Stoßionisation. Dreierstoß-Rekombination. Stoßanregung. Stoß 2.Art. Atomstoß-Ionisierung. Dreierstoß-Rekombination. Ionisierungs-Austausch

Größe: px
Ab Seite anzeigen:

Download "Stoßionisation. Dreierstoß-Rekombination. Stoßanregung. Stoß 2.Art. Atomstoß-Ionisierung. Dreierstoß-Rekombination. Ionisierungs-Austausch"

Transkript

1 3.5 Die Entdeckung des Atomkerns 699 Spontane Emission Erzwungene Emission Stoßionisation Abb Übersicht über die Stoßprozesse zwischen Atomen, Elektronen, Photonen. () Photon, ( ) Elektron, (, ) Atome im Grundzustand, (, ) im angeregten Zustand, ( +, + ) Ionen Absorption Dreierstoß-Rekombination Raman-Effekt (Stokes) Stoßanregung Raman-Effekt (Antistokes) Stoß 2.Art Compton-Effekt Atomstoß-Anregung Atomstoß 2.Art Anregungs-Austausch Atomstoß-Ionisierung Dreierstoß-Rekombination Ionisierungs-Austausch Zustand. Wenn die,,erlösenden thermischen oder Elektronenstöße selten sind, können solche Zustände sehr lange Lebensdauern haben und erhebliche Energiemengen speichern. Wenn man die Linie 253,7 nm in Hg-Dampf einstrahlt, dem Tl-Dampf beigemischt ist, so treten neben den Hg-Resonanzlinien (Abschn ) auch längerwellige Tl-Linien auf. Angeregte Hg-Atome haben ihre Anregungsenergien mit Tl-Atomen ausgetauscht. Die Differenz zwischen den beiden Anregungsenergien geht in kinetische Energie über. Solche indirekte Anregung heißt sensibilisierte Fluoreszenz; Hg ist der Sensibilisator für das Tl-Leuchten. 3.5 Die Entdeckung des Atomkerns Es wurde schon vor 900 klar, dass Atome aus geladenen Teilchen aufgebaut waren. Einige Eigenschaften der negativ geladenen Elektronen, etwa ihre Ladung und Masse, waren bereits bekannt. Nicht bekannt war, wie sich in den Atomen, deren Größe man ebenfalls schon abschätzen konnte, die Masse und die positive Ladung verteilten. Die Experimente von Rutherford haben unzweideutig gezeigt, dass Atome auf den ersten Blick wie mikroskopische Planetensysteme aussehen: Masse und positive La-

2 Teilchen, Wellen, mikroskopische Physik dung sind in einem Kern konzentriert, in dessen Coulomb-Kraftfeld sich die Elektronen bewegen. Die Bewegung der mikroskopischen Teilchen, also der Elektronen, konnte jedoch mit den Gesetzen der klassischen Mechanik nicht mehr erfolgreich beschrieben werden. Rutherfords Experimente stehen an einem entscheidenden Wendepunkt von der klassischen zur modernen Physik. K Abb Kathodenstrahlrohr mit Lenard-Fenster K Abb Anordnung zur Messung des Wirkungsquerschnitts absorbierender Stoffe für Kathodenstrahlung F A A F 3.5. Das leere Atom Atome und Moleküle sind keine kompakten Gebilde, sondern überwiegend,,leer wie das Weltall. Das zeigten Heinrich Hertz (89) und Philipp Lenard (um 900). Kathodenstrahlung von etwa 40 kv Beschleunigungsspannung dringt leicht durch ein dünnes Fenster (F in Abb. 3.26; z. B. 5 μm Aluminiumfolie) in die Außenluft und bringt sie als Halbkugel von einigen cm Radius zu bläulichem Leuchten. In Abb dringt die Strahlung in einen Teil der Röhre, wo Gasart und Druck beliebig eingestellt werden können und eine Anode (A) den Teilchenstrom direkt auffängt. Erstaunlich ist, dass die schnellen Elektronen überhaupt durch die Metallfolie von einigen μm Dicke kommen, in der immerhin etwa 0 4 Atomschichten in dichter Packung übereinander liegen. In einigen mm Luft sind es ebenso viele, und die Elektronen kommen dort sogar einige cm weit. Der Wirkungsquerschnitt der Atome für die Absorption dieser Elektronen ist also 0 5 -mal kleiner als der geometrische Querschnitt, der z. B. für die freie Weglänge langsamer Teilchen in Normalluft (0 5 cm) verantwortlich ist. Die quantitative Messung mit Änderung von Beschleunigungsspannung U, Gasdichte ϱ und Abstand d zwischen F und A (Abb. 3.27) ergibt ein Absorptionsgesetz wie beim Licht: Der Elektronenstrom, der bei A ankommt, ändert sich gemäß I = I 0 e αd = I 0 e βϱd. (3.7) Der Massenabsorptionskoeffizient β hat für alle Stoffe (auch feste) ungefähr den gleichen Wert, hängt aber sehr stark von der Elektronenenergie eu ab. Man kann α = βϱ durch den Einfangquerschnitt σ eines Absorberteilchens darstellen. Diese Teilchen haben die Anzahldichte n = ϱ/m. Jedes präsentiert den schnellen Elektronen eine Scheibenfläche σ, die Gesamtauffangfläche pro Volumeneinheit ist nσ, die mittlere freie Weglänge l = /(nσ), das Absorptionsgesetz lautet damit I = I 0 e x/l. Der Vergleich liefert α = βϱ = nσ,also β = σ m. (3.8) In Luft hat der Einfangquerschnitt σ bis U 300 V etwa den geometrischen Wert m 2. Von da bis 660 kv fällt er auf m 2, hat dann also nur noch den Radius r = 0 3 m. Nach dem Coulomb- Gesetz ist das ganz verständlich (vgl. Aufgabe 8.3.): Ein Elektron mit der Energie E kann sich einer Ladung Q maximal so weit nähern, bis eq/(4πε 0 r) E. Dieses r fungiert als Radius des Einfangquerschnitts σ und nimmt wie E ab, σ wie E 2. Die quantitative Übereinstimmung mit der Messung verlangt Q 0e: Eine solche Ladung muss irgendwo

