Logik für Informatiker

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Logik für Informatiker"

Transkript

1 Vorlesung Logik für Informatiker 4. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1

2 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Logik für Informatiker, SS 06 p.2

3 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Negationssymbol ( nicht ) Logik für Informatiker, SS 06 p.2

4 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Negationssymbol ( nicht ) Konjunktionssymbol ( und ) Disjunktionssymbol ( oder ) Implikationssymbol ( wenn... dann ) Symbol für Äquivalenz ( genau dann, wenn ) Logik für Informatiker, SS 06 p.2

5 Syntax der Aussagenlogik: Logische Zeichen 1 Symbol für den Wahrheitswert wahr 0 Symbol für den Wahrheitswert falsch Negationssymbol ( nicht ) Konjunktionssymbol ( und ) Disjunktionssymbol ( oder ) Implikationssymbol ( wenn... dann ) Symbol für Äquivalenz ( genau dann, wenn ) ( ) die beiden Klammern Logik für Informatiker, SS 06 p.2

6 Vokabular der Aussagenlogik: Signatur Definition: Aussagenlogische Signatur Abzählbare Menge von Symbolen, etwa Σ = {P 0,..., P n } oder Σ = {P 0, P 1,...} Logik für Informatiker, SS 06 p.3

7 Vokabular der Aussagenlogik: Signatur Definition: Aussagenlogische Signatur Abzählbare Menge von Symbolen, etwa Σ = {P 0,..., P n } oder Σ = {P 0, P 1,...} Bezeichnungen für Symbole in Σ atomare Aussagen Atome Aussagevariablen Logik für Informatiker, SS 06 p.3

8 Formeln der Aussagenlogik Definition: Menge For0 Σ der Formeln über Σ Die kleinste Menge mit: 1 For0 Σ und 0 For0 Σ Logik für Informatiker, SS 06 p.4

9 Formeln der Aussagenlogik Definition: Menge For0 Σ der Formeln über Σ Die kleinste Menge mit: 1 For0 Σ und 0 For0 Σ Σ For0 Σ Logik für Informatiker, SS 06 p.4

10 Formeln der Aussagenlogik Definition: Menge For0 Σ der Formeln über Σ Die kleinste Menge mit: 1 For0 Σ und 0 For0 Σ Σ For0 Σ Wenn A, B For0 Σ, dann auch A, (A B), (A B), (A B), (A B) Elemente von For0 Σ Logik für Informatiker, SS 06 p.4

11 Beispiel: Formeln aus der Wumpus-Welt Aussagenlogische Variablen P i,j bedeutet: B i,j bedeutet: Grube in [i, j] Luftzug in [i, j] P 1,1 B 1,1 B 2,1 Logik für Informatiker, SS 06 p.5

12 Beispiel: Formeln aus der Wumpus-Welt Aussagenlogische Variablen P i,j bedeutet: B i,j bedeutet: Grube in [i, j] Luftzug in [i, j] P 1,1 B 1,1 B 2,1 Formeln Gruben bewirken Luftzug in angrenzenden Feldern P 1,2 (B 1,1 B 1,3 B 2,2 ) Luftzug in einem Feld gdw. es an eine Grube grenzt B 1,1 (P 1,2 P 2,1 ) B 2,1 (P 1,1 P 2,2 P 3,1 ) Logik für Informatiker, SS 06 p.5

13 Induktion über Formelaufbau: Beispiel Lemma Ist A For0 Σ und sind B, C Teilformeln von A, dann gilt C ist Teilformel von B, oder B ist Teilformel von C, oder B, C liegen getrennt Beweis: Durch noethersche Induktion über den Formelaufbau Logik für Informatiker, SS 06 p.6

14 Semantik der Aussagenlogik Σ eine aussagenlogische Signatur Definition: Aussagenlogisches Modell (Interpretation) Eine beliebige Abbildung I : Σ {true, false} Logik für Informatiker, SS 06 p.7

15 Semantik der Aussagenlogik Σ eine aussagenlogische Signatur Definition: Aussagenlogisches Modell (Interpretation) Eine beliebige Abbildung I : Σ {true, false} Beispiel A B C true true false (Bei drei Symbolen gibt es 8 mögliche Modelle) Logik für Informatiker, SS 06 p.7

16 Semantik der Aussagenlogik Definition: Auswertung von Formeln in einem Modell Zu Modell / Interpretation I val I : For0 Σ {true, false} mit: val I (1) = true val I (0) = false val I (P) = I(P) für P Σ Logik für Informatiker, SS 06 p.8

17 Semantik der Aussagenlogik und: val I ( A) = false falls val I (A) = true true falls val I (A) = false Logik für Informatiker, SS 06 p.9

18 Semantik der Aussagenlogik und: val I (A B) = val I (A B) = true falls val I (A) = true und val I (B) = true false sonst true falls val I (A) = true oder val I (B) = true false sonst Logik für Informatiker, SS 06 p.10

19 Semantik der Aussagenlogik und: val I (A B) = true falls val I (A) = false oder val I (B) = true false val I (A B) = sonst true falls val I (A) = val I (B) false sonst Logik für Informatiker, SS 06 p.11

20 Wahrheitstafel für die logischen Operatoren A B A A B A B A B A B false false true false false true true false true true false true true false true false false false true false false true true false true true true true Logik für Informatiker, SS 06 p.12

21 Uniforme Notation Konjunktive Formeln: Typ α Disjunktive Formeln: Typ β Raymond Smullyan Logik für Informatiker, SS 06 p.13

22 Uniforme Notation Konjunktive Formeln: Typ α A A B (A B) (A B) Disjunktive Formeln: Typ β Raymond Smullyan Logik für Informatiker, SS 06 p.13

23 Uniforme Notation Konjunktive Formeln: Typ α A A B (A B) (A B) Disjunktive Formeln: Typ β (A B) A B A B Raymond Smullyan Logik für Informatiker, SS 06 p.13

24 Uniforme Notation Zuordnungsregeln Formeln / Unterformeln α α 1 α 2 A B A B (A B) A B (A B) A B A A A Logik für Informatiker, SS 06 p.14

25 Uniforme Notation Zuordnungsregeln Formeln / Unterformeln α α 1 α 2 A B A B (A B) A B (A B) A B β β 1 β 2 (A B) A B A B A B A B A B A A A Logik für Informatiker, SS 06 p.14

