probleme. Approximative Algorithmen Näherungsverfahren Wederhole den Algorthmusbegrff. Erläutere de Begrffe: Klasse der P-ProblemeP Probleme Klasse der NP-Probleme Probleme Approxmatve Algorthmen Stochastsche Algorthmen ALGORITHMEN Def.:

Mehr

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt

1 Metrische Räume. Sei X eine nichtleere Menge. Definition 1.1. Eine Abbildung: d : X X R heißt Metrik auf X, falls für alle x, y, z X gilt Metrische Räume Sei X eine nichtleere Menge. Definition.. Eine Abbildung: d : X X R heißt Metrik uf X, flls für lle x, y, z X gilt (i) d(x, y) 0, (ii) d(x, y) = d(y, x), (iii) d(x, y) d(x, z) + d(z, y)

Mehr

Weitere NP-vollständige Probleme

Weitere NP-vollständige Probleme Wetere NP-vollständge Probleme Prosemnar Theoretsche Informatk Marten Tlgner December 10, 2014 Wr haben letzte Woche gesehen, dass 3SAT NP-vollständg st. Heute werden wr für enge wetere Probleme n NP zegen,

Mehr

Institut für Technische Chemie Technische Universität Clausthal

Institut für Technische Chemie Technische Universität Clausthal Insttut für Technsche Cheme Technsche Unverstät Clusthl Technsch-chemsches Prktkum TCB Versuch: Wärmeübertrgung: Doppelrohrwärmeustuscher m Glechstrom- und Gegenstrombetreb Enletung ür de Auslegung von

Mehr

1 Differentialrechnung in mehreren Variablen

1 Differentialrechnung in mehreren Variablen 1 Dfferentalrechnung n mehreren Varablen 1.1 De Geometre eukldscher Räume Zur Ernnerung De Elemente des R n schreben wr normalerwese als Zelenvektoren: x = (x 1,..., x n ). Kommen Matrzen ns Spel, so st

Mehr

Brüche gleichnamig machen

Brüche gleichnamig machen Brüche gleichnmig mchen L Ds Erweitern von Brüchen (siehe L ) ist lediglich ein Instrument, ds vorwiegend eingesetzt wird, um Brüche mit unterschiedlichem Divisor gleichnmig zu mchen. Brüche gleichnmig

Mehr

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08

12. Vortrag Verzweigung. Seminar Zahlentheorie WS 07/08 12. Votag Vezwegung Semna Zahlentheoe WS 07/08 Pof. D. Tosten Wedhon Unvestät Padebon von Geda Weth und Ingo Plaschczek 22. Janua 2008 12. Vezwegung (A) p-adsche Bewetung enes gebochenen Ideals n enem

Mehr

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 )

( ) γ. (t 1 ) (t 2 ) = Arg γ 2(t 2 ) Funktonentheore, Woche 10 Bholomorphe Abbldungen 10.1 Konform und bholomorph Ene konforme Abbldung erhält Wnkel und Orenterung. Damt st folgendes gement: Wenn sch zwe Kurven schneden, dann schneden sch

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Grundlagen der Elektrotechnik II (GET II)

Grundlagen der Elektrotechnik II (GET II) Grundlgen der Elektrotechnk (GET ) Vorlesung m 8.07.005 Do. :5-3.45 Uhr;. 603 (Hörsl) Dr.-ng. ené Mrklen E-Ml: mrklen@un-kssel.de Tel.: 056 804 646; Fx: 056 804 6489 UL: http://www.tet.e-technk.un-kssel.de

Mehr

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1.

9 Komplexe Zahlen ( ) ( ) 9.1 Ziele. 9.2 Warum braucht man komplexe Zahlen? 9.3 Darstellung von komplexen Zahlen. r 2. j 2. j 1. Mathematk I / Komplexe Zahlen 9 Komplexe Zahlen 9. Zele Am Ende deses Kaptels hast Du ene Grundvorstellung was komplexe Zahlen snd. Du kannst se grafsch darstellen und enfache Berechnungen durchführen.