3 3.5 Die Entdeckung des Atomkerns 70 im Atom konzentriert und mit einer erheblichen Masse verbunden sein. Ein Elektron im Atom kann dem schnellen nämlich nur einige ev entziehen, sonst fliegt es aus dem Atom hinaus und wird bei zentralem Stoß selbst zum schnellen Elektron. Streuversuche mit den noch viel energiereicheren radioaktiven α-teilchen zeigen genauer, wie Ladung und Masse im Atom verteilt sind. Schirm Folie α-pr Das Experiment von Rutherford Wie leer die Materie wirklich ist, zeigten Rutherford, Geiger, Marsden in den Jahren 906 bis 93 durch eines der folgenschwersten Experimente der ganzen Physik. Sie ließen ein eng ausgeblendetes, also paralleles Bündel von α-teilchen aus einem radioaktiven Präparat auf eine sehr dünne Goldfolie (wenige μm) fallen. Weitaus die meisten α-teilchen gehen fast unabgelenkt durch, nur wenige werden stärker abgelenkt. Man weist sie auf einem Zählgerät, z. B. einem Szintillationsmikroskop nach, das man im Kreis um die Folie schwenken kann (Abb. 3.28). Jedes α-teilchen löst im Leuchtstoffschirm einen Lichtblitz aus; diese Blitze können visuell gezählt oder automatisch von einem Multiplier mit Zählschaltung registriert werden. Ihre Häufigkeit nimmt mit dem Streuwinkel ϕ sehr stark ab (Abb. 3.29). Wenn man z. B. unter 5 Ablenkung α-teilchen zählt, findet man in der gleichen Zeit bei 50 nur noch knapp ein Teilchen (Abb. 3.30, ausgezogene Kurve; man beachte die logarithmische Auftragung des Bruchteils d N/N = Anzahl abgelenkter Teilchen/Anzahl einfallender Teilchen). Die damals vernünftigste Vorstellung vom Atomaufbau, das Thomson- Modell, betrachtet die positive Ladung und die Masse als über das Atomvolumen (Durchmesser einige Å) gleichmäßig verteilt und die praktisch punktförmigen Elektronen darin eingebettet. Da die positive Ladung im Festkörper demnach sehr gleichmäßig verteilt sein soll, kann sie das durchfliegende α-teilchen kaum ablenken. Das Feld der Elektronen ist sehr viel inhomogener, aber dafür können diese das mal schwerere α-teilchen nach den Stoßgesetzen ((.69), Abb..3) nur sehr wenig ablenken: sin ϕ m /(m + m ) m /m = /7 350, d. h. ϕ 28. Die Gesamtablenkung des α-teilchens setzt sich also aus sehr vielen sehr kleinen Ablenkungen zusammen, deren Richtungen nicht im einzelnen vorhersagbar sind. Die Lage ist dieselbe wie bei der Diffusion, wo die Gesamtverschiebung eines Teilchens sich aus sehr vielen freien Weglängen mit zufälligen Richtungen zusammensetzt. Die Verteilung der Lichtblitze auf dem Schirm entspräche nach dem Thomson-Modell der Verteilung von Teilchen, die seit einer gewissen Zeit von einem eng begrenzten Bereich (dem Durchstoßbereich des Primärbündels) wegdiffundieren. Es käme eine Gauß-Verteilung dn/n = Ae Bϕ2 heraus, die in logarithmischer Auftragung eine Parabel ln A Bϕ 2 ergibt, also sich gerade im falschen Sinne ausbaucht (Abb. 3.30). Der Fehler liegt offenbar in der Annahme, dass die positive Ladung und die Masse des Atoms (zu der die Elektronen ja praktisch nichts beitragen) etwa gleichmäßig verteilt sind. Stärkere Konzentration dieser Ladung und Masse bringt stärkere Felder, die heftiger, wenn auch seltener ablenken Abb Prinzip der Versuchsanordnung zur Messung der Einzelstreuung von α-strahlung. Von der Strahlungsquelle α- Pr treffen die α-teilchen auf die Streufolie; der durch ein Mikroskop betrachtete Szintillationsschirm kann zwischen 0 und fast 80 um die Streufolie herumgeschwenkt werden N sin 4 (φ/2) φ Abb Die Ergebnisse von Geiger und Marsden bestätigen nicht nur den Verlauf des rutherfordschen /sin(φ/2) 4 -Gesetzes. Sie erlauben auch eine Abschätzung des Kerndurchmessers aus dem größten gemessenen Streuwinkel: Aus der kinetischen Energie der Teilchen und dem Streuwinkel lässt sich der kleinste Abstand zwischen Kern und α-streuteilchen bestimmen. Der größte Streuwinkel, der noch auf der Rutherford-Kurve liegt, ergibt dann direkt eine Obergrenze für den Kernradius

4 Teilchen, Wellen, mikroskopische Physik Abb Winkelabhängigkeit der Streuwahrscheinlichkeit von 6 MeVα-Teilchen in einer Goldfolie von μm Dicke.( ) Messkurve und theoretische Kurve nach dem Rutherford-Modell, ( ) Gauß-Kurve nach dem Thomson-Modell. Man beachte die logarithmische Ordinate b Abb Hyperbelbahnen von α- Teilchen im Kraftfeld des Atomkerns. Der außerhalb der Atome beobachtete Ablenkungswinkel ist der Winkel zwischen den Asymptoten der Hyperbel tan b a F 2e 2b Abb Geometrie der Hyperbel K F können. Rutherford nahm also 9 einen praktisch punktförmigen Kern an, was die α-streumessungen vollständig erklärt (wenn es auch die Stabilität und das sonstige Verhalten des Atoms nicht richtig beschreibt). Im r 2 -Coulomb-Feld des streuenden Kerns werden die ebenfalls positiven α-teilchen ( 4 2He-Kerne) ähnlich wie Kometen im Feld der Sonne auf Hyperbelbahnen abgelenkt (Abb. 3.3), allerdings durch Abstoßung, nicht durch Anziehung. Große Ablenkwinkel kommen nur im starken Feld sehr nahe am Kern vor. Diese Felder nehmen nur einen kleinen Teil des ganzen Atomvolumens ein, und entsprechend klein ist die Wahrscheinlichkeit, dass ein α-teilchen dorthin trifft. Abbildung 3.33 zeigt die Bahn eines positiven Teilchens der Ladung Z e und der Energie E im Feld eines Kerns der Ladung Ze. Dieser steht im entfernteren Brennpunkt der Hyperbelbahn (die Sonne würde im näheren Brennpunkt der Kometenbahn stehen, da sie anzieht, während der Kern abstößt). Wenn das α-teilchen unabgelenkt, also längs der Asymptote weiterflöge, käme es am Kern im Abstand b, dem Stoßparameter vorbei. In Wirklichkeit fliegt es schließlich in Richtung der anderen Asymptote, also um den Winkel ϕ abgelenkt davon. Wie man aus Abb sieht, spielt b die Rolle der einen Hyperbel-Halbachse. Die Bahnen von α-teilchen mit der gleichen Energie W, aber verschiedenem Stoßparameter b, haben den Brennpunkt gemeinsam, in dem der streuende Kern liegt. Außerdem haben sie alle die gleiche Halbachse a, denn diese allein bestimmt die Energie des Teilchens (Abschn..7.4, (.97)). Wie groß a ist, sieht man am einfachsten aus der speziellen Bahn mit b = 0, die zentral auf den Kern zuführt, dann aber im Abstand = 2e umkehrt und in sich zurückläuft. Am Umkehrpunkt ist die kinetische Energie Null, also E = Z Ze 2 4πε 0 = Ze2 4πε 0 a. (3.9) Wir suchen den Zusammenhang zwischen Streuwinkel ϕ = π 2ϑ und Stoßparameter b. Nach Abb liegen die Brennpunkte aller Hyperbeln auf dem gleichen Lot zur Einfallsrichtung im Abstand vom streuenden Kern, die Mittelpunkte aller Hyperbeln auf dem Lot im Abstand a. Dies folgt aus Abb (man betrachte die Dreiecke aus den Stücken a, b, e). Damit liest man ab tan ϑ = b/a und wegen cot ϕ/2 = cot(π/2 ϑ) = tan ϑ: cot ϕ 2 = b a = 4πε 0 be. (3.20) Ze2 Der Ablenkwinkel ϕ ist umso größer, also cot ϕ/2 umso kleiner, je kleiner b und E sind, d. h. je näher am Kern das α-teilchen vorbeifliegt und je langsamer es ist. Wir schießen jetzt eine Anzahl N von α-teilchen auf eine Folie und fragen, wie viele davon unter den verschiedenen Winkeln abgelenkt werden. Genauer: Das Szintillationsmikroskop (Abb. 3.28) bilde mit seiner Achse einen Winkel ϕ gegen die Einfallrichtung der α-teilchen. Von der Folie aus gesehen nehme der Leuchtschirm im Blickfeld des Mikroskops einen Raumwinkel dω ein. Wie viele Lichtblitze wird man zählen?