26 Uniforme Notation: Beispiel der Anwendung Alternative Art der Definition von val I val I (α) = val I (β) = true falls val I (α 1 ) = true und val I (α 2 ) = true false sonst true falls val I (β 1 ) = true oder val I (β 2 ) = true false sonst Logik für Informatiker, SS 06 p.15

27 Uniforme Notation: Beispiel der Anwendung Alternative Art der Definition von val I val I (α) = val I (β) = true falls val I (α 1 ) = true und val I (α 2 ) = true false sonst true falls val I (β 1 ) = true oder val I (β 2 ) = true false sonst Umfaßt Definition von val I für alle Operatoren außer: 1, 0,, Logik für Informatiker, SS 06 p.15

28 Modell einer Formel(menge) Definition: Modell einer Formel Modell / Interpretation I ist Modell einer Formel A For0 Σ, falls val I (A) = true Logik für Informatiker, SS 06 p.16

29 Modell einer Formel(menge) Definition: Modell einer Formel Modell / Interpretation I ist Modell einer Formel A For0 Σ, falls val I (A) = true Definition: Modell einer Formelmenge Modell / Interpretation I ist Modell einer Formelmenge M For0 Σ, falls val I (A) = true für alle A M Logik für Informatiker, SS 06 p.16

30 Zur Erinnerung: Logische Folgerbarkeit Definition: Logische Folgerbarkeit Formel A folgt logisch aus Formelmenge KB gdw. alle Modelle von KB sind auch Modell von A Notation KB = α Logik für Informatiker, SS 06 p.17

31 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false false true false true false false true true true false false true false true true true false true true true Logik für Informatiker, SS 06 p.18

32 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false false false true true false true false false false true true true true false false true true false true true true true false true true true true true Logik für Informatiker, SS 06 p.18

33 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false true false false true true false false true false false true false true true true true true false false true true true false true true false true true false true true true true true true true Logik für Informatiker, SS 06 p.18

34 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false true false false false true true false false false true false false true false false true true true true true true false false true true true true false true true false false true true false true true true true true true true true true Logik für Informatiker, SS 06 p.18

35 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false true false false false false true true false false false false true false false true false true false true true true true true true true false false true true true true true false true true false false true true true false true true true true true true true true true true true Logik für Informatiker, SS 06 p.18

36 Ein erster Kalkül: Wahrheitstafelmethode Beispielformel α = A B KB = (A C) (B C) Überprüfen ob KB = α A B C A C B C KB α false false false false true false false false false true true false false false false true false false true false true false true true true true true true true false false true true true true true false true true false false true true true false true true true true true true true true true true true Logik für Informatiker, SS 06 p.18

37 Logische Äquivalenz Definition: Logische Äquivalenz Zwei Formeln sind logisch äquivalent, wenn sie in den gleichen Modellen wahr sind, d.h. α = β and β = α Logik für Informatiker, SS 06 p.19

38 Logische Äquivalenz Definition: Logische Äquivalenz Zwei Formeln sind logisch äquivalent, wenn sie in den gleichen Modellen wahr sind, d.h. α = β and β = α Notation α β Logik für Informatiker, SS 06 p.19

39 Logische Äquivalenz Definition: Logische Äquivalenz Zwei Formeln sind logisch äquivalent, wenn sie in den gleichen Modellen wahr sind, d.h. α = β and β = α Notation α β Beispiel (A B) ( B A) (Kontraposition) Logik für Informatiker, SS 06 p.19

40 Logische Äquivalenz Substitutionstheorem Wenn A B C ist das Ergebnis der Ersetzung einer Unterformel A in C durch B, dann C C Logik für Informatiker, SS 06 p.20

41 Logische Äquivalenz Substitutionstheorem Wenn A B C ist das Ergebnis der Ersetzung einer Unterformel A in C durch B, dann C C Beispiel A B B A impliziert (C (A B)) D (C (B A)) D Logik für Informatiker, SS 06 p.20

42 Wichtige Äquivalenzen (A B) (B A) Kommutativität von Logik für Informatiker, SS 06 p.21

43 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) Kommutativität von Kommutativität von Logik für Informatiker, SS 06 p.21

44 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) Kommutativität von Kommutativität von Assoziativität von Logik für Informatiker, SS 06 p.21

45 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) Kommutativität von Kommutativität von Assoziativität von Assoziativität von Logik für Informatiker, SS 06 p.21

46 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) (A A) A Kommutativität von Kommutativität von Assoziativität von Assoziativität von Idempotenz für Logik für Informatiker, SS 06 p.21

47 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) (A A) A (A A) A Kommutativität von Kommutativität von Assoziativität von Assoziativität von Idempotenz für Idempotenz für Logik für Informatiker, SS 06 p.21

48 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) (A A) A (A A) A A A Kommutativität von Kommutativität von Assoziativität von Assoziativität von Idempotenz für Idempotenz für Doppelnegation Logik für Informatiker, SS 06 p.21

49 Wichtige Äquivalenzen (A B) (B A) (A B) (B A) ((A B) C) (A (B C)) ((A B) C) (A (B C)) (A A) A (A A) A A A (A B) ( B A) Kommutativität von Kommutativität von Assoziativität von Assoziativität von Idempotenz für Idempotenz für Doppelnegation Kontraposition Logik für Informatiker, SS 06 p.21

50 Wichtige Äquivalenzen (A B) ( A B) Elimination Implikation Logik für Informatiker, SS 06 p.22

51 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) Elimination Implikation Elimination Äquivalenz Logik für Informatiker, SS 06 p.22

52 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) (A B) ( A B) Elimination Implikation Elimination Äquivalenz de Morgans Regeln Logik für Informatiker, SS 06 p.22

53 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) (A B) ( A B) (A B) ( A B) Elimination Implikation Elimination Äquivalenz de Morgans Regeln de Morgans Regeln Logik für Informatiker, SS 06 p.22

54 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) (A B) ( A B) (A B) ( A B) (A (B C)) ((A B) (A C)) Elimination Implikation Elimination Äquivalenz de Morgans Regeln de Morgans Regeln Distributivität von über Logik für Informatiker, SS 06 p.22

