Algorithm Engineering was hat das mit der Praxis zu tun?

Größe: px
Ab Seite anzeigen:

Download "Algorithm Engineering was hat das mit der Praxis zu tun?"

Transkript

1 Algorithm Engineering was hat das mit der Praxis zu tun? design analyze Algorithmics implement experiment 33

2 Algorithmentheorie (Karikatur) models design Theory Practice analysis perf. guarantees deduction implementation applications 34

3 Algorithmik als Algorithm Engineering Algorithm Engineering Analyse Deduktion Leistungs garantien realistische Modelle 1 Entwurf 2 falsifizierbare 3 Hypothesen 5 Induktion 4 Implementierung Algorithmen bibliotheken 6 reale Eingaben Experimente 7 Anwendungen 35

4 Zurück zur Langzahlmultiplikation Zierngröÿe Hardware-Fähigkeiten z. B. 32 Bit Schulmultiplikation für kleine Eingaben Assembler, SIMD, Karatsuba, n = 2048 Karatsuba, n = recursion threshold 36

5 Skalierung 10 school method Karatsuba4 Karatsuba32 Asymptotik setzt sich durch Konstante Faktoren oft Implementierungsdetail time [sec] e n

6 Blick über den Tellerrand Bessere Potenzen durch Aufspalten in mehr Teile Schnelle Fourier Transformation O(n) Multiplikationen von O(log n)-bit Zahlen [Schönhage-Strassen 1971]: Bitkomplexität O(n log n log log n) [Fürer 2007]: Bitkomplexität 2 O(log n) n log n Praxis: Karatsuba-Multiplikation ist nützlich für Zahlenlängen aus der Kryptographie GnuPG, OpenSSL verwenden Karatsuba (ab best. Bitlänge) { Iterierter Logarithmus: log 0 falls n 1 n = 1 + log log n sonst 38

7 Einführendes 39

8 Überblick Algorithmenanalyse Maschinenmodell Pseudocode Codeannotationen Mehr Algorithmenanalyse Graphen 40

9 (Asymptotische) Algorithmenanalyse Gegeben: Ein Programm Gesucht: Laufzeit T (I ) (# Takte), eigentlich für alle Eingaben I (!) (oder auch Speicherverbrauch, Energieverbrauch,... ) Erste Vereinfachung: Worst case: T (n) = max I =n T (I ) (Später mehr: average case, best case, die Rolle des Zufalls, mehr Parameter) T(n) Instanzen mit I =n 41

10 Zweite Vereinfachung: Asymptotik O(f (n)) = {g(n) : c > 0 : n 0 N + : n n 0 : g(n) c f (n)} höchstens Ω(f (n)) = {g(n) : c > 0 : n 0 N + : n n 0 : g(n) c f (n)} mindestens Θ(f (n)) = O(f (n)) Ω(f (n)) genau o(f (n)) = {g(n) : c > 0 : n 0 N + : n n 0 : g(n) c f (n)} weniger ω(f (n)) = {g(n) : c > 0 : n 0 N + : n n 0 : g(n) c f (n)} mehr 42

11 O-Kalkül Rechenregeln Schludrigkeit: implizite Mengenklammern. Lese `f (n) = E' als `{f (n)} E' u. s. w. k i=0 cf (n) Θ(f (n)) für jede positive Konstante c a i n i O(n k ) f (n) + g(n) Ω(f (n)), f (n) + g(n) O(f (n)) falls g(n) = O(f (n)), O(f (n)) O(g(n)) = O(f (n) g(n)). 43

12 Maschinenmodell: RAM (Random Access Machine) S 1 2 Program Control... R 1 load 2... store k Θ(log Space) <>= + */&v~ Moderne (RISC) Adaption des von Neumann-Modells [von Neumann 1945] 44

13 Register S 1 2 Program Control... R 1 load 2... store k Θ(log Space) <>= + */&v~ k (irgendeine Konstante) Speicher R 1,...,R k für (kleine) ganze Zahlen 45

14 Hauptspeicher S 1 2 Program Control... R 1 load 2... store k Θ(log Space) <>= + */&v~ Unbegrenzter Vorrat an Speicherzellen S[1], S[2]... für (kleine) ganze Zahlen 46

15 Speicherzugri S 1 2 Program Control... R 1 load 2... <>= + */&v~ store k Θ(log Speicher) R i := S[R j ] lädt Inhalt von Speicherzelle S[R j ] in Register R i. S[R j ]:= R i speichert Register R i in Speicherzelle S[R j ]. 47

16 Rechnen S 1 2 Program Control... R 1 load 2... store k Θ(log Space) <>= + */&v~ R i := R j R l Registerarithmetik. ` ' ist Platzhalter für eine Vielzahl von Operationen Arithmetik, Vergleich, Logik 48

17 Bedingte Sprünge S 1 2 Program Control... R 1 load 2... store k Θ(log Space) <>= + */&v~ JZ j, R i Setze Programmausführung an Stelle j fort falls R i = 0 49

18 Kleine ganze Zahlen? Alternativen: Konstant viele Bits (64?): theoretisch unbefriedigend, weil nur endlich viel Speicher adressierbar endlicher Automat Beliebige Genauigkeit: viel zu optimistisch für vernünftige Komplexitätstheorie. Beispiel: n-maliges Quadrieren führt zu einer Zahl mit 2 n Bits. OK für Berechenbarkeit Genug um alle benutzten Speicherstellen zu adressieren: bester Kompromiss. 50

19 Algorithmenanalyse im RAM-Modell Zeit: Ausgeführte Befehle zählen, d. h. Annahme 1 Takt pro Befehl. Nur durch späteres O( ) gerechtfertigt! Ignoriert Cache, Pipeline, Parallelismus... Platz: Etwas unklar: letzte belegte Speicherzelle? Anzahl benutzter Speicherzellen? Abhängigkeit von Speicherverwaltungsalgorithmen? Hier: Es kommt eigentlich nie drauf an. 51