5 3.5 Die Entdeckung des Atomkerns 703 Die Folie habe eine Dicke Δx und enthalte n Kerne/m 3. Wir fragen zunächst, wie viele α-teilchen in einen Hohlkegel abgelenkt werden, der außen den Öffnungswinkel ϕ, innen ϕ dϕ hat (Abb. 3.36). Der Ablenkwinkel ϕ entspricht nach (3.20) einem gewissen Stoßparameter b, ϕ dϕ einem um db größeren Stoßparameter; der Zusammenhang zwischen dϕ und db ergibt sich durch Differentiation von (3.20): 2 sin 2 ϕ/2 dϕ = 4πε 0E db. (3.2) Ze2 Die Teilchen, nach denen wir fragen, sind also die, die an irgendeinem Kern mit einem Stoßparameter zwischen b und b + db vorbeifliegen, d. h. die in den in Abb gezeichneten Ring hineinzielen. Ein solcher Ring hat die Fläche 2πb db. Imm 3 befinden sich n solche Ringe, also präsentiert eine Schicht des Querschnitts σ und der Dicke Δx einen Gesamtstoßquerschnitt nσ Δx 2πb db. Teilt man dies durch σ, so erhält man die Wahrscheinlichkeit P(ϕ) dϕ für eine Ablenkung in den fraglichen Hohlkegel: P(ϕ) dϕ = n Δx 2πb db. (3.22) Von den N Teilchen werden dn = P(ϕ) dϕ N in den Hohlkegel gestreut. Da b der Messung nicht direkt zugänglich ist, drückt man es in (3.22) mittels (3.20) und (3.2) besser durch ϕ aus: dn = Nn Δx 2π Ze2 4πε 0 E cot ϕ 2 Z 2 e 4 = Nn Δx 2 Ze 2 4πε 0 E 6π 2 ε 2 0 E2 cos(ϕ/2) sin 3 (ϕ/2) dϕ. dϕ sin 2 (ϕ/2) (3.23) Diese Teilchen werden in den Hohlkegel gestreut, dessen Raumwinkel 2π sin ϕ dϕ ist. In den Raumwinkel dω des Mikroskops gelangt nur ein Bruchteil dω/(2π sin ϕ dϕ) davon, also eine Anzahl dn = dn dω 2π sin ϕ dϕ = Nn Δx Z 2 e 4 dω 64π 2 ε 2 0 E2 sin 4 (ϕ/2) (3.24) a a b φ Abb Ablenkung im abstoßenden Coulomb-Feld F a a φ b e F a Abb Eine Schar von Hyperbelbahnen mit gleicher großer Halbachse a, also gleicher Gesamtenergie, aber verschiedenen Stoßparametern (kleinen Halbachsen) b und daher verschiedenen Exzentrizitäten e = a 2 + b 2 und Streuwinkeln ϕ. Die Bahnen ergeben sich mit einem Abstoßungszentrum in F (positive Ladung), ebenso gut aber auch mit einem Anziehungszentrum (negative Ladung) in F (die letzte Umwandlung benutzt das Additionstheorem). Der Nenner sin 4 (ϕ/2) bringt den außerordentlich starken Abfall der Streuwahrscheinlichkeit mit wachsendem Streuwinkel zum Ausdruck (Abb. 3.30). Das E 2 im Nenner besagt, dass der Strahl umso,,steifer wird, je energiereicher er ist. In Analogie mit Abschn kann man (3.24) auch schreiben dn = n Δx Ndσ, wobei b Kern db dσ = Z2 e 4 64π 2 ε 2 0 E2 sin 4 ϕ 2 dω (Rutherford-Streuformel) (3.25) der differentielle Wirkungsquerschnitt für die Ablenkung in den Raumwinkel dω in Richtung ϕ ist. Abb Zur Berechnung der Wahrscheinlichkeit von Ablenkungen der α-teilchen im Kernfeld unter einem bestimmten Winkel. Die Flugrichtung der α-teilchen steht senkrecht auf der Papierebene

6 Teilchen, Wellen, mikroskopische Physik φ dω Abb Zur Raumwinkeldefinition in der rutherfordschen Streuformel Verfeinerte Beobachtungen der Einzelstreuung von α-strahlen durch Geiger und Marsden (Abb. 3.29) ergaben für mäßige Streuwinkel eine vollständige Bestätigung für (3.25) und überzeugten daher von der Richtigkeit des zugrunde gelegten Atombildes. Erst für sehr große Ablenkwinkel und dementsprechend kleine Werte von b ( 0 4 m) gehorcht die Streuung nicht mehr (3.25). Das α-teilchen dringt dann offenbar in Bereiche zu nahe dem Kern ein, wo das Coulomb-Gesetz, das der Ableitung der Rutherford-Streuformel zugrunde liegt, nicht mehr gültig ist. Es ist sinnvoll, hier die Grenze des Atomkerns anzusetzen. Sein Radius ist demnach kleiner als 0 4 m, d. h. mehr als mal kleiner als der Atomradius. Der Kern ist im Vergleich zum Atom noch viel kleiner als die Sonne im Vergleich zum Sonnensystem. Derartige Versuche an Folien aus verschiedenen Metallen führten zu der Erkenntnis, dass für die Kernradien (r) ziemlich genau gilt: r =,2 0 5 m 3 A, (3.26) wobei A die Massenzahl bedeutet. Der Faktor,2 0 5 m ist als Radius eines Nukleons (Abschn. 8..) aufzufassen. Die Dichte der Kernsubstanz, d. h. der Quotient aus Masse (proportional A) und dem Volumen (proportional r 3 ) ist daher für alle Kerne nahezu die gleiche. Zahlenmäßig ergibt sich für die Kerndichte der ungeheuer große Wert von etwa kg m Grundzüge der Quantenmechanik 3.6. Einleitung: Mathematisches Handwerkszeug Es gibt für den Lernenden mehrere mögliche Zugänge zur Quantentheorie: den historischen, der die Näherungen und Irrtümer nachzeichnet, unter denen man sich an die ausgereifte Theorie herangetastet hat, den empirischen, der durch eine Reihe von experimenta crucis zeigt, wie sich Elektronen und Atome verhalten und wie dementsprechend die klassischen Vorstellungen abzuändern sind, den Hamiltonschen, der von dem hochentwickelten Formalismus der klassischen Mechanik ausgeht und diesen sinngemäß modifiziert, den optischen, der am Analogon der Welle-Teilchen-Dualität des Lichts die gleiche Dualität für die Materie entwickelt, und den axiomatischen. Von allen diesen Zugängen führt der axiomatische weitaus am schnellsten auf ein Niveau, mit dem man etwas anfangen, d. h. wenigstens einige Grundprobleme quantitativ behandeln kann. Dem steht nur das Hindernis einer etwas abstrakten, ungewohnten Sprache entgegen. Vor allem muss man sich dazu einige mathematische Begriffe aneignen. Wir werden diese Begriffe nur kurz plausibel machen. Sicher werden Sie sich dadurch nicht verführen lassen zu glauben, Sie wüssten jetzt alles über diese Dinge. Schrödingers und Heisenbergs Beschreibungen der Mikrowelt klangen anfangs radikal verschieden, bis Dirac, Born, Jordan ihre mathematische Äquivalenz nachwiesen. Sie stützten sich dabei auf die Mathematik Hilberts, der auch in Göttingen arbeitete, damals der Hochburg der theoretischen Physik, bis 936, als Hilbert auf die Frage des NS-Kultusministers