55 Wichtige Äquivalenzen (A B) ( A B) (A B) ((A B) (B A) (A B) ( A B) (A B) ( A B) (A (B C)) ((A B) (A C)) (A (B C)) ((A B) (A C)) Elimination Implikation Elimination Äquivalenz de Morgans Regeln de Morgans Regeln Distributivität von über Distributivität von über Logik für Informatiker, SS 06 p.22

56 Wichtige Äquivalenzen (zusammengefasst) (A B) (B A) Kommutativität von (A B) (B A) Kommutativität von ((A B) C) (A (B C)) Assoziativität von ((A B) C) (A (B C)) Assoziativität von (A A) A Idempotenz für (A A) A Idempotenz für A A Doppelnegation (A B) ( B A) Kontraposition (A B) ( A B) Elimination Implikation (A B) ((A B) (B A)) Elimination Äquivalenz (A B) ( A B) de Morgans Regeln (A B) ( A B) de Morgans Regeln (A (B C)) ((A B) (A C)) Distributivität von über (A (B C)) ((A B) (A C)) Distributivität von über Logik für Informatiker, SS 06 p.23

57 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 Logik für Informatiker, SS 06 p.24

58 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 (A A) 1 Tertium non datur Logik für Informatiker, SS 06 p.24

59 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 (A A) 1 Tertium non datur (A 1) A Logik für Informatiker, SS 06 p.24

60 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 (A A) 1 Tertium non datur (A 1) A (A 0) 0 Logik für Informatiker, SS 06 p.24

61 Wichtige Äquivalenzen mit 1 und 0 (A A) 0 (A A) 1 Tertium non datur (A 1) A (A 0) 0 (A 1) 1 Logik für Informatiker, SS 06 p.24

62 Ein zweiter Kalkül: Logische Umformung Definition: Äquivalenzumformung (Wiederholte) Ersetzung einer (Unter-)Formel durch äquivalente Formel Anwendung des Substitutionstheorems Logik für Informatiker, SS 06 p.25

63 Ein zweiter Kalkül: Logische Umformung Definition: Äquivalenzumformung (Wiederholte) Ersetzung einer (Unter-)Formel durch äquivalente Formel Anwendung des Substitutionstheorems Theorem Äquivalenzumformung bildet mit den aufgelisteten wichtigen Äquivalenzen einen vollständigen Kalkül: Wenn A, B logisch äquivalent sind, kann A in B umgeformt werden Logik für Informatiker, SS 06 p.25

64 Allgemeingültigkeit Definition: Allgemeingültigkeit Eine Formel ist allgemeingültig, wenn sie in allen Modellen wahr ist Logik für Informatiker, SS 06 p.26

65 Allgemeingültigkeit Definition: Allgemeingültigkeit Eine Formel ist allgemeingültig, wenn sie in allen Modellen wahr ist Notation = A Logik für Informatiker, SS 06 p.26

66 Allgemeingültigkeit Definition: Allgemeingültigkeit Eine Formel ist allgemeingültig, wenn sie in allen Modellen wahr ist Notation = A Beispiele A A A A (A (A B)) B 1 Logik für Informatiker, SS 06 p.26

67 Deduktionstheorem Deduktionstheorem KB = A gdw. KB A ist allgemeingültig (verbindet logische Folgerbarkeit und Allgemeingültigkeit) Logik für Informatiker, SS 06 p.27

68 Deduktionstheorem Deduktionstheorem KB = A gdw. KB A ist allgemeingültig (verbindet logische Folgerbarkeit und Allgemeingültigkeit) Folgerungen M {A} = B gdw. M = A B A, B sind logisch äquivalent gdw. A B ist allgemeingültig Logik für Informatiker, SS 06 p.27

69 Erfüllbarkeit Definition: Erfüllbarkeit Eine Formel ist erfüllbar, wenn sie ein Modell hat Logik für Informatiker, SS 06 p.28

70 Erfüllbarkeit Definition: Erfüllbarkeit Eine Formel ist erfüllbar, wenn sie ein Modell hat Beispiele A B A A (A B) Logik für Informatiker, SS 06 p.28

71 Unerfüllbarkeit Definition: Unerfüllbarkeit Eine Formel ist unerfüllbar, wenn sie in keinem Modell wahr ist, d.h., nicht erfüllbar ist Logik für Informatiker, SS 06 p.29

72 Unerfüllbarkeit Definition: Unerfüllbarkeit Eine Formel ist unerfüllbar, wenn sie in keinem Modell wahr ist, d.h., nicht erfüllbar ist Beispiel A A Logik für Informatiker, SS 06 p.29

73 Allgemeingültigkeit / Ableitbarkeit / Unerfüllbarkeit Theorem A ist allgemeingültig gdw. A ist unerfüllbar (verbindet Allgemeingültigkeit und Unerfüllbarkeit) Logik für Informatiker, SS 06 p.30

74 Allgemeingültigkeit / Ableitbarkeit / Unerfüllbarkeit Theorem A ist allgemeingültig gdw. A ist unerfüllbar (verbindet Allgemeingültigkeit und Unerfüllbarkeit) Theorem KB = A gdw. (KB A) ist unerfüllbar (verbindet logische Ableitbarkeit und Unerfüllbarkeit) Logik für Informatiker, SS 06 p.30

75 Verbindung der Eigenschaften Aus den Theoremen folgt Logische Folgerbarkeit Allgemeingültigkeit Unerfüllbarkeit sind verbunden. Kalkül für eine dieser Eigenschaften genügt Logik für Informatiker, SS 06 p.31

76 Das Craigsche Interpolationstheorem Theorem Seien A,B aussagenlogische Formeln mit = A B dann gibt es eine Formel C mit = A C und = C B, so daß in C nur solche aussagenlogischen Atome P Σ vorkommen, die sowohl in A als auch in B vorkommen. Logik für Informatiker, SS 06 p.32

77 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Logik für Informatiker, SS 06 p.33

78 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Logik für Informatiker, SS 06 p.33

79 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Logik für Informatiker, SS 06 p.33

80 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Logik für Informatiker, SS 06 p.33

81 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Logik für Informatiker, SS 06 p.33

82 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Logik für Informatiker, SS 06 p.33