20 Mehr Maschinenmodell Cache: schneller Zwischenspeicher begrenzte Gröÿe kürzlich/häug zugegriene Daten sind eher im Cache blockweiser Zugri Zugri auf konsekutive Speicherbereiche sind schnell Parallelverarbeitung: Mehrere Prozessoren unabhängige Aufgaben identizieren mehr in TI, Algorithmen II, Programmierparadigmen,... 52

21 Mehr Maschinenmodell S 1 2 Caches Program Control... R k Netzwerk 53

22 Pseudocode just in time Beispiel: Class Complex(x, y : Number) of Number Number r:= x Number i:= y Function abs : Number return r 2 + i 2 Function add(c : Complex) : Complex return Complex(r + c.r,i + c.i) 54

23 Design by Contract / Schleifeninvarianten assert: Aussage über Zustand der Programmausführung Vorbedingung: Bedingung für korrektes Funktionieren einer Prozedur Nachbedingung: Leistungsgarantie einer Prozedur, falls Vorbedingung erfüllt Invariante: Aussage, die an vielen Stellen im Programm gilt Schleifeninvariante: gilt vor / nach jeder Ausführung des Schleifenkörpers Datenstrukturinvariante: gilt vor / nach jedem Aufruf einer Operation auf abstraktem Datentyp Hier: Invarianten als zentrales Werkzeug für Algorithmenentwurf und Korrektheitsbeweis. 55

24 Beispiel (Ein anderes als im Buch) Function power(a : R; n 0 : N) : R p=a : R; r=1 : R; n=n 0 : N while n > 0 do if n is odd then n ; r:= r p else (n, p):= (n/2, p p) return r 56

25 Beispiel (Ein anderes als im Buch) Function power(a : R; n 0 : N) : R assert n 0 0 and (a = 0 n 0 = 0) // Vorbedingung p=a : R; r=1 : R; n=n 0 : N // p n r = a n 0 while n > 0 do invariant p n r = a n 0 // Schleifeninvariante (*) if n is odd then n ; r:= r p else (n, p):= (n/2, p p) assert r = a n 0 // (*) n = 0 Nachbedingung return r 57

26 Rechenbeispiel: 2 5 p=a = 2 : R; r=1 : R; n=n 0 = 5 : N // = 2 5 while n > 0 do if n is odd then n ; r:= r p else (n, p):= (n/2, p p) Iteration p r n p n r

27 Beispiel Function power(a : R; n 0 : N) : R assert n 0 0 and (a = 0 n 0 = 0) // Vorbedingung p=a : R; r=1 : R; n=n 0 : N // p n r = a n 0 while n > 0 do invariant p n r = a n 0 // Schleifeninvariante (*) if n is odd then n ; r:= r p else (n, p):= (n/2, p p) assert r = a n 0 // (*) n = 0 Nachbedingung return r neues n {}}{ Fall n ungerade: Invariante erhalten wegen p n r = p n 1 pr }{{} neues r 59

28 Beispiel Function power(a : R; n 0 : N) : R assert n 0 0 and (a = 0 n 0 = 0) // Vorbedingung p=a : R; r=1 : R; n=n 0 : N // p n r = a n 0 while n > 0 do invariant p n r = a n 0 // Schleifeninvariante (*) if n is odd then n ; r:= r p else (n, p):= (n/2, p p) assert r = a n 0 // (*) n = 0 Nachbedingung return r Fall n gerade: Invariante erhalten wegen p n = (p p) }{{} neues p neues n {}}{ n/2 60

29 Programmanalyse Die fundamentalistische Sicht: Ausgeführte RAM-Befehle zählen einfache Übersetzungsregeln {}}{ Pseudo-Code Maschinenbefehle Idee: O( )-Notation vereinfacht die direkte Analyse des Pseudocodes. T (I ; I ) = T (I ) + T (I ). T (if C then I else I ) O(T (C) + max(t (I ), T (I ))). T (repeat I until C) O( i T (i-te Iteration)) Rekursion Rekurrenzrelationen 61

30 Schleifenanalyse Summen ausrechnen Das lernen Sie in Mathe Beispiel: Schulmultiplikation 62

31 Eine Rekurrenz für Teile und Herrsche Für positive Konstanten a, b, c, d, sei n = b k für ein k N. { a falls n = 1 Basisfall r(n) = cn + dr(n/b) falls n > 1 teile und herrsche. n cn 1 2 d n/b n/b... n/b a a a a... a a k 63

32 Master Theorem (Einfache Form) Für positive Konstanten a, b, c, d, sei n = b k für ein k N. { a falls n = 1 Basisfall r(n) = cn + dr(n/b) falls n > 1 teile und herrsche. Es gilt Θ(n) falls d < b r(n) = Θ(n log n) falls d = b Θ ( n log d) b falls d > b. 64

33 Beweisskizze Auf Ebene i haben wir d i n/b i = b k i ( d i c n d = b i cn b ) i ad k 65

34 Beweisskizze Fall d < b geometrisch schrumpfende Reihe erste Rekursionsebene kostet konstanten Teil der Arbeit ( ) r(n) = a }{{ d k k 1 i d } + cn Θ(n) b i=0 o(n) }{{} O(1) d=2, b=4 66

35 Beweisskizze Fall d = b gleich viel Arbeit auf allen k = log b (n) Ebenen. r(n) = an + cn log b n Θ(n log n) d=b=2 67

36 Beweisskizze Fall d > b geometrisch wachsende Reihe letzte Rekursionsebene kostet konstanten Teil der Arbeit ( ) i d ) r(n) = ad k + cn Θ(n log d b b k 1 i=0 beachte: d k = 2 k log d = 2 k log b log d log b = b k log d log b = b k log b d = n log b d d=3, b=2 68

Algorithmen I. Prof. Jörn Müller-Quade Institut für theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 26.04.2017 Institut für theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Grundlagen: Algorithmen und Datenstrukturen Prof. Dr. Hanjo Täubig Lehrstuhl für Effiziente Algorithmen (Prof. Dr. Ernst W. Mayr) Institut für Informatik Technische Universität München Sommersemester 2010

Mehr

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten.