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e

Rutherford Streuung F 1. r 12 F 2 q 2 = Z 2 e. q 1 = Z 1 e Rutherford Streuung Historisch: Allgemein: Streuung von α-teilchen an Metallfolien Ernest Rutherford, 96 Streuung geladener Teilchen an anderen geladenen Teilchen unter der Wirkung der Coulomb-Kraft. F

Mehr

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie

Kapitel 3: Kernstruktur des Atoms. Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie 03. Kernstruktur Page 1 Kapitel 3: Kernstruktur des Atoms Kathodenstrahlrohr: 3.1 Durchgang von Elektronen durch Materie Elektronen erzeugt im Kathodenstrahlrohr wechselwirken mit Gasatomen im Rohr. Elektronen

Mehr

5.2 Physik der Atomhülle

5.2 Physik der Atomhülle 5.2 Physik der Atomhülle 5.2.1 Streuversuche von Rutherford und das zugehörige Atommodell; Ladung des Atomkerns Ältere Atommodelle Auf den Ergebnissen der kinetischen Gastheorie aufbauend entwickelte der

Mehr

A9 RUTHERFORD 1 scher Streuversuch

A9 RUTHERFORD 1 scher Streuversuch A9 RUTHERFORD 1 scher Streuversuch Aufgabenstellung: Untersuchen Sie die Abhängigkeit der Streurate vom Streuwinkel und überprüfen Sie die Gültigkeit der Rutherfordschen Streuformel. Untersuchen Sie die

Mehr

Der Streuversuch. Klick dich in den Streuversuch ein. Los geht s! Vorüberlegungen. Versuchsaufbau. animierte Versuchsaufbau. Durchführung.

Der Streuversuch. Klick dich in den Streuversuch ein. Los geht s! Vorüberlegungen. Versuchsaufbau. animierte Versuchsaufbau. Durchführung. Der Streuversuch Der Streuversuch wurde in Manchester von den Physikern Rutherford, Geiger und Marsden durchgeführt. Sie begannen 1906 mit dem Versuch und benötigten sieben Jahre um das Geheimnis des Aufbaus

Mehr

Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet werden können.

Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet werden können. phys4.02 Page 1 1.5 Methoden zur Abbildung einzelner Atome Optische Abbildung: Kann man einzelne Atome 'sehen'? Auflösungsvermögen: Kleinster Abstand d zweier Strukturen die noch als getrennt abgebildet

Mehr

Vorlesung 2: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung (1911)

Vorlesung 2: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung (1911) Vorlesung 2: Roter Faden: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung (1911) Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Wim de Boer, Karlsruhe Atome

Mehr

Vorlesung 2: Roter Faden: Größe der Atome Massenspektroskopie Atomstruktur aus. Folien auf dem Web:

Vorlesung 2: Roter Faden: Größe der Atome Massenspektroskopie Atomstruktur aus. Folien auf dem Web: Vorlesung 2: Roter Faden: Größe der Atome Massenspektroskopie p Atomstruktur aus Rutherfordstreuung (1911) Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ Wim de Boer, Karlsruhe Atome

Mehr

Atomphysik für Studierende des Lehramtes

Atomphysik für Studierende des Lehramtes Atomphysik für Studierende des Lehramtes Teil 3 Grenzen der atomistischen Beschreibung der kinetischen Gastheorie Die spezifische Wärmekapazität gibt an, welche Wärmemenge einem Stoff pro Kilogramm zugeführt

Mehr

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010

Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungen Physik VI (Kerne und Teilchen) Sommersemester 2010 Übungsblatt Nr. 1 Bearbeitung bis 22.04.2010 Webseite des Email-Verteilers: https://www.lists.kit.edu/sympa/info/ktp-ss2010 Verwenden Sie den

Mehr

Vorlesung 2: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung

Vorlesung 2: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung Vorlesung 2: Roter Faden: Größe der Atome Massenspektroskopie Atomstruktur aus Rutherfordstreuung Skripte und Folien auf dem Web: http://www-ekp.physik.uni-karlsruhe.de/~deboer/ April 14, 2005 Atomphysik

Mehr

Aufgabe 7 (E): Massenspektrometer (schriftlich, 6+2 Punkte) a)

Aufgabe 7 (E): Massenspektrometer (schriftlich, 6+2 Punkte) a) UNIVERSITÄT KONSTANZ Fachbereich Physik Prof. Dr. Elke Scheer (Experimentalphysik) Raum P 007, Tel. 472 E-mail: elke.scheer@uni-konstanz.de Prof. Dr. Guido Burkard (Theoretische Physik) Raum P 807, Tel.

Mehr

R. Brinkmann Seite

R. Brinkmann  Seite R. Brinkmann http://brinkmanndu.de Seite 1 26.11.2013 Der Aufbau der Atome Atommodelle. Annahme: Kleinste Teilchen als Grundbausteine aller Stoffe. Mit Hilfe der Vorstellung, dass alle Stoffe aus kleinsten

Mehr

Grundlagen von Streuprozessen

Grundlagen von Streuprozessen Grundlagen von Streuprozessen Aktuelle Probleme der experimentellen Teilchenphysik WS 2009 / 10 Lehrstuhl für Physik und ihre Didaktik 03.11.2009 Ortsauflösung de Broglie Wellenlänge Auflösungsvermögen

Mehr

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen.

Atommodell führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Atommodell nach Rutherford 1911 führte Rutherford den nach ihm benannten Streuversuch durch. Dabei bestrahlte er eine dünne Goldfolie mit α Teilchen. Beobachtung: Fast alle Teilchen fliegen ungestört durch.

Mehr

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator

Elemente der Quantenmechanik III 9.1. Schrödingergleichung mit beliebigem Potential 9.2. Harmonischer Oszillator 9.3. Drehimpulsoperator VL 8 VL8. VL9. VL10. Das Wasserstoffatom in der klass. Mechanik 8.1. Emissions- und Absorptionsspektren der Atome 8.2. Quantelung der Energie (Frank-Hertz Versuch) 8.3. Bohrsches Atommodell 8.4. Spektren

Mehr

K8 PhysikalischesGrundpraktikum

K8 PhysikalischesGrundpraktikum K8 PhysikalischesGrundpraktikum Abteilung Kernphysik Rutherford-Streuung 1 Lernziele Der Wahlversuch K8 gibt Ihnen die Möglichkeit, die im Grundpraktikum erworbenen Kenntnisse an einem historisch sehr

Mehr

Globale Eigenschaften der Kerne

Globale Eigenschaften der Kerne Kerne und Teilchen Moderne Experimentalphysik III Vorlesung MICHAEL FEINDT INSTITUT FÜR EXPERIMENTELLE KERNPHYSIK Globale Eigenschaften der Kerne KIT Universität des Landes Baden-Württemberg und nationales

Mehr

Einführung in die Quantentheorie der Atome und Photonen

Einführung in die Quantentheorie der Atome und Photonen Einführung in die Quantentheorie der Atome und Photonen 23.04.2005 Jörg Evers Max-Planck-Institut für Kernphysik, Heidelberg Quantenmechanik Was ist das eigentlich? Physikalische Theorie Hauptsächlich