83 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Äquivalenzumformung als Kalkül (Substitutionstheorem) Logik für Informatiker, SS 06 p.33

84 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Äquivalenzumformung als Kalkül (Substitutionstheorem) Allgemeingültigkeit, Erfüllbarkeit, Unverfüllbarkeit Logik für Informatiker, SS 06 p.33

85 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Äquivalenzumformung als Kalkül (Substitutionstheorem) Allgemeingültigkeit, Erfüllbarkeit, Unverfüllbarkeit Deduktionstheorem, Verbindung von Allgemeingültigkeit und Underfüllbarkeit Logik für Informatiker, SS 06 p.33

86 Syntax und Semantik: Zusammenfassung Syntax der Aussagenlogik: Definition der Menge aller Formeln Induktion über Formelaufbau Semantik der Aussagenlogik: Wahrheit einer Formel in einem Modell Uniforme Notation Wahrheitstafelmethode Wichtige Äquivalenzen Äquivalenzumformung als Kalkül (Substitutionstheorem) Allgemeingültigkeit, Erfüllbarkeit, Unverfüllbarkeit Deduktionstheorem, Verbindung von Allgemeingültigkeit und Underfüllbarkeit Craigsches Interpolationstheorem Logik für Informatiker, SS 06 p.33

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 3. Aussagenlogik Syntax und Semantik der Aussagenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.16 Syntax der Aussagenlogik:

Mehr

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Aussagenlogik: Syntax und Semantik. Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2010/2011 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 2 28.04.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Termine Donnerstags: 30.04.2015 nicht

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 30.04.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letztes Mal Aussagenlogik Syntax: welche Formeln? Semantik:

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 3 06.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax (Formeln) Semantik Wertebelegungen/Valuationen/Modelle

Mehr

Theoretische Grundlagen des Software Engineering

Theoretische Grundlagen des Software Engineering Theoretische Grundlagen des Software Engineering 7: Einführung Aussagenlogik schulz@eprover.org Logisches Schließen 2 gold +1000, 1 per step, Beispiel: Jage den Wumpus Performance measure death 1000 10

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 8.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 5. Aussagenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Normalformen Definition: Literal Atom (aussagenlogische

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 9. Prädikatenlogik Syntax und Semantik der Prädikatenlogik Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Syntax der

Mehr

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2.

Theorie der Informatik. Theorie der Informatik. 2.1 Äquivalenzen. 2.2 Vereinfachte Schreibweise. 2.3 Normalformen. 2. Theorie der Informatik 24. Februar 2014 2. Aussagenlogik II Theorie der Informatik 2. Aussagenlogik II 2.1 Äquivalenzen Malte Helmert Gabriele Röger 2.2 Vereinfachte Schreibweise Universität Basel 24.

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 1 25.04.2017 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Grundlegende Beweisstrategien Induktion über

Mehr

Logik Vorlesung 3: Äquivalenz und Normalformen

Logik Vorlesung 3: Äquivalenz und Normalformen Logik Vorlesung 3: Äquivalenz und Normalformen Andreas Maletti 7. November 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/25 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/25 Einführendes Beispiel Falls Lisa Peter trifft, dann trifft Lisa auch Gregor.

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 6 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Syntax der Aussagenlogik: Definition der Menge

Mehr

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch

Syntax. 1 Jedes A AS AL ist eine (atomare) Formel. 2 Ist F eine Formel, so ist auch F eine Formel. 3 Sind F und G Formeln, so sind auch Formale der Informatik 1 Kapitel 15 Folgerbarkeit, Äquivalenzen und Normalformen Frank Heitmann heitmann@informatik.uni-hamburg.de 8. Juni 2015 Syntax Definition (Syntax der Aussagenlogik) Mit AS AL sei

Mehr

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Formale Systeme. Prof. Dr. Bernhard Beckert, WS 2016/ KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft Formale Systeme Prof. Dr. Bernhard Beckert, WS 2016/2017 Aussagenlogik: Tableaukalku l KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK www.kit.edu KIT Die Forschungsuniversita t in der Helmholtz-Gemeinschaft

Mehr

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/??

Aufgabe. Gelten die folgenden Äquivalenzen?. 2/?? Äquivalenz Zwei Formeln F und G heißen (semantisch) äquivalent, falls für alle Belegungen A, die sowohl für F als auch für G passend sind, gilt A(F ) = A(G). Hierfür schreiben wir F G.. 1/?? Aufgabe Gelten

Mehr

Was bisher geschah: klassische Aussagenlogik

Was bisher geschah: klassische Aussagenlogik Was bisher geschah: klassische Aussagenlogik Syntax Symbole und Struktur Junktoren: t, f (nullstellig), (einstellig),,,, (zweistellig) aussagenlogische Formeln AL(P) induktive Definition: IA atomare Formeln

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Wenn das Kind schreit, hat es Hunger Das Kind schreit Also, hat das Kind Hunger Christina Kohl Alexander Maringele

Mehr

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln

Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Hornformeln Formale Grundlagen der Informatik 1 Kapitel 16 Normalformen und Frank Heitmann heitmann@informatik.uni-hamburg.de 9. Juni 2015 Frank Heitmann heitmann@informatik.uni-hamburg.de 1/36 Ersetzbarkeitstheorem

Mehr

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung

Zusammenfassung der letzten LVA. Einführung in die Theoretische Informatik. Syntax der Aussagenlogik. Inhalte der Lehrveranstaltung Zusammenfassung Zusammenfassung der letzten LVA Einführung in die Theoretische Informatik Christina Kohl Alexander Maringele Georg Moser Michael Schaper Manuel Schneckenreither Institut für Informatik

Mehr

Kapitel L:II. II. Aussagenlogik

Kapitel L:II. II. Aussagenlogik Kapitel L:II II. Aussagenlogik Syntax der Aussagenlogik Semantik der Aussagenlogik Eigenschaften des Folgerungsbegriffs Äquivalenz Formeltransformation Normalformen Bedeutung der Folgerung Erfüllbarkeitsalgorithmen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 6. Aussagenlogik Resolution Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Resolutionkalkül Wesentliche

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK Rückblick: Logelei Wir kehren zurück auf das Inselreich mit Menschen von Typ W (Wahrheitssager) und Typ L (Lügner). THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 7. Aussagenlogik Analytische Tableaus Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Der aussagenlogische Tableaukalkül