2. Grundlagen. Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. 2. Grundlagen Beschreibung von Algorithmen durch Pseudocode. Korrektheit von Algorithmen durch Invarianten. Laufzeitverhalten beschreiben durch O-Notation. 1 Beispiel Minimum-Suche Eingabe bei Minimum

Mehr

Vorlesung Datenstrukturen

Vorlesung Datenstrukturen Vorlesung Datenstrukturen Einleitung und Grundlagen Maike Buchin 18.4.2017 Verantwortliche Dozentin Organisation der Übungen Übungsleiter Korrekteure Maike Buchin Maike.Buchin@rub.de Raum NA 1/70 Sprechzeiten:

Mehr

1. Übung Algorithmen I

1. Übung Algorithmen I Timo Bingmann, Christian Schulz INSTITUT FÜR THEORETISCHE INFORMATIK, PROF. SANDERS 1 KIT Timo Universität Bingmann, des LandesChristian Baden-Württemberg Schulz und nationales Forschungszentrum in der

Mehr

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1) für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität): Ordnen Sie die folgenden Funktionen nach

Mehr

2. Effizienz von Algorithmen

2. Effizienz von Algorithmen Effizienz von Algorithmen 2. Effizienz von Algorithmen Effizienz von Algorithmen, Random Access Machine Modell, Funktionenwachstum, Asymptotik [Cormen et al, Kap. 2.2,3,4.2-4.4 Ottman/Widmayer, Kap. 1.1]

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 122 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 123 Das Suchproblem Gegeben Menge von Datensätzen.

Mehr

3.3 Laufzeit von Programmen

3.3 Laufzeit von Programmen 3.3 Laufzeit von Programmen Die Laufzeit eines Programmes T(n) messen wir als die Zahl der Befehle, die für die Eingabe n abgearbeitet werden Betrachten wir unser Programm zur Berechnung von Zweierpotenzen,

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Universität Innsbruck Institut für Informatik Zweite Prüfung 16. Oktober 2008 Algorithmen und Datenstrukturen Name: Matrikelnr: Die Prüfung besteht aus 8 Aufgaben. Die verfügbaren Punkte für jede Aufgabe

Mehr

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array

Das Suchproblem 4. Suchen Das Auswahlproblem Suche in Array Das Suchproblem Gegeben. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.-3,2.2-3,2.3-] Menge von Datensätzen. Beispiele

Mehr

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510

Konvexe Hülle. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links), konvexe Menge (rechts) KIT Institut für Theoretische Informatik 510 Konvexe Hülle Definition konvexe Menge: Für je zwei beliebige Punkte, die zur Menge gehören, liegt auch stets deren Verbindungsstrecke ganz in der Menge. Abbildung: [Wikipedia]: Nicht-konvexe Menge (links),

Mehr

Informatik II. Vorlesung am D-BAUG der ETH Zürich. Felix Friedrich & Hermann Lehner FS 2018

Informatik II. Vorlesung am D-BAUG der ETH Zürich. Felix Friedrich & Hermann Lehner FS 2018 1 Informatik II Vorlesung am D-BAUG der ETH Zürich Felix Friedrich & Hermann Lehner FS 2018 23 1. Einführung Algorithmen und Datenstrukturen, erstes Beispiel 24 Ziele der Vorlesung Verständnis des Entwurfs

Mehr

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle

Das Suchproblem. Gegeben Menge von Datensätzen. Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle 119 4. Suchen Lineare Suche, Binäre Suche, Interpolationssuche, Exponentielle Suche, Untere Schranken [Ottman/Widmayer, Kap. 3.2, Cormen et al, Kap. 2: Problems 2.1-3,2.2-3,2.3-5] 120 Das Suchproblem Gegeben

Mehr

Algorithmen und Datenstrukturen 1 Kapitel 5

Algorithmen und Datenstrukturen 1 Kapitel 5 Algorithmen und Datenstrukturen 1 Kapitel 5 Technische Fakultät robert@techfak.uni-bielefeld.de Vorlesung, U. Bielefeld, Winter 2005/2006 Kapitel 5: Effizienz von Algorithmen 5.1 Vorüberlegungen Nicht

Mehr

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen.

3. Suchen. Das Suchproblem. Suche in Array. Lineare Suche. 1 n. i = n Gegeben Menge von Datensätzen. Das Suchproblem Gegeben Menge von Datensätzen. 3. Suchen Beispiele Telefonverzeichnis, Wörterbuch, Symboltabelle Jeder Datensatz hat einen Schlüssel k. Schlüssel sind vergleichbar: eindeutige Antwort auf

Mehr

Asymptotik und Laufzeitanalyse

Asymptotik und Laufzeitanalyse und Vorkurs Informatik SoSe13 08. April 2013 und Algorithmen = Rechenvorschriften Wir fragen uns: Ist der Algorithmus effizient? welcher Algorithmus löst das Problem schneller? wie lange braucht der Algorithmus

Mehr

Algorithmen I. Prof. Jörn Müller-Quade. Übungen: Björn Kaidel, Sebastian Schlag und Sascha Witt

Algorithmen I. Prof. Jörn Müller-Quade. Übungen: Björn Kaidel, Sebastian Schlag und Sascha Witt Algorithmen I Prof. Jörn Müller-Quade Übungen: Björn Kaidel, Sebastian Schlag und Sascha Witt Institut für theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders)

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Jun.-Prof. Hofheinz, Jun.-Prof. Meyerhenke (ITI, KIT) 08.06.2015 Übungsklausur Algorithmen I Aufgabe 1. (Algorithm Engineering) Nennen Sie zwei Konzepte, die Algorithm Engineering im Gegensatz zu theoretischer

Mehr

1 Minimumssuche k = n Maximumssuche n. Median

1 Minimumssuche k = n Maximumssuche n. Median Kapitel 1 Einführung Anhand des folgenden Problems soll deutlich gemacht werden, welche Schwierigkeiten beim Vergleich verschiedener Lösungsansätze auftreten können, um dann einige sinnvolle Kriterien