Mehr

Blatt 4. Stoß und Streuung - Lösungsvorschlag

Blatt 4. Stoß und Streuung - Lösungsvorschlag Fakultät für Physik der LMU München Lehrstuhl für Kosmologie, Prof. Dr. V. Mukhanov Übungen zu Klassischer Mechanik (T1) im SoSe 211 Blatt 4. Stoß und Streuung - Lösungsvorschlag Aufgabe 4.1. Stoß Zwei

Mehr

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler

Für Geowissenschaftler. EP WS 2009/10 Dünnweber/Faessler Für Geowissenschaftler Termin Nachholklausur Vorschlag Mittwoch 14.4.10 25. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung und Quantenmechanik Photometrie Plancksches Strahlungsgesetze, Welle/Teilchen

Mehr

durch Teilungsversuche durch Spektraluntersuchungen Jedes Atom besitzt einen Atomkern, in dem fast die gesamte Masse vereinigt ist.

durch Teilungsversuche durch Spektraluntersuchungen Jedes Atom besitzt einen Atomkern, in dem fast die gesamte Masse vereinigt ist. 1. Kreuze die richtige Aussage über Atome an: Sie sind sehr kleine, unteilbare Körper aus einem einheitlichen (homogenen) Stoff. Sie sind so klein, dass man ihren Aufbau nicht erforschen kann. Sie sind

Mehr

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE

27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 28. Atomphysik, Röntgenstrahlung (Fortsetzung: Röntgenröhre, Röntgenabsorption) 29. Atomkerne, Radioaktivität (Nuklidkarte, α-, β-, γ-aktivität, Dosimetrie)

Mehr

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2)

Lk Physik in 13/1 1. Klausur Nachholklausur Blatt 1 (von 2) Blatt 1 (von 2) 1. Elektronenausbeute beim Photoeekt Eine als punktförmig aufzufassende Spektrallampe L strahlt eine Gesamt-Lichtleistung von P ges = 40 W der Wellenlänge λ = 490 nm aus. Im Abstand r =

Mehr

Atomvorstellung: Antike bis 19. Jh.

Atomvorstellung: Antike bis 19. Jh. GoBack Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell 1 / 24 Atomvorstellung der Griechen Atomvorstellung der Griechen Atomvorstellung Demokrits Daltonsches Atommodell Die

Mehr

Quark- und Gluonstruktur von Hadronen. Seminarvortrag SS 2005, Zoha Roushan Betreuer: Prof. M.Erdmann

Quark- und Gluonstruktur von Hadronen. Seminarvortrag SS 2005, Zoha Roushan Betreuer: Prof. M.Erdmann Quark- und Gluonstruktur von Hadronen Seminarvortrag SS 2005, Zoha Roushan Betreuer: Prof. M.Erdmann Frage 1. Aus welchen Teilchen besteht das Proton? 2. Ist die ganze Wahrheit? I. Hadronen I.1. Mesonen

Mehr

= 6,63 10 J s 8. (die Plancksche Konstante):

= 6,63 10 J s 8. (die Plancksche Konstante): 35 Photonen und Materiefelder 35.1 Das Photon: Teilchen des Lichts Die Quantenphysik: viele Größen treten nur in ganzzahligen Vielfachen von bestimmten kleinsten Beträgen (elementaren Einheiten) auf: diese

Mehr

Vorlesung Allgemeine Chemie (CH01)

Vorlesung Allgemeine Chemie (CH01) Vorlesung Allgemeine Chemie (CH01) Für Studierende im B.Sc.-Studiengang Chemie Prof. Dr. Martin Köckerling Arbeitsgruppe Anorganische Festkörperchemie Mathematisch-Naturwissenschaftliche Fakultät, Institut

Mehr

Dieter Suter Physik B3

Dieter Suter Physik B3 Dieter Suter - 421 - Physik B3 9.2 Radioaktivität 9.2.1 Historisches, Grundlagen Die Radioaktivität wurde im Jahre 1896 entdeckt, als Becquerel feststellte, dass Uransalze Strahlen aussenden, welche den

Mehr

Übungen zur Experimentalphysik 3

Übungen zur Experimentalphysik 3 Übungen zur Experimentalphysik 3 Prof. Dr. L. Oberauer Wintersemester 2010/2011 5. Übungsblatt - 22.November 2010 Musterlösung Franziska Konitzer (franziska.konitzer@tum.de) Aufgabe 1 ( ) (8 Punkte) Ein

Mehr

Struktur des Atomkerns

Struktur des Atomkerns Struktur des Atomkerns den 6 Oktober 2016 Dr. Emőke Bódis Prüfungsfrage Die Struktur des Atomkerns. Die Eigenschaften des Kernkraftes. Bindungsenergie. Massendefekt. Tröpfchenmodell und Schallmodell. Magische

Mehr

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus

27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 26. Vorlesung EP V. STRAHLUNG, ATOME, KERNE 27. Wärmestrahlung, Quantenmechanik (Abschluß: Welle-Teilchen-Dualismus 28. Atomphysik, Röntgenstrahlung, Bohrsches Atommodell Versuche: Elektronenbeugung Linienspektrum

Mehr

Atomphysik NWA Klasse 9

Atomphysik NWA Klasse 9 Atomphysik NWA Klasse 9 Atome wurden lange Zeit als die kleinsten Teilchen angesehen, aus denen die Körper bestehen. Sie geben den Körpern ihre chemischen und physikalischen Eigenschaften. Heute wissen

Mehr

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall

Hauptseminar Quantenmechanisches Tunneln WS 2010/2011. Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Hauptseminar Quantenmechanisches Tunneln WS 2010/2011 Thema: Tunneln durch einfache Potentialbarrieren und Alphazerfall Torben Kloss, Manuel Heinzmann Gliederung Was ist tunneln? Tunneln durch ein beliebiges

Mehr

Theoretische Physik 1 Mechanik

Theoretische Physik 1 Mechanik Technische Universität München Fakultät für Physik Ferienkurs Theoretische Physik 1 Mechanik Skript zu Vorlesung 1: Grundlagen der Newton schen Mechanik, Zweiteilchensysteme gehalten von: Markus Krottenmüller

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Kern- und Teilchenphysik Johannes Blümer SS2012 Vorlesung-Website KIT-Centrum Elementarteilchen- und Astroteilchenphysik KCETA KIT Universität des Landes Baden-Württemberg und nationales Forschungszentrum

Mehr

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015

Einleitung Das Rutherford sche Atommodell Das Bohr sche Atommodell. Atommodelle [HERR] Q34 LK Physik. 25. September 2015 Q34 LK Physik 25. September 2015 Geschichte Antike Vorstellung von Leukipp und Demokrit (5. Jahrh. v. Chr.); Begründung des Atomismus (atomos, griech. unteilbar). Anfang des 19. Jahrh. leitet Dalton aus

Mehr

Einteilung der Vorlesung

Einteilung der Vorlesung Einteilung der Vorlesung 1. Einleitung Die fundamentalen Bausteine und Kräfte der Natur 2. Experimentelle Grundlagen der Atomphysik 2.1. Größe der Atome 2.2. Elementarladung, spezifische Ladung des Elektrons