Mehr

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14

Logik. Logik. Vorkurs Informatik Theoretischer Teil WS 2013/ September Vorkurs Informatik - Theorie - WS2013/14 Logik Logik Vorkurs Informatik Theoretischer Teil WS 2013/14 30. September 2013 Logik > Logik > logische Aussagen Logik Logik > Logik > logische Aussagen Motivation Logik spielt in der Informatik eine

Mehr

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 =

Was bisher geschah. wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min Disjunktion 2 max Negation 1 x 1 x Implikation 2 Äquivalenz 2 = Was bisher geschah (Klassische) Aussagenlogik: Aussage Wahrheitswerte 0 (falsch) und 1 (wahr) Junktoren Syntax Semantik Stelligkeit Symbol Wahrheitswertfunktion wahr 0 t 1 falsch 0 f 0 Konjunktion 2 min

Mehr

THEORETISCHE INFORMATIK UND LOGIK

THEORETISCHE INFORMATIK UND LOGIK THEORETISCHE INFORMATIK UND LOGIK 14. Vorlesung: Modelltheorie und logisches Schließen Markus Krötzsch Lehrstuhl Wissensbasierte Systeme TU Dresden, 31. Mai 2017 Rückblick: Logelei Wir kehren zurück auf

Mehr

Grundlagen der Logik

Grundlagen der Logik Grundlagen der Logik Denken Menschen logisch? Selektionsaufgabe nach Watson (1966): Gegeben sind vier Karten von denen jede auf der einen Seite mit einem Buchstaben, auf der anderen Seite mit einer Zahl

Mehr

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen.

I. Aussagenlogik. Aussagenlogik untersucht Verknüpfungen wie und, oder, nicht, wenn... dann zwischen atomaren und komplexen Sätzen. I. Aussagenlogik 2.1 Syntax Aussagenlogik untersucht Verknüpfungen wie "und", "oder", "nicht", "wenn... dann" zwischen atomaren und komplexen Sätzen. Sätze selbst sind entweder wahr oder falsch. Ansonsten

Mehr

Beispiel Aussagenlogik nach Schöning: Logik...

Beispiel Aussagenlogik nach Schöning: Logik... Beispiel Aussagenlogik nach Schöning: Logik... Worin besteht das Geheimnis Ihres langen Lebens? wurde ein 100-jähriger gefragt. Ich halte mich streng an die Diätregeln: Wenn ich kein Bier zu einer Mahlzeit

Mehr

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4

Syntax der Aussagenlogik. Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen. Formel als Syntaxbaum. Teilformel A 3 A 1 A 4 Syntax der Vorlesung Logik Sommersemester 2012 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume Eine atomare Formel hat die Form A i (wobei i = 1, 2, 3,...). Definition (Formel)

Mehr

Einführung in die Logik

Einführung in die Logik Einführung in die Logik Klaus Madlener und Roland Meyer 24. April 2013 Inhaltsverzeichnis 1 Aussagenlogik 1 1.1 Syntax................................. 1 1.2 Semantik............................... 3 1.3

Mehr

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie

Was ist Logik? Was ist Logik? Aussagenlogik. Wahrheitstabellen. Geschichte der Logik eng verknüpft mit Philosophie Was ist Logik? Geschichte der Logik eng verknüpft mit Philosophie Begriff Logik wird im Alltag vielseitig verwendet Logik untersucht, wie man aus Aussagen andere Aussagen ableiten kann Beschränkung auf

Mehr

3. Grundlegende Begriffe von Logiken - Aussagenlogik

3. Grundlegende Begriffe von Logiken - Aussagenlogik 3. Grundlegende Begriffe von Logiken - Aussagenlogik Wichtige Konzepte und Begriffe in Logiken: Syntax (Signatur, Term, Formel,... ): Festlegung, welche syntaktischen Gebilde als Formeln (Aussagen, Sätze,

Mehr

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015

Formale Methoden 2. Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Formale Methoden 2 Gaetano Geck Lehrstuhl I Logik in der Informatik WS 2014/2015 Teil 3: Logik 1 Aussagenlogik Einleitung Eigenschaften Äquivalenz Folgerung Normalformen 2 Prädikatenlogik Wenn eine Karte

Mehr

TU9 Aussagenlogik. Daniela Andrade

TU9 Aussagenlogik. Daniela Andrade TU9 Aussagenlogik Daniela Andrade daniela.andrade@tum.de 18.12.2017 1 / 21 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds findet ;) 2 /

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 4 07.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Gestern Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logic in a Nutshell. Christian Liguda

Logic in a Nutshell. Christian Liguda Logic in a Nutshell Christian Liguda Quelle: Kastens, Uwe und Büning, Hans K., Modellierung: Grundlagen und formale Methoden, 2009, Carl Hanser Verlag Übersicht Logik - Allgemein Aussagenlogik Modellierung

Mehr

3. Logik 3.1 Aussagenlogik

3. Logik 3.1 Aussagenlogik 3. Logik 3.1 Aussagenlogik WS 06/07 mod 301 Kalkül zum logischen Schließen. Grundlagen: Aristoteles 384-322 v. Chr. Aussagen: Sätze, die prinzipiell als ahr oder falsch angesehen erden können. z. B.: Es

Mehr

Die Prädikatenlogik erster Stufe: Syntax und Semantik

Die Prädikatenlogik erster Stufe: Syntax und Semantik Die Prädikatenlogik erster Stufe: Syntax und Semantik 1 Mathematische Strukturen und deren Typen Definition 1.1 Eine Struktur A ist ein 4-Tupel A = (A; (R A i i I); (f A j j J); (c A k k K)) wobei I, J,

Mehr

Logische Agenten. Einführung in die Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Logische Agenten. Einführung in die Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Logische Agenten Einführung in die Wissensverarbeitung 2 VO 708.560 + 1 UE 442.072 SS 2013 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut

Mehr

Logische Agenten. Einführung in die Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation

Logische Agenten. Einführung in die Wissensverarbeitung 2 VO UE SS Institut für Signalverarbeitung und Sprachkommunikation Logische Agenten Einführung in die Wissensverarbeitung 2 VO 708.560 + 1 UE 442.072 SS 2012 Institut für Signalverarbeitung und Sprachkommunikation TU Graz Inffeldgasse 12/1 www.spsc.tugraz.at Institut

Mehr

2.3 Deduktiver Aufbau der Aussagenlogik

2.3 Deduktiver Aufbau der Aussagenlogik 2.3 Deduktiver Aufbau der Aussagenlogik Dieser Abschnitt beschäftigt sich mit einem axiomatischen Aufbau der Aussagenlogik mittels eines Deduktiven Systems oder eines Kalküls. Eine syntaktisch korrekte

Mehr

Σ={A 0,A 1,A 2,...} Ist α eine Formel, so auch ( α). Sind α und β Formeln, so sind es auch (α β) und (α β).