Mehr

Kapitel 2. Weitere Beispiele Effizienter Algorithmen

Kapitel 2. Weitere Beispiele Effizienter Algorithmen Kapitel 2 Weitere Beispiele Effizienter Algorithmen Sequentielle Suche Gegeben: Array a[1..n] Suche in a nach Element x Ohne weitere Zusatzinformationen: Sequentielle Suche a[1] a[2] a[3] Laufzeit: n Schritte

Mehr

Prof. Dr. Margarita Esponda

Prof. Dr. Margarita Esponda Analyse von Algorithmen Die O-Notation WS 2012/2013 Prof. Dr. Margarita Esponda Freie Universität Berlin 1 Korrekte und effiziente Lösung von Problemen Problem Wesentlicher Teil der Lösung eines Problems.

Mehr

Übungsklausur Algorithmen I

Übungsklausur Algorithmen I Universität Karlsruhe, Institut für Theoretische Informatik Prof. Dr. P. Sanders 26.5.2010 svorschlag Übungsklausur Algorithmen I Hiermit bestätige ich, dass ich die Klausur selbständig bearbeitet habe:

Mehr

Kapitel 3 Zur Korrektheit und Effizienz von Algorithmen

Kapitel 3 Zur Korrektheit und Effizienz von Algorithmen Kapitel 3 Zur Korrektheit und Effizienz von Algorithmen Ziel: Kurze Einführung in den Pseudocode zur Beschreibung von Algorithmen Induktionsbeweise als wichtiges Hilfsmittel, um die Korrektheit eines Algorithmus

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Patrick Schäfer, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft

Mehr

Informatik II. 1. Einführung. Ziele der Vorlesung. Inhalte der Vorlesung. Vorlesung am D-BAUG der ETH Zürich

Informatik II. 1. Einführung. Ziele der Vorlesung. Inhalte der Vorlesung. Vorlesung am D-BAUG der ETH Zürich Informatik II Vorlesung am D-BAUG der ETH Zürich 1. Einführung Felix Friedrich & Hermann Lehner Algorithmen und Datenstrukturen, erstes Beispiel FS 2018 1 23 Ziele der Vorlesung Inhalte der Vorlesung Verständnis

Mehr

WS 2009/10. Diskrete Strukturen

WS 2009/10. Diskrete Strukturen WS 2009/10 Diskrete Strukturen Prof. Dr. J. Esparza Lehrstuhl für Grundlagen der Softwarezuverlässigkeit und theoretische Informatik Fakultät für Informatik Technische Universität München http://www7.in.tum.de/um/courses/ds/ws0910

Mehr

Effiziente Algorithmen und Datenstrukturen I Kapitel 1: Einleitung

Effiziente Algorithmen und Datenstrukturen I Kapitel 1: Einleitung Effiziente Algorithmen und Datenstrukturen I Kapitel 1: Einleitung Christian Scheideler WS 2008 20.10.2008 Kapitel 1 1 Übersicht Eingabekodierung Asymptotische Notation Maschinenmodelle Pseudocode Laufzeitanalyse

Mehr

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16

2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 2. Computer (Hardware) K. Bothe, Institut für Informatik, HU Berlin, GdP, WS 2015/16 Version: 14. Okt. 2015 Computeraufbau: nur ein Überblick Genauer: Modul Digitale Systeme (2. Semester) Jetzt: Grundverständnis

Mehr

Algorithmen und Datenstrukturen Effizienz und Funktionenklassen

Algorithmen und Datenstrukturen Effizienz und Funktionenklassen Algorithmen und Datenstrukturen Effizienz und Funktionenklassen Matthias Teschner Graphische Datenverarbeitung Institut für Informatik Universität Freiburg SS 12 Lernziele der Vorlesung Algorithmen Sortieren,

Mehr

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen

Komplexität. G. Zachmann Clausthal University, Germany Leistungsverhalten von Algorithmen lausthal Informatik II Komplexität von Algorithmen. Zachmann lausthal University, ermany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #1 Christian Rieck, Arne Schmidt 26.10.2017 Organisatorisches Christian Rieck, Arne Schmidt Große Übung 2 Homepage Aktuelle Informationen, Hausaufgaben, Slides

Mehr

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen

3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen 3.2. Korrektheit und Komplexität am Beispiel: Sortieren Sortieren ist eine wichtige Basis-Operation für komplexe Algorithmen Sortierproblem Eingabe: Folge von n natürlichen Zahlen a 1, a 2,, a n, die Folge

Mehr

Praktische Informatik I - Algorithmen und Datenstrukturen Wintersemester 2006/ Algorithmen und ihre formalen Eigenschaften, Datenstrukturen

Praktische Informatik I - Algorithmen und Datenstrukturen Wintersemester 2006/ Algorithmen und ihre formalen Eigenschaften, Datenstrukturen 1 Grundlagen 1.1 Algorithmen und ihre formalen Eigenschaften, Datenstrukturen Ein Algorithmus ist ein mit formalen Mitteln beschreibbares, mechanisch nachvollziehbares Verfahren zur Lösung einer Klasse

Mehr

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben

Algorithmen und Datenstrukturen Tutorium Übungsaufgaben Algorithmen und Datenstrukturen Tutorium Übungsaufgaben AlgoDat - Übungsaufgaben 1 1 Landau-Notation Aufgabe Lösung 2 Rekurrenzen Aufgabe 3 Algorithmenentwurf und -analyse Aufgabe AlgoDat - Übungsaufgaben

Mehr

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016)

Kostenmodell. Daniel Graf, Tobias Pröger. 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Kostenmodell Daniel Graf, Tobias Pröger 22. September 2016 (aktualisierte Fassung 5 vom 9. Oktober 2016) Erklärung: Diese Mitschrift ist als Ergänzung zur Vorlesung gedacht. Wir erheben keinen Anspruch