Mehr

Einführung in die Methode der Finiten Elemente

Einführung in die Methode der Finiten Elemente Enührung n de Methode der Fnten Elemente Hrro Schmelng Geophys. Semnr 11. 5. 04 Hstore - Ingeneurwssenschten, Strukturmechnk - Mthemtk/Physk: llg. Theore, nwendbr u belebge prtelle Derentlglechungen PDG

Mehr

11 Charaktere endlicher Gruppen

11 Charaktere endlicher Gruppen $Id: chaakte.tex,v.4 2009/07/3 4:38:36 hk Exp $ Chaaktee endlche Guppen W hatten gesehen, dass w fü enge Guppen G allen mt Hlfe des Satz 3 de Anzahl und de Dmensonen de eduzblen Dastellungen beechnen können.

Mehr

Der Satz von COOK (1971)

Der Satz von COOK (1971) Der Satz von COOK (1971) Voraussetzung: Das Konzept der -Band-Turng-Maschne (TM) 1.) Notatonen: Ene momentane Beschrebung (mb) ener Konfguraton ener TM st en -Tupel ( α1, α2,..., α ) mt α = xqy, falls

Mehr

Aufgaben und Lösungen. Vorläufige Fassung für die Homepage

Aufgaben und Lösungen. Vorläufige Fassung für die Homepage ufgen und Lösungen 1. Runde 018 Vorläufge Fssung für de Homepge» KORREKTURKOMMISSION KRL FEGERT» UNESWETTEWER MTHEMTIK Kortrjer Strße 1, 53177 onn Postfh 0 0 01, 5313 onn Tel.: (0 8) 9 59 15-0, Fx: (0

Mehr

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung)

Automaten und Formale Sprachen alias Theoretische Informatik. Sommersemester 2012. Sprachen. Grammatiken (Einführung) Wörter, Grmmtiken und die Chomsky-Hierrchie Sprchen und Grmmtiken Wörter Automten und Formle Sprchen lis Theoretische Informtik Sommersemester 2012 Dr. Snder Bruggink Üungsleitung: Jn Stückrth Alphet Ein

Mehr

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt

2 Lineare Operatoren. T(αx + βy) = αtx + βty x,y X, α, β K. (b) Ist T linear, so heißt 2 Linere Opertoren Im Folgenden seien X,Y, Z stets normierte Räumen über dem selben Körper K = C oder K = R. 2.1. Definition. () Eine Abbildung T : X Y heißt liner, flls T(αx + βy) = αtx + βty x,y X, α,

Mehr

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR

Mathematik: Mag. Schmid Wolfgang Arbeitsblatt Semester ARBEITSBLATT 14 MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Mthemtik: Mg. Schmid Wolfgng Areitsltt. Semester ARBEITSBLATT MULTIPLIKATION EINES VEKTORS MIT EINEM SKALAR Zunächst einml müssen wir den Begriff Sklr klären. Definition: Unter einem Sklr ersteht mn eine

Mehr

Lineare Optimierung Dualität

Lineare Optimierung Dualität Kaptel Lneare Optmerung Dualtät D.. : (Dualtät ) Folgende Aufgaben der lnearen Optmerung heßen symmetrsch dual zuenander: und { z = c x Ax b x } max, 0 { Z b A c } mn =, 0. Folgende Aufgaben der lnearen

Mehr

Seminar Einführung in die Kunst mathematischer Ungleichungen

Seminar Einführung in die Kunst mathematischer Ungleichungen Semnar Enführung n de Kunst mathematscher Unglechungen Cauchys erste Unglechung und de Unglechung vom arthmetschen und geometrschen Mttel Sopha Volmerng. prl 0 Inhaltsverzechns Cauchys erste Unglechung.

Mehr

8 Längenberechnungen Winkelberechnungen - Skalarprodukt

8 Längenberechnungen Winkelberechnungen - Skalarprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt 8 Längenberechnungen Winkelberechnungen - Sklrprodukt Wir wissen, wie mn zwei Vektoren und b ddiert b b. Mn knn zwei Vektoren ber uch miteinnder multiplizieren!