Σ={A 0,A 1,A 2,...} Ist α eine Formel, so auch ( α). Sind α und β Formeln, so sind es auch (α β) und (α β). Aussagenlogik Syntax der Aussagenlogik Definition 1 (Sprache der Aussagenlogik) Syntax der Aussagenlogik Formeltransformation Entscheidungsverfahren Σ={A 0,A 1,A 2,...} abzählbar unendliche Menge von Atomen.

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Vorsemesterkurs Informatik Mario Holldack WS2015/16 30. September 2015 Vorsemesterkurs Informatik 1 Einleitung 2 Aussagenlogik 3 Mengen Vorsemesterkurs Informatik > Einleitung

Mehr

Vorsemesterkurs Informatik

Vorsemesterkurs Informatik Vorsemesterkurs Informatik Sommersemester 2018 Ronja Düffel 14. März 2018 Theoretische Informatik Wieso, weshalb, warum??!? 1 Modellieren und Formalisieren von Problemen und Lösungen 2 Verifikation (Beweis

Mehr

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser

Informatik A. Prof. Dr. Norbert Fuhr auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser Informatik A Prof. Dr. Norbert Fuhr fuhr@uni-duisburg.de auf Basis des Skripts von Prof. Dr. Wolfram Luther und der Folien von Peter Fankhauser 1 Teil I Logik 2 Geschichte R. Descartes (17. Jhdt): klassische

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 5 14.05.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Bis jetzt Normalformen Atome, Literale, Klauseln Konjunktive

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de 1 Literatur zur Vorlesung Skriptum von U. Furbach Ulrich Furbach Logic for Computer Scientists http://userpages.uni-koblenz.de/

Mehr

Hilbert-Kalkül (Einführung)

Hilbert-Kalkül (Einführung) Hilbert-Kalkül (Einführung) Es gibt viele verschiedene Kalküle, mit denen sich durch syntaktische Umformungen zeigen läßt, ob eine Formel gültig bzw. unerfüllbar ist. Zwei Gruppen von Kalkülen: Kalküle

Mehr

1 Aussagenlogischer Kalkül

1 Aussagenlogischer Kalkül 1 Aussagenlogischer Kalkül Ein Kalkül in der Aussagenlogik soll die Wahrheit oder Algemeingültigkeit von Aussageformen allein auf syntaktischer Ebene zeigen. Die Wahrheit soll durch Umformung von Formeln

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 1 9.06.2015 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Rückblick: Vor- und Nachteile von Aussagenlogik + Aussagenlogik

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 2. Aussagenlogik Teil 10 4.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Organisatorisches Hauptklausur: Montag, 23.07.2012, 16:00-18:00,

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 1. Einführung Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Formale Logik Ziel Formalisierung und Automatisierung rationalen

Mehr

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK

Formale Systeme. Tableaukalku l (ohne Gleichheit) Prof. Dr. Bernhard Beckert, WS 2015/ KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert, WS 2015/2016 Tableaukalku l (ohne Gleichheit) KIT I NSTITUT F U R T HEORETISCHE I NFORMATIK KIT Universita t des Landes Baden-Wu rttemberg und nationales Forschungszentrum

Mehr

5. Logik in der KI. Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache.

5. Logik in der KI. Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache. 5. Logik in der KI Wissensbasis: Menge von Aussagen, die Fakten über die Welt repräsentieren, formuliert in einer Wissensrepräsentationssprache. Neue Aussagen können in die Wissensbasis eingefügt werden:

Mehr

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken

Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Vorbereitungskurs Mathematik zum Sommersemester 2015 Aussagen, Logik und Beweistechniken Susanna Pohl Vorkurs Mathematik TU Dortmund 09.03.2015 Aussagen, Logik und Beweistechniken Aussagen und Logik Motivation

Mehr

Logik für Informatiker Logic for computer scientists

Logik für Informatiker Logic for computer scientists Logik für Informatiker Logic for computer scientists Till Mossakowski Wintersemester 2014/15 Till Mossakowski Logik 1/ 24 Die Booleschen Junktoren Till Mossakowski Logik 2/ 24 Die Negation Wahrheitstafel

Mehr

Logik Vorlesung 2: Semantik der Aussagenlogik

Logik Vorlesung 2: Semantik der Aussagenlogik Logik Vorlesung 2: Semantik der Aussagenlogik Andreas Maletti 24. Oktober 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Kapitel 1. Aussagenlogik

Kapitel 1. Aussagenlogik Kapitel 1 Aussagenlogik Einführung Mathematische Logik (WS 2012/13) Kapitel 1: Aussagenlogik 1/17 Übersicht Teil I: Syntax und Semantik der Aussagenlogik (1.0) Junktoren und Wahrheitsfunktionen (1.1) Syntax

Mehr

TU7 Aussagenlogik II und Prädikatenlogik

TU7 Aussagenlogik II und Prädikatenlogik TU7 Aussagenlogik II und Prädikatenlogik Daniela Andrade daniela.andrade@tum.de 5.12.2016 1 / 32 Kleine Anmerkung Meine Folien basieren auf den DS Trainer von Carlos Camino, den ihr auf www.carlos-camino.de/ds

Mehr

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart)

Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Der Hilbert-Kalkül für die Aussagenlogik (Notizen zur Vorlesung Logik im Wintersemester 2003/04 an der Universität Stuttgart) Javier Esparza und Barbara König 4. Dezember 2003 Für eine gegebene aussagenlogische

Mehr

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen

Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen. notwendig: Existenz- und Allaussagen Prädikatenlogik 1. Stufe (kurz: PL1) Aussagenlogik zu wenig ausdrucksstark für die meisten Anwendungen notwendig: Existenz- und Allaussagen Beispiel: 54 Syntax der Prädikatenlogik erster Stufe (in der

Mehr

Formale Logik. Logik für Informatiker. Modellierung. Logik in der Informatik. Viorica Sofronie-Stokkermans.