Mehr

41. Kerne. 34. Lektion. Kernzerfälle

41. Kerne. 34. Lektion. Kernzerfälle 41. Kerne 34. Lektion Kernzerfälle Lernziel: Stabilität von Kernen ist an das Verhältnis von Protonen zu Neutronen geknüpft. Zu viele oder zu wenige Neutronen führen zum spontanen Zerfall. Begriffe Stabilität

Mehr

Versuch Radioaktivität

Versuch Radioaktivität Versuch Radioaktivität Beschafft aus Studiengebühren Vorbereitung: Radioaktiver Zerfall, Wechselwirkung von Strahlung mit Materie, Bethe-Bloch-Formel, 226 Ra-Zerfallskette, Strahlenschutzgrößen: Aktivität,

Mehr

Übungsblatt 03 (Hausaufgaben)

Übungsblatt 03 (Hausaufgaben) Übungsblatt 03 Hausaufgaben Elektrizitätslehre und Magnetismus Bachelor Physik Bachelor Wirtschaftsphysik Lehramt Physik 0.05.008 Aufgaben. Gegeben sind Ladungen + am Orte a; 0; 0 und a; 0; 0: a Berechnen

Mehr

Das Magnetfeld. Das elektrische Feld

Das Magnetfeld. Das elektrische Feld Seite 1 von 5 Magnetisches und elektrisches Feld Das Magnetfeld beschreibt Eigenschaften der Umgebung eines Magneten. Auch bewegte Ladungen rufen Magnetfelder hervor. Mithilfe von Feldlinienbilder können

Mehr

Probleme mit der klassischen Physik

Probleme mit der klassischen Physik Probleme mit der klassischen Physik Thermodynamik (Wärmestrahlung) Photoeffekt Comptoneffekt Stabilität von Atomen Wärmestrahlung (aus Physik I) In Analogie (die in der Quantenmechanik begründet wird)

Mehr

Abb.15: Experiment zum Rutherford-Modell

Abb.15: Experiment zum Rutherford-Modell 6.Kapitel Atommodelle 6.1 Lernziele Sie kennen die Entwicklung der Atommodelle bis zum linearen Potentialtopf. Sie kennen die Bohrschen Postulate und können sie auch anwenden. Sie wissen, wie man bestimmte

Mehr

22. Wärmestrahlung. rmestrahlung, Quantenmechanik

22. Wärmestrahlung. rmestrahlung, Quantenmechanik 22. Wärmestrahlung rmestrahlung, Quantenmechanik Plancksches Strahlungsgesetz: Planck (1904): der Austausch von Energie zwischen dem strahlenden System und dem Strahlungsfeld kann nur in Einheiten von

Mehr

Tiefinelastische Streuung am Nukleon

Tiefinelastische Streuung am Nukleon Tiefinelastische Streuung am Nukleon Martin Häffner Seminar Kern-und Teilchenphysik WS 14/15 Lehrstuhl: Experimentalphysik I Gliederung Einleitung: Auflösung von Streuversuchen Rutherford Formfaktoren

Mehr

1.2 Wechselwirkung Strahlung - Materie

1.2 Wechselwirkung Strahlung - Materie 1.2 Wechselwirkung Strahlung - Materie A)Wechselwirkung von elektromagnetischer Strahlung mit Materie B)Wechselwirkung von geladenen Teilchen mit Materie C)Wechselwirkung von ungeladenen Teilchen mit Materie

Mehr

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi

SS 2015 Supplement to Experimental Physics 2 (LB-Technik) Prof. E. Resconi Quantenmechanik des Wasserstoff-Atoms [Kap. 8-10 Haken-Wolf Atom- und Quantenphysik ] - Der Aufbau der Atome Quantenmechanik ==> Atomphysik Niels Bohr, 1913: kritische Entwicklung, die schließlich Plancks

Mehr

Grundlagen der Quantentheorie

Grundlagen der Quantentheorie Grundlagen der Quantentheorie Ein Schwarzer Körper (Schwarzer Strahler, planckscher Strahler, idealer schwarzer Körper) ist eine idealisierte thermische Strahlungsquelle: Alle auftreffende elektromagnetische

Mehr

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie

Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Grundlagen der physikalischen Chemie 1 - Aufbau der Materie Michael Schlapa Phillippe Laurentiu 17. April 2012 Semester Thema Dozent Klausurzulassung Klausur Übung Literatur 2012 SS Michael Schmitt mschmitt@uni-duesseldorf.de

Mehr

Kern- und Teilchenphysik

Kern- und Teilchenphysik Kern- und Teilchenphysik Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor Formfaktor des Nukleons Tiefinelastische Elektron-Nukleon Streuung Substruktur des Nukleons Folien und

Mehr

Kernchemie und Kernreaktionen

Kernchemie und Kernreaktionen Kernchemie und Kernreaktionen Die Kernchemie befaßt sich mit der Herstellung, Analyse und chemische Abtrennung von Radionukliden. Weiterhin werden ihre Methoden in der Umweltanalytik verwendet. Radioaktive

Mehr

Kinetische Theorie. Übersicht: Voraussetzungen: Verteilungsfunktionen Grundgleichungen: Kollissionen

Kinetische Theorie. Übersicht: Voraussetzungen: Verteilungsfunktionen Grundgleichungen: Kollissionen Kinetische Theorie Übersicht: Verteilungsfunktionen Grundgleichungen: Boltzmann Vlasov Fokker-Planck Kollissionen neutral trifft neutral neutral trifft geladen geladen trifft geladen Voraussetzungen: keine

Mehr

Klausur -Informationen

Klausur -Informationen Klausur -Informationen Datum: 4.2.2009 Uhrzeit und Ort : 11 25 im großen Physikhörsaal (Tiermediziner) 12 25 ibidem Empore links (Nachzügler Tiermedizin, bitte bei Aufsichtsperson Ankunft melden) 11 25

Mehr

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger

UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger UniversitätQ Osnabrück Fachbereich Physik Dr. W. Bodenberger Statistik der Elektronen und Löcher in Halbleitern Die klassische Theorie der Leitungselektronen in Metallen ist nicht anwendbar auf die Elektronen

Mehr

3.7.2 Bremsstrahlung 3.7. WECHSELWIRKUNGEN DER SEKUNDÄRTEILCHEN 61

3.7.2 Bremsstrahlung 3.7. WECHSELWIRKUNGEN DER SEKUNDÄRTEILCHEN 61 3.7. WECHSELWIRKUNGEN DER SEKUNDÄRTEILCHEN 61 de ρdx 1/β 2 ~ log γ + const 1-2 MeV cm /g minimalionisierend 2 γ=3.6 β=0.96 log (E/m= γ) Abbildung 3.12: Die charakteristische Abhängigkeit des mittleren

Mehr

8.2 Aufbau der Atome. auch bei der Entdeckung der Kathodenstrahlen schienen die Ladungsträger aus den Atomen herauszukommen.