Mehr

1 Random Access Maschine

1 Random Access Maschine 1 RANDOM ACCESS MASCHINE 1 1 Random Access Maschine Neue Hardware: Random Access Maschine = RAM. Der Name hat nichts mit Zufall zu tun, sondern mit wahlfreiem Zugriff. Die RAM besteht aus einem Eingabeband,

Mehr

Datenstrukturen, Algorithmen und Programmierung 2

Datenstrukturen, Algorithmen und Programmierung 2 Datenstrukturen, Algorithmen und Programmierung 2 Professor Dr. Petra Mutzel Lehrstuhl für Algorithm Engineering, LS11 Fakultät für Informatik, TU Dortmund 1. VO SS 2008 8. April 2008 Petra Mutzel Kurzvorstellung

Mehr

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung

Dank. Theoretische Informatik II. Teil II. Registermaschinen. Vorlesung Dank Vorlesung Theoretische Informatik II Bernhard Beckert Institut für Informatik Diese Vorlesungsmaterialien basieren zum Teil auf den Folien zu den Vorlesungen von Katrin Erk (gehalten an der Universität

Mehr

Algorithmen und Datenstrukturen 1-1. Seminar -

Algorithmen und Datenstrukturen 1-1. Seminar - Algorithmen und Datenstrukturen 1-1. Seminar - Dominic Rose Bioinformatics Group, University of Leipzig Wintersemester 2009/10 Inhalt der ersten beiden Vorlesungen Algorithmenbegriff Komplexität, Asymptotik

Mehr

Erinnerung VL vom

Erinnerung VL vom Erinnerung VL vom 09.05.2016 Analyse von Hashtabellen mit verketteten Listen Erwartete Laufzeit O(1) bei zuf. Hashfkt. und falls M O(m) Guter Ersatz (hier) für zuf. Hashfkt.: universelle Hashfunktionen

Mehr

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III

Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Objektorientierte Programmierung VL: Prof. Dr. Marco Block-Berlitz - Freie Universität Berlin Proinformatik III Text: Hinnerk van Bruinehsen - Grafiken: Jens Fischer powered by SDS.mint SoSe 2011 1 Teil

Mehr

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt

Isomorphismus. Definition Gruppen-Isomorphismus. Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt Isomorphismus Definition Gruppen-Isomorphismus Seien (G, +) und (G, ) Gruppen. Die Abbildung f : G G heißt Gruppen-Isomorphismus, falls gilt 1 f ist bijektiv f (u + v) = f (u) f (v) für alle u, v G, die

Mehr

Übung Algorithmen und Datenstrukturen

Übung Algorithmen und Datenstrukturen Übung Algorithmen und Datenstrukturen Sommersemester 2016 Marc Bux, Humboldt-Universität zu Berlin Organisation Vorlesung: Montag 11 13 Uhr Marius Kloft RUD 26, 0 115 Mittwoch 11 13 Uhr Marius Kloft RUD

Mehr

Notation für das asymptotische Verhalten von Funktionen

Notation für das asymptotische Verhalten von Funktionen Vorbemerkungen: Notation für das asymptotische Verhalten von Funktionen 1. Aussagen über die Komplexität von Algorithmen und von Problemen sollen (in der Regel) unabhängig von speziellen Maschinenmodellen

Mehr

Programmiertechnik II

Programmiertechnik II Analyse von Algorithmen Algorithmenentwurf Algorithmen sind oft Teil einer größeren Anwendung operieren auf Daten der Anwendung, sollen aber unabhängig von konkreten Typen sein Darstellung der Algorithmen

Mehr

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element

Exponentiation: das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element Problemstellung Banale smethode : das Problem Gegeben: (multiplikative) Halbgruppe (H, ), Element a H, n N Aufgabe: berechne das Element a n = } a a a {{ a } H n (schreiben ab jetzt a n statt a n ) Hinweis:

Mehr

Komplexität von Algorithmen:

Komplexität von Algorithmen: Komplexität von Algorithmen: Ansatz: Beschreiben/erfassen der Komplexität über eine Funktion, zur Abschätzung des Rechenaufwandes abhängig von der Größe der Eingabe n Uns interessiert: (1) Wie sieht eine

Mehr

Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen

Kapitel 8. Rekursionsgleichungen. Landau-Symbole. Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Rekursionsgleichungen Landau-Symbole Kapitel 8 Lösen von Rekursionsgleichungen Allgemeines Iterationsmethode Spezialfälle Erzeugende Funktionen Kapitel 8 Rekursionsgleichungen p./42 Landau-Symbole () Modellierung

Mehr

Abschnitt: Algorithmendesign und Laufzeitanalyse

Abschnitt: Algorithmendesign und Laufzeitanalyse Abschnitt: Algorithmendesign und Laufzeitanalyse Definition Divide-and-Conquer Paradigma Divide-and-Conquer Algorithmen verwenden die Strategien 1 Divide: Teile das Problem rekursiv in Subproblem gleicher

Mehr

Übung Algorithmen I

Übung Algorithmen I Übung Algorithmen I 20.5.15 Christoph Striecks Christoph.Striecks@kit.edu (Mit Folien von Julian Arz, Timo Bingmann und Sebastian Schlag.) Roadmap Organisation Mergesort, Quicksort Dual Pivot Quicksort

Mehr

Übung zur Vorlesung Berechenbarkeit und Komplexität

Übung zur Vorlesung Berechenbarkeit und Komplexität RWTH Aachen Lehrgebiet Theoretische Informatik Reidl Ries Rossmanith Sanchez Tönnis WS 2012/13 Übungsblatt 7 26.11.2012 Übung zur Vorlesung Berechenbarkeit und Komplexität Aufgabe T15 Entwickeln Sie ein

Mehr

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Technische Universität München Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften

Mehr

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele

UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1. Übung 5. Asymptotische Laufzeitkomplexität Definition Regeln Beispiele UE Algorithmen und Datenstrukturen 1 UE Praktische Informatik 1 Übung 5 Asymptotische Laufzeitkomplexität Definition Regeln Beispiele Institut für Pervasive Computing Johannes Kepler Universität Linz Altenberger