Formale Logik. Logik für Informatiker. Modellierung. Logik in der Informatik. Viorica Sofronie-Stokkermans. Formale Logik Logik für Informatiker Viorica Sofronie-Stokkermans e-mail: sofronie@uni-koblenz.de Ziel Formalisierung und utomatisierung rationalen Denkens Rational richtige bleitung von neuem Wissen aus

Mehr

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben.

Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s 1. und s 2 unterschiedliche Wahrheitswerte haben. 2 Aussagenlogik () 2.3 Semantik von [ Gamut 4-58, Partee 7-4 ] Ein und derselbe Satz kann in Bezug auf unterschiedliche Situationen s und s 2 unterschiedliche Wahrheitswerte haben. Beispiel: Es regnet.

Mehr

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1.

1.1 Motivation. Theorie der Informatik. Theorie der Informatik. 1.1 Motivation. 1.2 Syntax. 1.3 Semantik. 1.4 Formeleigenschaften. 1. Theorie der Informatik 19. Februar 2014 1. Aussagenlogik I Theorie der Informatik 1. Aussagenlogik I Malte Helmert Gabriele Röger Universität Basel 19. Februar 2014 1.1 Motivation 1.2 Syntax 1.3 Semantik

Mehr

WS 2015/16 Diskrete Strukturen Kapitel 2: Grundlagen (Aussagenlogik 1)

WS 2015/16 Diskrete Strukturen Kapitel 2: Grundlagen (Aussagenlogik 1) WS 25/6 Diskrete Strukturen Kapitel 2: Grundlagen (Aussagenlogik ) Hans-Joachim Bungartz Lehrstuhl für wissenschaftliches Rechnen Fakultät für Informatik Technische Universität München http://www5.in.tum.de/wiki/index.php/diskrete_strukturen_-_winter_5

Mehr

Kapitel 1.2. Aussagenlogik: Semantik. Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57

Kapitel 1.2. Aussagenlogik: Semantik. Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57 Kapitel 1.2 Aussagenlogik: Semantik Mathematische Logik (WS 2011/12) Kapitel 1.2: Aussagenlogik: Semantik 1 / 57 Übersicht 1.2.1 Interpretationen der al. Formeln 1.2.2 Zentrale semantische Begriffe 1.2.3

Mehr

Übung 4: Aussagenlogik II

Übung 4: Aussagenlogik II Übung 4: Aussagenlogik II Diskrete Strukturen im Wintersemester 2013/2014 Markus Kaiser 8. Januar 2014 1/10 Äquivalenzregeln Identität F true F Dominanz F true true Idempotenz F F F Doppelte Negation F

Mehr

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit.

7. Prädikatenlogik. Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. 7. Prädikatenlogik Aussagenlogik hat wünschenswerte Eigenschaften wie Korrektheit, Vollständigkeit, Entscheidbarkeit. Aber: Aussagenlogik ist sehr beschränkt in der Ausdrucksmächtigkeit. Wissen kann nur

Mehr

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem:

Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: Formalisierung von Sudoku Formalisieren Sie das Sudoku-Problem: 4 4 4 4 4 1 1 1 1 2 2 3 3 5 5 5 5 5 5 6 6 6 7 7 8 8 9 9 9 9 9 8 6 Verwenden Sie dazu eine atomare Formel A[n, x, y] für jedes Tripel (n,

Mehr

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK

Formale Systeme. Prädikatenlogik 2. Stufe. Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK Formale Systeme Prof. Dr. Bernhard Beckert WS 2009/2010 KIT INSTITUT FÜR THEORETISCHE INFORMATIK KIT University of the State of Baden-Württemberg and National Large-scale Research Center of the Helmholtz

Mehr

Formale Systeme. P. H. Schmitt

Formale Systeme. P. H. Schmitt Formale Systeme P. H. Schmitt Winter 2007/2008 Version: 5. März 2008 Vorwort Formale Methoden und die zu ihrer Umsetzung notwendigen formalen Systeme spielen in der Informatik von Anfang an eine wichtige

Mehr

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation

Motivation. Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik Syntax & Semantik. Motivation. Motivation Formale Grundlagen der Informatik 1 Kapitel 14 Aussagenlogik & Frank Heitmann heitmann@informatik.uni-hamburg.de Mit der Aussagenlogik lassen sich einfache Verknüpfungen zwischen (atomaren) Gebilden ausdrücken

Mehr

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37

Aussagenlogik. Übersicht: 1 Teil 1: Syntax und Semantik. 2 Teil 2: Modellierung und Beweise. Aussagenlogik H. Kleine Büning 1/37 Aussagenlogik Übersicht: 1 Teil 1: Syntax und Semantik 2 Teil 2: Modellierung und Beweise Aussagenlogik H. Kleine Büning 1/37 Modellierungsaufgabe Es gibt drei Tauben und zwei Löcher. Jede Taube soll in

Mehr

Ersetzbarkeitstheorem

Ersetzbarkeitstheorem Ersetzbarkeitstheorem Die Abgeschlossenheit läßt sich auch folgendermaßen formulieren: Ersetzbarkeitstheorem Seien F und G Formeln mit F G. SeienH und H Formeln, so daß H aus H hervorgeht, indem ein Vorkommen

Mehr

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1

Kapitel 1.0. Aussagenlogik: Einführung. Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Kapitel 1.0 Aussagenlogik: Einführung Mathematische Logik (WS 2011/12) Kapitel 1.0: Aussagenlogik: Einführung 1/ 1 Ziele der Aussagenlogik In der Aussagenlogik analysiert man die Wahrheitswerte zusammengesetzter

Mehr

Vorlesung Logiksysteme

Vorlesung Logiksysteme Vorlesung Logiksysteme Teil 1 - Aussagenlogik Martin Mundhenk Univ. Jena, Institut für Informatik 15. Mai 2014 Formalien zur Vorlesung/Übung Termine: dienstags 16:15 17:45 Uhr freitags 10:15 11:45 Uhr

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 4 18.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Letzte Vorlesung Sematik: Σ-Strukturen = (U, (f : U

Mehr

Grundbegriffe für dreiwertige Logik

Grundbegriffe für dreiwertige Logik Grundbegriffe für dreiwertige Logik Hans Kleine Büning Universität Paderborn 1.11.2011 1 Syntax und Semantik Die klassische Aussagenlogik mit den Wahrheitswerten falsch und wahr bezeichnen wir im weiteren

Mehr

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9.