8.2 Aufbau der Atome. auch bei der Entdeckung der Kathodenstrahlen schienen die Ladungsträger aus den Atomen herauszukommen. Dieter Suter - 404 - Physik B3 8.2 Aufbau der Atome 8.2.1 Grundlagen Wenn man Atome als Bausteine der Materie i- dentifiziert hat stellt sich sofort die Frage, woraus denn die Atome bestehen. Dabei besteht

Mehr

Thema heute: Aufbau der Materie: Atommodelle 1

Thema heute: Aufbau der Materie: Atommodelle 1 Wiederholung der letzten Vorlesungsstunde: Naturwissenschaften, Unterteilung der Naturwissenschaften in einzelne Wissensgebiete, Modellvorstellungen, der "reine Stoff", thermische Eigenschaften, Siedepunkt,

Mehr

r 2 /R 2 eine sehr gute Näherung. Dabei hängen die Parameter wie folgt von Massen- und Ladungszahl ab.

r 2 /R 2 eine sehr gute Näherung. Dabei hängen die Parameter wie folgt von Massen- und Ladungszahl ab. I.. Dichteverteilungen von Atomkernen I.. a Ladungsdichteverteilung Zur Beschreibung eines ausgedehnten elektrisch geladenen Bereichs, insbesondere eines Atomkerns, ist mehr als seine Gesamtladung Q erforderlich.

Mehr

5. Die Physik der Atomhülle

5. Die Physik der Atomhülle Protokoll vom 03.11.003 Lukas Heberger 5. Die Physik der Atomhülle 5.1 Die frühen Atommodelle 5.1.1. Von Demokrit bis Dalton a) Demokrit (um 460-371 v.chr.) - Es gibt unveränderliche kleinste Teilchen

Mehr

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen

Kernphysik. Physik Klasse 9. Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Kernphysik Physik Klasse 9 Quelle: AkadOR W. Wagner, Didaktik der Chemie, Universität Bayreuth (verändert für Kl.9/Sachsen Lehrplan Atomodelle Niels Bohr Rutherford Begriff: Modell Ein Modell zeichnet

Mehr

Abiturprüfung Physik, Leistungskurs

Abiturprüfung Physik, Leistungskurs Seite 1 von 8 Abiturprüfung 2010 Physik, Leistungskurs Aufgabenstellung: Aufgabe: Energieniveaus im Quecksilberatom Das Bohr sche Atommodell war für die Entwicklung der Vorstellung über Atome von großer

Mehr

Physik ea Klausur Nr Oktober 2013

Physik ea Klausur Nr Oktober 2013 Name: BE: / 77 = % Note: P. 1. Aufgabe: Röntgenstrahlung a. Skizziere den Aufbau einer Vorrichtung zur Herstellung eines gebündelten Röntgenstrahls, beschrifte ihre Bauteile und erläutere die Prozesse,

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #26 08/12/2010 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

Physik 4, Übung 2, Prof. Förster

Physik 4, Übung 2, Prof. Förster Physik 4, Übung, Prof. Förster Christoph Hansen Emailkontakt 4. April 03 Dieser Text ist unter dieser Creative Commons Lizenz veröffentlicht. Ich erhebe keinen Anspruch auf Vollständigkeit oder Richtigkeit.

Mehr

1.3 Die Struktur der Atome

1.3 Die Struktur der Atome 1 Atome, Bausteine der Materie 9 Man könnte daher glauben, dass entweder die Suche nach den elementaren Bausteinen der Materie niemals enden kann, da immer neue Sub-Sub-Sub- Strukturen aufgedeckt werden,

Mehr

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV

4) Wechselwirkungen zwischen Strahlung und Materie (1) Ionisationswirkung unterschiedlicher Teilchen Energie der Teilchen in MeV 4) Wechselwirkungen zwischen Strahlung und Materie (1) Wechselwirkungen zwischen Strahlung und Materie sind Grundvoraussetzung für jede Anwendung oder schädigende Wirkung radioaktiver Strahlung unerwünschte

Mehr

T2 Quantenmechanik Lösungen 2

T2 Quantenmechanik Lösungen 2 T2 Quantenmechanik Lösungen 2 LMU München, WS 17/18 2.1. Lichtelektrischer Effekt Prof. D. Lüst / Dr. A. Schmidt-May version: 12. 11. Ultraviolettes Licht der Wellenlänge 1 falle auf eine Metalloberfläche,

Mehr

Physik. Abiturwiederholung. Das Elektrische Feld

Physik. Abiturwiederholung. Das Elektrische Feld Das Elektrische Feld Strom Strom ist bewegte Ladung, die Stromstärke ergibt sich also als Veränderung der Ladung nach der Zeit, also durch die Ableitung. Somit kann man die Ladung als Fläche betrachten,

Mehr

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2

: Quantenmechanische Lösung H + 2. Molekülion und. Aufstellen der Schrödingergleichung für das H + 2 H + 2 Die molekulare Bindung : Quantenmechanische Lösung Aufstellen der Schrödingergleichung für das H + 2 Molekülion und Lösung Wichtige Einschränkung: Die Kerne sind festgehalten H Ψ(r) = E Ψ(r) (11)

Mehr

Das Interstellare Medium Der Stoff zwischen den Sternen

Das Interstellare Medium Der Stoff zwischen den Sternen Das Interstellare Medium Der Stoff zwischen den Sternen Lord of the Rings Sonne Roter Überriese Nördliche Hemisphäre Nördliche Hemisphäre Südliche Hemisphäre Die 150 nächsten Sterne 60 Lichtjahre

Mehr

Kern- und Teilchenphysik. Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor

Kern- und Teilchenphysik. Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor Kern- und Teilchenphysik Einführung in die Teilchenphysik: Erinnerung: Elektronstreuung & Formfaktor Formfaktor des Nukleons Tiefinelastische Elektron-Nukleon Streuung Substruktur des Nukleons Folien und

Mehr

Abgabetermin

Abgabetermin Aufgaben Serie 1 1 Abgabetermin 20.10.2016 1. Streuexperiment Illustrieren Sie die Streuexperimente von Rutherford. Welche Aussagen über Grösse und Struktur des Kerns lassen sich daraus ziehen? Welches

Mehr

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie

Bildgebung mit Röntgenstrahlen. Wechselwirkung mit Materie Wechselwirkung mit Materie Scanogramm Röntgen- Quelle Detektor ntwicklung Verarbeitung Tomogramm Bohrsches Atommodell M (18e - ) L (8e - ) K (2e - ) Wechselwirkung mit Materie Kohärente Streuung Röntgenquant

Mehr

Praktikumsprotokoll. Versuch Nr. 704 Absorption von γ- und β-strahlung. Frank Hommes und Kilian Klug

Praktikumsprotokoll. Versuch Nr. 704 Absorption von γ- und β-strahlung. Frank Hommes und Kilian Klug Praktikumsprotokoll Versuch Nr. 704 Absorption von γ- und β-strahlung und Durchgeführt am: 27 April 2004 Inhaltsverzeichnis 1 Einleitung 3 2 Theoretische Hintergründe 3 2.1 γ-strahlung.............................