Mehr

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1)

Ordnen Sie die folgenden Funktionen nach ihrer asymptotischer Komplexität in aufsteigender Reihenfolge: i=1 4i + n = 4 n. i=1 i + 3n = 4 ( n(n+1) für Informatik Prof. aa Dr. Ir. Joost-Pieter Katoen Tutoriumslösung - Übung (Abgabe 9.04.05) Christian Dehnert, Friedrich Gretz, Benjamin Kaminski, Thomas Ströder Tutoraufgabe (Asymptotische Komplexität):

Mehr

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3)

( )= c+t(n-1) n>1. Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Stand der Vorlesung Komplexität von Algorithmen (Kapitel 3) Motivation: IT gestützte Steuerung, Überwachung, Fertigung, Produktion,. : erfordert effiziente Berechnungsvorschriften Ziel: Methoden kennen

Mehr

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18.

Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / Vorlesung 9, Donnerstag 18. Algorithmen und Datenstrukturen (ESE) Entwurf, Analyse und Umsetzung von Algorithmen (IEMS) WS 2014 / 2015 Vorlesung 9, Donnerstag 18. Dezember 2014 (Teile und Herrsche, Mastertheorem) Junior-Prof. Dr.

Mehr

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen

Divide & Conquer. Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Teile & Herrsche: Divide & Conquer Problem in Teilprobleme aufteilen Teilprobleme rekursiv lösen Lösung aus Teillösungen zusammensetzen Probleme: Wie setzt man zusammen? [erfordert algorithmisches Geschick

Mehr

1 Raumwechsel: Gr. 15 (Do 10-12, F-235) ab sofort in G Studie zum Arbeitsverhalten von Studierenden unter Leitung

1 Raumwechsel: Gr. 15 (Do 10-12, F-235) ab sofort in G Studie zum Arbeitsverhalten von Studierenden unter Leitung Organisatorisches Algorithmen und Datenstrukturen Kapitel 3: Divide & Conquer Frank Heitmann heitmann@informatik.uni-hamburg.de 1 Raumwechsel: Gr. 15 (Do 10-12, F-235) ab sofort in G-021. 2 Studie zum

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen Algorithmen und Datenstrukturen Große Übung #6 Phillip Keldenich, Arne Schmidt 26.02.2017 Heute: Master-Theorem Phillip Keldenich, Arne Schmidt Große Übung 2 Vorbetrachtungen Wir betrachten rekursive Gleichungen

Mehr

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq

Vorlesung 3: Graphenalgorithmen. Markus Püschel David Steurer Peter Widmayer. PDF download goo.gl/ym3spq Vorlesung 3: Graphenalgorithmen Markus Püschel David Steurer Peter Widmayer PDF download goo.gl/ym3spq Algorithmen und Datenstrukturen, Herbstsemester 2017, ETH Zürich Gerichtete Graphen und Abhängigkeiten

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 01/13 6. Vorlesung Prioritäten setzen Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I Guten Morgen! Tipps für unseren ersten Test am 0. November: Lesen

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 19.6.1 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=99 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik 1 Organisatorisches

Mehr

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017

2. Algorithmische Methoden 2.1 Rekursion. 18. April 2017 2. Algorithmische Methoden 2.1 Rekursion 18. April 2017 Rekursiver Algorithmus Ein rekursiver Algorithmus löst ein Problem, indem er eine oder mehrere kleinere Instanzen des gleichen Problems löst. Beispiel

Mehr

Das Kino-Problem (Beispiel 7.5) hat gezeigt, dass es unterschiedlich effiziente Algorithmen

Das Kino-Problem (Beispiel 7.5) hat gezeigt, dass es unterschiedlich effiziente Algorithmen Kapitel 8 Komplexität Fools ignore complexity. Pragmatists suffer it. Some can avoid it. Geniuses remove it. (Alan J. Perlis) 8.1 Motivation Das Kino-Problem (Beispiel 7.5) hat gezeigt, dass es unterschiedlich

Mehr

Mathematische Grundlagen Kurz & Gut 1. 1 Frei nach Folien von Alex Schickedanz und David Veith

Mathematische Grundlagen Kurz & Gut 1. 1 Frei nach Folien von Alex Schickedanz und David Veith Mathematische Grundlagen Kurz & Gut 1 1 Frei nach Folien von Alex Schickedanz und David Veith Mathematische Grundlagen Kurz & Gut 1 Hinweise Hier werden Grundlagen der Datenstrukturen-Vorlesung rekapituliert.

Mehr

1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen

1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen Gliederung 1. Asymptotische Notationen 2. Zahlentheoretische Algorithmen 3. Sortierverfahren 4. String Matching 5. Ausgewählte Datenstrukturen 1/1, Folie 1 2009 Prof. Steffen Lange - HDa/FbI - Effiziente

Mehr

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar)

es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) Komplexitätstheorie es gibt Probleme, die nicht berechenbar sind (z.b. Menge aller Funktionen N N und die Menge aller Sprachen sind überabzählbar) andere Probleme sind im Prinzip berechenbar, möglicherweise

Mehr

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2

f 1 (n) = log(n) + n 2 n 5 f 2 (n) = n 3 + n 2 f 3 (n) = log(n 2 ) f 4 (n) = n n f 5 (n) = (log(n)) 2 Prof. aa Dr. E. Ábrahám Datenstrukturen und Algorithmen SS Lösung - Präsenzübung.05.0 F. Corzilius, S. Schupp, T. Ströder Aufgabe (Asymptotische Komplexität): (6 + 0 + 6 = Punkte) a) Geben Sie eine formale

Mehr

Informatik I Komplexität von Algorithmen

Informatik I Komplexität von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de Leistungsverhalten von Algorithmen Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz

Mehr

Informatik I Komplexität von Algorithmen

Informatik I Komplexität von Algorithmen Leistungsverhalten von Algorithmen Informatik I Komplexität von Algorithmen G. Zachmann Clausthal University, Germany zach@in.tu-clausthal.de Speicherplatzkomplexität: Wird primärer & sekundärer Speicherplatz

Mehr

Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet.