Formale Logik. PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg. Wintersemester 16/17 Sitzung vom 9. Formale Logik PD Dr. Markus Junker Abteilung für Mathematische Logik Universität Freiburg Wintersemester 16/17 Sitzung vom 9. November 2016 Weitere Begriffe Eine Zuweisung von Wahrheitswerten W bzw. F

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 11. Prädikatenlogik Normalformen Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Negationsnormalform Definition: Negationsnormalform

Mehr

Die Folgerungsbeziehung

Die Folgerungsbeziehung Kapitel 2: Aussagenlogik Abschnitt 2.1: Syntax und Semantik Die Folgerungsbeziehung Definition 2.15 Eine Formel ψ AL folgt aus einer Formelmenge Φ AL (wir schreiben: Φ = ψ), wenn für jede Interpretation

Mehr

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme

Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Zusammenfassung des Stoffes zur Vorlesung Formale Systeme Max Kramer 13. Februar 2009 Diese Zusammenfassung entstand als persönliche Vorbereitung auf die Klausur zur Vorlesung Formale Systeme von Prof.

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker 3. Prädikatenlogik Teil 3 12.06.2012 Viorica Sofronie-Stokkermans Universität Koblenz-Landau e-mail: sofronie@uni-koblenz.de 1 Semantik Semantik geben bedeutet für logische Systeme,

Mehr

Kapitel 1.2. Semantik der Aussagenlogik. Mathematische Logik (WS 2013/14) Kapitel 1.2: Semantik der Aussagenlogik 1 / 60

Kapitel 1.2. Semantik der Aussagenlogik. Mathematische Logik (WS 2013/14) Kapitel 1.2: Semantik der Aussagenlogik 1 / 60 Kapitel 1.2 Semantik der Aussagenlogik Mathematische Logik (WS 2013/14) Kapitel 1.2: Semantik der Aussagenlogik 1 / 60 Übersicht 1.2.1 Interpretationen der al. Formeln 1.2.2 Zentrale semantische Begriffe

Mehr

Klassische Aussagenlogik

Klassische Aussagenlogik Klassische Aussagenlogik Prof. Dr. Klaus U. Schulz 07.06.2010 In der formalen Logik versucht man, die Gesetzmäßigkeiten einer korrekten Argumentations- oder Schlussweise zu formalisieren. Zumindest drei

Mehr

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung

Was ist Logik? Was ist Logik? Logische Konnektoren. Aussagenlogik. Logik stellt Sprachen zur Darstellung von Wissen zur Verfügung Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen

Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie. Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Was ist Logik? Geschichte der Logik ist eng verknüpft mit (Sprach-) Philosophie Logik untersucht, wie aus wahren Aussagen andere wahre Aussagen folgen Beschränkung auf "Aussage A folgt nach einer gegebenen

Mehr

Logik. Studiengang. Informatik und. Technoinformatik SS 02. Prof. Dr. Madlener Universität Kaiserslautern. Vorlesung: Mi

Logik. Studiengang. Informatik und. Technoinformatik SS 02. Prof. Dr. Madlener Universität Kaiserslautern. Vorlesung: Mi Logik Studiengang Informatik und Technoinformatik SS 02 Vorlesung: Mi 11.45-13.15 52/207 Prof. Dr. Madlener Universität Kaiserslautern Informationen www-madlener.informatik.uni-kl.de/ag-madlener/teaching/ss2002/

Mehr

Logik Vorlesung 8: Modelle und Äquivalenz

Logik Vorlesung 8: Modelle und Äquivalenz Logik Vorlesung 8: Modelle und Äquivalenz Andreas Maletti 12. Dezember 2014 Überblick Inhalt 1 Motivation und mathematische Grundlagen 2 Aussagenlogik Syntax und Semantik Äquivalenz und Normalformen Weitere

Mehr

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln

Kapitel 1.3. Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Kapitel 1.3 Normalformen aussagenlogischer Formeln und die Darstellbarkeit Boolescher Funktionen durch aussagenlogische Formeln Mathematische Logik (WS 2011/12) Kapitel 1.3: Normalformen 1/ 29 Übersicht

Mehr

Logik für Informatiker

Logik für Informatiker Vorlesung Logik für Informatiker 13. Prädikatenlogik Der Satz von Herbrand Bernhard Beckert Universität Koblenz-Landau Sommersemester 2006 Logik für Informatiker, SS 06 p.1 Semantische Bäume Eine klassische

Mehr

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen

Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Vorlesung Logik Wintersemester 2012/13 Universität Duisburg-Essen Barbara König Übungsleitung: Christoph Blume & Dr. Sander Bruggink Barbara König Logik 1 (Motivation) Wir benötigen Algorithmen für Erfüllbarkeitstests,

Mehr

Allgemeingültige Aussagen

Allgemeingültige Aussagen Allgemeingültige Aussagen Definition 19 Eine (aussagenlogische) Formel p heißt allgemeingültig (oder auch eine Tautologie), falls p unter jeder Belegung wahr ist. Eine (aussagenlogische) Formel p heißt

Mehr

Logik für Informatiker

Logik für Informatiker Logik für Informatiker Wintersemester 2007/08 Thomas Schwentick Teil A: Aussagenlogik 2. Grundlagen Version von: 2. November 2007(16:19) Inhalt 2.1 Beispiele 2.2 Syntax 2.3 Semantik 2.4 Modellierung mit

Mehr

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 1

Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt 1 Prof. Dr. Bernhard Steffen Dipl.Inf. Malte Isberner Dr. Oliver Rüthing Dipl.Inf. Melanie Schmidt Dr. Hubert Wagner Übungen zur Vorlesung Mathematik für Informatiker 1 Wintersemester 2013/14 Übungsblatt

Mehr