Mehr

Energieverlust von Teilchen in Materie

Energieverlust von Teilchen in Materie Energieverlust von Teilchen in Materie Doris Reiter Energieverlust von Teilchen in Materie p.1/34 Einleitung Teilchen sind charakterisiert durch Masse, Ladung, Impuls Baryonen: p, n,, Leptonen: Mesonen

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung Probeklausur Aufgabe 1: Lichtleiter Ein Lichtleiter mit dem Brechungsindex n G = 1, 3 sei hufeisenförmig gebogen

Mehr

Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch. n 1 = 1, n 2. n 1 = 1, 5 n 2 = 1, 485

Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch. n 1 = 1, n 2. n 1 = 1, 5 n 2 = 1, 485 Musterlösung OIT 2006-1 1 Aufgabe 1 (a) Gesucht: n 1 und n 2 n = n 1 n 2 n 1 = 0, 015 + n 2 Dieser Zusammenhang reicht noch nicht aus, deswegen wird noch B L = L = n 2 c t AB n 1 n n 1 = 1, 01010101 n

Mehr

1 Physikalische Hintergrunde: Teilchen oder Welle?

1 Physikalische Hintergrunde: Teilchen oder Welle? Skript zur 1. Vorlesung Quantenmechanik, Montag den 11. April, 2011. 1 Physikalische Hintergrunde: Teilchen oder Welle? 1.1 Geschichtliches: Warum Quantenmechanik? Bis 1900: klassische Physik Newtonsche

Mehr

WECHSELWIRKUNG STRAHLUNG-STOFF

WECHSELWIRKUNG STRAHLUNG-STOFF Jürgen Henniger Arbeitsgruppe Strahlungsphysik (ASP) des Instituts für Kern- und Teilchenphysik (IKTP) Andreas-Schubert-Bau 409A henniger@asp.tu-dresden.de 0351 463 32479 / 0173 6864000 WECHSELWIRKUNG

Mehr

Kolleg 1998/ Klausur aus der Physik Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1

Kolleg 1998/ Klausur aus der Physik Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1 Leistungskurs P 20 Blatt 1 (von 2) Kurshalbjahr 13/1 1. Rutherfordsches Atommodell Im Jahr 1904 entwickelte Thomson ein Atommodell, bei dem das Atom aus einer positiv geladenen Kugel mit homogener Massenverteilung

Mehr

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt

Übungsblatt 04 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Übungsblatt 4 Grundkurs IIIa für Physiker, Wirtschaftsphysiker und Physik Lehramt Othmar Marti, (othmar.marti@physik.uni-ulm.de) 17., 23. und 24. 6. 23 1 Aufgaben Das Fermatsche Prinzip 1, Polarisation

Mehr

Physik IV Einführung in die Atomistik und die Struktur der Materie

Physik IV Einführung in die Atomistik und die Struktur der Materie Physik IV Einführung in die Atomistik und die Struktur der Materie Sommersemester 2011 Vorlesung 02 14.04.2011 Physik IV - Einführung in die Atomistik Vorlesung 1 Prof. Thorsten Kröll 13.04.2011 1 Übungsgruppen

Mehr

Physik für Mediziner im 1. Fachsemester

Physik für Mediziner im 1. Fachsemester Physik für Mediziner im 1. Fachsemester #25 03/12/2008 Vladimir Dyakonov dyakonov@physik.uni-wuerzburg.de Atomphysik Teil 1 Atommodelle, Atomspektren, Röntgenstrahlung Atomphysik Die Atomphysik ist ein

Mehr

4. Klausur ( )

4. Klausur ( ) EI PH J2 2011-12 PHYSIK 4. Klausur (10.05.2012) Telle oder Weilchen? Eure letzte Physik-Klausur in der Schule! Du kannst deinen GTR verwenden. Achte auf eine übersichtliche Darstellung! (Bearbeitungszeit:

Mehr

3. Erhaltungsgrößen und die Newton schen Axiome

3. Erhaltungsgrößen und die Newton schen Axiome Übungen zur T1: Theoretische Mechanik, SoSe13 Prof. Dr. Dieter Lüst Theresienstr. 37, Zi. 45 Dr. James Gray James.Gray@physik.uni-muenchen.de 3. Erhaltungsgrößen und die Newton schen Axiome Übung 3.1:

Mehr

Ladungsverteilung von Kern und Nukleon (Formfaktoren)

Ladungsverteilung von Kern und Nukleon (Formfaktoren) Seminar zum physikalischen Praktikum für Fortgeschrittene an der Johannes Gutenberg-Universtität Mainz Ladungsverteilung von Kern und Nukleon (Formfaktoren Melanie Müller Diese Zusammenfassung soll einen

Mehr

Übung 1 - Musterlösung

Übung 1 - Musterlösung Experimentalphysik für Lehramtskandidaten und Meteorologen 8. April 00 Übungsgruppenleiter: Heiko Dumlich Übung - Musterlösung Aufgabe Wir beginnen die Aufgabe mit der Auflistung der benötigten Formeln

Mehr

Photonen in Astronomie und Astrophysik Sommersemester 2015

Photonen in Astronomie und Astrophysik Sommersemester 2015 Photonen in Astronomie und Astrophysik Sommersemester 2015 Dr. Kerstin Sonnabend I. EIGENSCHAFTEN VON PHOTONEN I.1 Photonen als elektro-magnetische Wellen I.3 Wechselwirkung mit Materie I.3.1 Streuprozesse

Mehr

Übungen Quantenphysik

Übungen Quantenphysik Ue QP 1 Übungen Quantenphysik Kernphysik Historische Entwicklung der Atommodelle Klassische Wellengleichung 5 Schrödinger Gleichung 6 Kastenpotential (Teilchen in einer Box) 8 Teilchen im Potentialtopf

Mehr

Fachschule für f. r Technik. Dipl.FL. D.Strache FST UH

Fachschule für f. r Technik. Dipl.FL. D.Strache FST UH . FST UH Ein Atommodell ist eine Vorstellung von den kleinsten Teilen der Stoffe. Lange Zeit gab es keine experimentellen Hinweise für die Existenz kleinster Teilchen, sondern lediglich die intuitive Ablehnung

Mehr

Lösungen zur Experimentalphysik III

Lösungen zur Experimentalphysik III Lösungen zur Experimentalphysik III Wintersemester 2008/2009 Prof. Dr. L. Oberauer Blatt 11 19.01.09 Aufgabe 1: a) Die Bedingung für ein Maximum erster Ordnung am Gitter ist: sinα = λ b mit b = 10 3 570

Mehr

IIA4. Modul Atom-/Kernphysik. Rutherford-Streuung

IIA4. Modul Atom-/Kernphysik. Rutherford-Streuung IIA4 Modul Atom-/Kernphysik Rutherford-Streuung In diesem Versuch geht es darum, das Streuexperiment von Rutherford nachzuvollziehen. Es soll also die Ladungsverteilung in einem Atom mit Hilfe der Streuung

Mehr

Eigenschaften des Photons

Eigenschaften des Photons Eigenschaften des Photons Das Photon ist das Energiequant der elektromagnetischen Wellen, d.h. Licht hat wie von Einstein postuliert nicht nur Wellencharakter, sondern auch Teilchencharakter mit den oben

Mehr

Wechselwirkung von Teilchen mit Materie

Wechselwirkung von Teilchen mit Materie Kapitel 14 Wechselwirkung von Teilchen mit Materie 14.1 Grundlegende Prozesse Wir betrachten die grundlegenden Prozesse, die stattfinden, wenn Teilchen Materie durchqueren. Unter Materie verstehen wir

Mehr

Ferienkurs Experimentalphysik 3

Ferienkurs Experimentalphysik 3 Ferienkurs Experimentalphysik 3 Wintersemester 2014/2015 Thomas Maier, Alexander Wolf Lösung 4 Quantenphänomene Aufgabe 1: Photoeffekt 1 Ein monochromatischer Lichtstrahl trifft auf eine Kalium-Kathode

Mehr

2. Klausur zur Theoretischen Physik I (Mechanik)

2. Klausur zur Theoretischen Physik I (Mechanik) 2. Klausur zur Theoretischen Physik I (echanik) 09.07.2004 Aufgabe 1 Physikalisches Pendel 4 Punkte Eine homogene, kreisförmige, dünne Platte mit Radius R und asse ist am Punkt P so aufgehängt, daß sie

Mehr