Der Lese-Schreib-Kopf kann auch angehalten werden (H). Die Verarbeitung ist dann beendet. Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben

Mehr

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt.

Hier ist ein einfaches Turingprogramm. Außer dem Leerzeichen ist das Band nur mit. 1 belegt. Die Turingmaschine besteht aus der Steuereinheit, die verschiedene Zustände annimmt dem Band, welches unendlich ausgedehnt ist, aber nur auf einem endlichem Bereich mit Zeichen aus einem Alphabet beschrieben

Mehr

Experimente. Zahlenbeispiel. Cache-Optimale Algorithmen. Warum Funktionieren Caches? Cache-Oblivious Speichermodell. Characterisierung von Caches

Experimente. Zahlenbeispiel. Cache-Optimale Algorithmen. Warum Funktionieren Caches? Cache-Oblivious Speichermodell. Characterisierung von Caches M=10 9, B=10 6 Zahlenbeispiel Für c=1/7 folgt daraus Experimente 20 Millionen Operationen auf Priority Queue mit verschiedenen Implementierungen Datenstrukturen ohne Rücksicht auf Paging-Effekte (Fibonacci

Mehr

Grundlagen: Algorithmen und Datenstrukturen

Grundlagen: Algorithmen und Datenstrukturen Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Dr. Hanjo Täubig Tobias Lieber Sommersemester 2011 Übungsblatt 1 16. September 2011 Grundlagen: Algorithmen und

Mehr

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra

Effiziente Algorithmen und Datenstrukturen I. Kapitel 10: Lineare Algebra Effiziente Algorithmen und Datenstrukturen I Kapitel 10: Lineare Algebra Christian Scheideler WS 2008 19.02.2009 Kapitel 10 1 Überblick Notation Arithmetik auf großen Zahlen (Addition und Multiplikation)

Mehr

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist.

lim log 2n n = > 0 Da es einen Limes gibt, gibt es auch einen Limes inferior, der gleich diesem Limes ist. Prof. aa Dr. Ir. Joost-Pieter Katoen Christian Dehnert, Jonathan Heinen, Thomas Ströder, Sabrina von Styp Aufgabe 1 (O-Notation): Beweisen oder widerlegen Sie die folgenden Aussagen: (3 + 3 + 4 = 10 Punkte)

Mehr

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften

8. Sortieren II. 8.1 Heapsort. Heapsort. [Max-]Heap 6. Heapsort, Quicksort, Mergesort. Binärer Baum mit folgenden Eigenschaften Heapsort, Quicksort, Mergesort 8. Sortieren II 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 9 210 Heapsort [Max-]Heap 6 Inspiration von Selectsort: Schnelles Einfügen Binärer Baum mit

Mehr

Heapsort, Quicksort, Mergesort. 8. Sortieren II

Heapsort, Quicksort, Mergesort. 8. Sortieren II 209 Heapsort, Quicksort, Mergesort 8. Sortieren II 210 8.1 Heapsort [Ottman/Widmayer, Kap. 2.3, Cormen et al, Kap. 6] 211 Heapsort Inspiration von Selectsort: Schnelles Einfügen Inspiration von Insertionsort:

Mehr

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g:

Abgabe: (vor der Vorlesung) Aufgabe 2.1 (P) O-Notation Beweisen Sie die folgenden Aussagen für positive Funktionen f und g: TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Lehrstuhl für Sprachen und Beschreibungsstrukturen SS 2009 Grundlagen: Algorithmen und Datenstrukturen Übungsblatt 2 Prof. Dr. Helmut Seidl, S. Pott,

Mehr

V. Claus, Juli 2005 Einführung in die Informatik II 45

V. Claus, Juli 2005 Einführung in die Informatik II 45 Um die Größenordnung einer reellwertigen oder ganzzahligen Funktion zu beschreiben, verwenden wir die so genannten Landau-Symbole (nach dem deutschen Mathematiker Edmund Landau, 1877-1938). Hierbei werden

Mehr

Abschnitt 11: Korrektheit von imperativen Programmen

Abschnitt 11: Korrektheit von imperativen Programmen Abschnitt 11: Korrektheit von imperativen Programmen 11. Korrektheit von imperativen Programmen 11.1 11.2Testen der Korrektheit in Java Peer Kröger (LMU München) in die Programmierung WS 16/17 931 / 961

Mehr

Informatik II, SS 2018

Informatik II, SS 2018 Informatik II - SS 2018 (Algorithmen & Datenstrukturen) Vorlesung 6 (7.5.2018) Dictionaries, Binäre Suche, Hashtabellen I / Yannic Maus Algorithmen und Komplexität Abstrakte Datentypen : Dictionary Dictionary:

Mehr

Denition: Rang eines Elements e einer Folge s = Position von e in sort(s) (angefangen bei 1). Frage: warum ist r nicht notwendig eindeutig?

Denition: Rang eines Elements e einer Folge s = Position von e in sort(s) (angefangen bei 1). Frage: warum ist r nicht notwendig eindeutig? 207 Auswahl (Selection) Denition: Rang eines Elements e einer Folge s = Position von e in sort(s) (angefangen bei 1). Frage: warum ist r nicht notwendig eindeutig? // return an element of s with rank k

Mehr

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control

Control Beispiel. Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Control Control Beispiel Store R1 4 Bit Register R1 SUB 4 Bit Register R2 Store R2 R2 Bit 0 Control wird als kombinatorische Schaltung realisiert. Hierzu die Wahrheitstabelle: Eingabe R2 Bit 0 Zero 0 0 Ausgabe

Mehr

Informatik II. Algorithmen und Datenstrukturen. Vorläufige Version 1 c 2002 Peter Thiemann