Mehr

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen)

VII. Folgen und Reihen von Funktionen (Vertauschung von Grenzprozessen) VII. Folgen und Reihen von Funktionen (Vertuschung von Grenzprozessen) Definition. Sei {f n } eine Folge von Funktionen, die uf einer Menge E definiert sind. Die Folgen der Funktionswerte {f n (x)} seien

Mehr

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen

Unter der Drehgruppe verstehen wir diegruppe der homogenen linearen Transformationen Darstellunstheore der SO() und SU() Powtschnk Alexander. Defnton Darstellun Ene Darstellun ener Gruppe G st homomorphe Abbldun von deser Gruppe auf ene Gruppe nchtsnulärer lnearer Operatoren auf enem Vektorraum

Mehr

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum

3.1 Definition, Einheitsvektoren, Komponenten, Rechenregeln, Vektorraum . Vktorn. Dfnton, Enhtsvktorn, Komponntn, Rchnrgln, Vktorrum Nn sklrn (Zhln mt Mßnht w Mss, Enrg, Druck usw.) wrdn n dr Physk vktorll Größn ("Pfl" mt Rchtung und Läng) vrwndt: Ortsvktor, Gschwndgkt, Vrschung,

Mehr

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen

Lineare Regression. Stefan Keppeler. 16. Januar Mathematik I für Biologen, Geowissenschaftler und Geoökologen Mathematk I für Bologen, Geowssenschaftler und Geoökologen 16. Januar 2012 Problemstellung Bespel Maß für Abwechung Trck Mnmum? Exponentalfunktonen Potenzfunktonen Bespel Problemstellung: Gegeben seen

Mehr

/LQHDUH*OHLFKXQJVV\VWHPH

/LQHDUH*OHLFKXQJVV\VWHPH /LQHDUH*OHLFKXQJVV\VWHPH (für Grund- und Leistungskurse Mthemtik) 6W55DLQHU0DUWLQ(KUHQE UJ*\PQDVLXP)RUFKKHLP Nch dem Studium dieses Skripts sollten folgende Begriffe eknnt sein: Linere Gleichung; homogene

Mehr

Serie 13 Lösungsvorschläge

Serie 13 Lösungsvorschläge D-Mth Mss und Integrl FS 204 Prof. Dr. D. A. Slmon Serie 3 Lösungsvorschläge. Sei I := [, b] R ein kompktes Intervll und sei B 2 I die Borel-σ-Algebr. Def. Eine Funktion f : I R heisst von beschränkter

Mehr

Umwandlung von endlichen Automaten in reguläre Ausdrücke

Umwandlung von endlichen Automaten in reguläre Ausdrücke Umwndlung von endlichen Automten in reguläre Ausdrücke Wir werden sehen, wie mn us einem endlichen Automten M einen regulären Ausdruck γ konstruieren knn, der genu die von M kzeptierte Sprche erzeugt.

Mehr

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten

Grundlagen der Theoretischen Informatik, WS11/12 Minimale Automaten Fkultät IV Deprtment Mthemtik Lehrstuhl für Mthemtische Logik und Theoretische Informtik Prof. Dr. Dieter Spreen Dipl.Inform. Christin Uhrhn Grundlgen der Theoretischen Informtik, WS11/12 Minimle Automten

Mehr

12 UMPU Tests ( UMP unbiased )

12 UMPU Tests ( UMP unbiased ) 89 1 UMPU Tests ( UMP unbased ) Nach Bemerkung 11.8(b) exstert m Allgemenen ken zwesetger UMP- Test zu enem Nveau α. Deshalb Enschränkung auf unverfälschte Tests: ϕ Φ α heßt unverfälscht (unbased) zum

Mehr

10: Lineare Abbildungen

10: Lineare Abbildungen Chr.Nelius: Linere Alger SS 2008 1 10: Linere Aildungen 10.1 BEISPIEL: Die Vektorräume V 2 und Ê 2 hen diegleiche Struktur. Es git eine ijektive Aildung f : V 2 Ê 2, die durch die Vorschrift definiert

Mehr

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }.

Lösung zur Klausur. Grundlagen der Theoretischen Informatik. 1. Zeigen Sie, dass die folgende Sprache regulär ist: w {a, b} w a w b 0 (mod 3) }. Lösung zur Klusur Grundlgen der Theoretischen Informtik 1. Zeigen Sie, dss die folgende Sprche regulär ist: { w {, } w w 0 (mod 3) }. Lösung: Wir nennen die Sprche L. Eine Sprche ist genu dnn regulär,

Mehr

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum

W08. Wärmedämmung. Q = [λ] = W m -1 K -1 (1) d Bild 1: Wärmeleitung. Physikalisches Praktikum W08 Physklsches Prktkum Wärmedämmung En Modellhus mt usechselbren Setenänden dent zur Bestmmung von Wärmedurchgngszhlen (k-werten) verschedener Wände und Fenster soe zur Ermttlung der Wärmeletfähgket verschedener

Mehr