Informatik II. Algorithmen und Datenstrukturen. Vorläufige Version 1 c 2002 Peter Thiemann Informatik II Algorithmen und Datenstrukturen Vorläufige Version 1 c 2002 Peter Thiemann 1 Einführung 1.1 Inhalt Wichtige Datentypen und ihre Implementierung (Datenstrukturen) Operationen auf Datenstrukturen

Mehr

Random Access Machine (RAM) Berechenbarkeit und Komplexität Random Access Machines

Random Access Machine (RAM) Berechenbarkeit und Komplexität Random Access Machines Random Access Machine (RAM) Berechenbarkeit und Komplexität Random Access Machines Wolfgang Schreiner Wolfgang.Schreiner@risc.jku.at Research Institute for Symbolic Computation (RISC) Johannes Kepler University,

Mehr

Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität)

Algorithmenbegriff: Berechenbarkeit. Algorithmenanalyse. (Berechnung der Komplexität) Über-/Rückblick Algorithmenbegriff: Berechenbarkeit Turing-Maschine RAM µ-rekursive Funktionen Zeit Platz Komplexität Algorithmentechniken Algorithmenanalyse (Berechnung der Komplexität) Rekursion Iteration

Mehr

Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen 1 Algorithmen und Datenstrukturen Wintersemester 2016/17 13. Vorlesung Binäre Suchbäume Prof. Dr. Alexander Wolff Lehrstuhl für Informatik I 2 Dynamische Menge verwaltet Elemente einer sich ändernden Menge

Mehr

Algorithmen und Datenstrukturen I Grundlagen

Algorithmen und Datenstrukturen I Grundlagen Algorithmen und Datenstrukturen I Grundlagen Prof. Dr. Oliver Braun Letzte Änderung: 01.11.2017 14:15 Algorithmen und Datenstrukturen I, Grundlagen 1/24 Algorithmus es gibt keine präzise Definition Handlungsvorschrift

Mehr

Effizienz von Algorithmen

Effizienz von Algorithmen Effizienz von Algorithmen Eine Einführung Michael Klauser LMU 30. Oktober 2012 Michael Klauser (LMU) Effizienz von Algorithmen 30. Oktober 2012 1 / 39 Ein einführendes Beispiel Wie würdet ihr einen Stapel

Mehr

Erinnerung VL

Erinnerung VL Erinnerung VL.6.16 Graphtraversierung (DFS, topologische Sortierung und mehr) Kürzeste Wege: Problemstellung, Algorithmen Analoger Algorithmus Dijkstras Algorithmus: Idee, Korrektheit Heute: mehr zu Dijkstra,

Mehr

{P} S {Q} {P} S {Q} {P} S {Q} Inhalt. Hoare-Kalkül. Hoare-Kalkül. Hoare-Tripel. Hoare-Tripel. Hoare-Tripel

{P} S {Q} {P} S {Q} {P} S {Q} Inhalt. Hoare-Kalkül. Hoare-Kalkül. Hoare-Tripel. Hoare-Tripel. Hoare-Tripel Inhalt Hoare-Kalkül Formale Verifizierung Hoare-Kalkül while-sprache Terminierung Partielle / totale Korrektheit 4.0 Hoare-Kalkül entwickelt von C.A.R. (Tony) Hoare (britischer Informatiker), 1969 formales

Mehr

Algebraische und arithmetische Algorithmen

Algebraische und arithmetische Algorithmen Kapitel 1 Algebraische und arithmetische Algorithmen 1.1 Das algebraische Berechnungsmodell Struktur: Körper (oder Ring) mit den Operationen +,,, (/) Eingabe: endliche Folge von Zahlen Ausgabe: endliche

Mehr

Algorithmen und Datenstrukturen 1. EINLEITUNG. Algorithmen und Datenstrukturen - Ma5hias Thimm 1

Algorithmen und Datenstrukturen 1. EINLEITUNG. Algorithmen und Datenstrukturen - Ma5hias Thimm 1 Algorithmen und Datenstrukturen 1. EINLEITUNG Algorithmen und Datenstrukturen - Ma5hias Thimm (thimm@uni-koblenz.de) 1 Allgemeines Einleitung Zu den Begriffen: Algorithmen und Datenstrukturen systematische

Mehr

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung

Kapitel 2: Analyse der Laufzeit von Algorithmen Gliederung Gliederung 1. Motivation / Einordnung / Grundlagen 2. Analyse der Laufzeit von Algorithmen 3. Untere Schranken für algorithmische Probleme 4. Sortier- und Selektionsverfahren 5. Paradigmen des Algorithmenentwurfs

Mehr

Teil II. Eigenschaften von Algorithmen

Teil II. Eigenschaften von Algorithmen Teil II Eigenschaften von Algorithmen Überblick 1 Berechenbarkeit und Entscheidbarkeit 2 Korrektheit von Algorithmen 3 Prof. G. Stumme Algorithmen & Datenstrukturen Sommersemester 2009 2 1 Berechenbarkeit

Mehr

2 Wachstumsverhalten von Funktionen

2 Wachstumsverhalten von Funktionen Algorithmen und Datenstrukturen 40 2 Wachstumsverhalten von Funktionen Beim Vergleich der Worst-Case-Laufzeiten von Algorithmen in Abhängigkeit von der Größe n der Eingabedaten ist oft nur deren Verhalten

Mehr

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?

Algorithmen I. Prof. Jörn Müller-Quade Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php? Algorithmen I Prof. Jörn Müller-Quade 29.05.2017 Institut für Theoretische Informatik Web: https://crypto.iti.kit.edu/index.php?id=799 (Folien von Peter Sanders) KIT Institut für Theoretische Informatik

Mehr

Algorithmische Methoden zur Netzwerkanalyse

Algorithmische Methoden zur Netzwerkanalyse Algorithmische Methoden zur Netzwerkanalyse Prof. Dr. Henning Meyerhenke Institut für Theoretische Informatik 1 KIT Henning Die Forschungsuniversität Meyerhenke, in der Institut für Theoretische Informatik

Mehr