Hypothesentests mit SPSS

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hypothesentests mit SPSS"

Transkript

1 Beispiel für eine zweifaktorielle Varianzanalyse mit Messwiederholung auf einem Faktor (univariate Lösung) Daten: POKIII_AG4_V06.SAV Hypothese: Die physische Attraktivität der Bildperson und das Geschlecht der Versuchsperson haben einen Einfluss auf die Bewertung von sozial erwünschten Eigenschaften (hier: gebildet) der Bildperson. Es wurde nur der heterosexuelle Einfluss gemessen, d.h. Frauen bekamen männliche Bildpersonen zur Bewertung, Männer weibliche Bildpersonen. Design: Geschlecht ist ein between -Faktor (ohne Messwiederholung, 2 Stufen), die physische Attraktivität der Bildperson ist ein within-faktor (mit Messwiederholung, 6 Stufen). 1. Schritt: Überprüfung der Verteilungen der Variablen Geschlecht: gesch Geschlecht Gültig 1 weiblich 2 männlich Gesamt Gültige Kumulierte Häufigkeit Prozent Prozente Prozente Die Verteilung geht in Ordnung, gleiche Zellenbesetzung wäre erwünscht, ist aber nicht notwendig. Zudem sind beide Besetzungen ziemlich ähnlich. Bei dem within-faktor ist gleiche Zellenbesetzung durch den listenweisen Aufschluss gegeben. 1. Annahmen Messniveau: Messung ) Neun-Punkte-Skala Bewertung gebildet. Diese Skala ist metrisch ( per fiat- 1. Faktor (UV): Geschlecht der Bildperson (2 Stufen) 2. Faktor: Physische Attraktivität der Bildperson (6 Stufen, Messwiederholung) Modell: Unabhängige Zufallsstichproben Normalverteilung in den Zellen, Zeilen und Spaltenpopulationen. Zellenpopulationsvarianzen sind gleich Spherizität": Wenn für die Werte der Stufen des Messwiederholungsfaktors Differenzen gebildet werden, habe ich k-1 neue Variablen. Wenn diese neuen Variablen unkorreliert sind, habe ich ein "orthonormalen" Set von Variablen. Diese bilden dann eine neue Matrix, in der nur die Diagonalen (Varianzen) besetzt sind, alle anderen Matrixwerte sind 0 (Kovarianz = 0). Die Abweichungen der Kovarianzmatrix von dieser neuen Matrix (Spherizität) kann durch den Parameter ε erfasst werden (Verfahren von Greenhouse-Geisser). Folge: Adjustierung der Freiheitsgrade (Verringerung) über ε-wert. Nullhypothese: 1. Mittelwerte in der Spalten-Population sind gleich, d.h. die Mittelwerte der Variablen Geschlecht unterscheiden sich nicht. 2. Mittelwerte in der Zeilenpopulation sind gleich, d.h. die Mittelwerte der Bildpersonen unterscheiden sich nicht. Beispiel_Varianzanalyse_mitMW_V01.doc - 1 -

2 3. Additivität in der Population (keine Interaktion zwischen den beiden Faktoren) 2. Signifikanzniveau: 5 %-Irrtumswahrscheinlichkeit. 3. Stichprobenkennwerteverteilung: F-Verteilung 4. Berechnung der Test-Statistik: Jede Varianzanalyse mit Messwiederholung wird über die Option Meßwiederholung aufgerufen. Es öffnet sich das Messwertwiederholungsfenster. Geben Sie hier den Namen des within -Faktors und die Anzahl der Stufen ein. Voreinstellung für den Namen des Faktors ist Faktor1. Beispiel_Varianzanalyse_mitMW_V01.doc - 2 -

3 Nachdem Sie den Namen und die Anzahl der Stufen eingegeben haben, klicken Sie auf Hinzufügen und anschließend im neuen Fenster auf Definieren. In dieses Fenster tragen Sie die Variablen aus dem Variablenfenster in das within -Fenster ein: Beispiel_Varianzanalyse_mitMW_V01.doc - 3 -

4 Nachdem Sie die Variablen in das Fenster übernommen haben (über ), müssen Sie auch noch den between -Faktor (Zwischensubjektfaktor), hier das Geschlecht der Bildperson, eintragen. Beispiel_Varianzanalyse_mitMW_V01.doc - 4 -

5 Unter Diagramme kann ein Interaktionsdiagramm hergestellt werden. Hierbei sollten die Bewertung auf die horizontale Achse und das Geschlecht durch separate Linien dargestellt werden. Nach dem Klicken auf Hinzufügen werden sie im unteren Fenster aufgenommen. Unter Optionen können die deskriptive Statistik, die Varianzhomogenitätstests, die PRE- Koeffizienten (r²) und die ungewichteten Mittelwerte der Haupteffekte abgerufen werden. Beispiel_Varianzanalyse_mitMW_V01.doc - 5 -

6 Für Messwiederholungsdesign gibt es multivariate und univariate Lösungen. Wir wollen hier nur die univariate Lösung betrachten. Auch muss beachtet werden, dass SPSS keine einheitlichen Tabelle der Varianzanalyse ausdruckt, sondern für die within - und die between -Komponente unterschiedlichen Tabellen ausdruckt. Überprüfung der Varianzhomogenität: Levene-Test auf Gleichheit der Fehlervarianzen a f10_1_2 p1 gebildet f10_2_2 p2 gebildet f10_3_2 p3 gebildet f10_4_2 p4 gebildet f10_5_2 p5 gebildet f10_6_2 p6 gebildet F df1 df2 Signifikanz Prüft die Nullhypothese, daß die Fehlervarianz der abhängigen Variablen über Gruppen hinweg gleich ist. a. Design: Intercept+gesch Innersubjekt-Design: Bewertung Außer bei der Bildpersonen der Stufe 3 kann die Nullhypothese (Varianzen sind gleich) beibehalten werden. Die Varianzen können als homogen bezeichnet werden. Innersubjekteffekt Bewertung Epsilon a Greenhouse- Geisser Huynh-Feldt Untergrenze Prüft die Nullhypothese, daß sich die Fehlerkovarianz-Matrix der orthonormalisierten transformierten abhängigen Variablen proportional zur Einheitsmatrix verhält. a. Kann zum Korrigieren der Freiheitsgrade für die gemittelten Signifikanztests verwendet werden. In der Tabelle mit den Tests der Effekte innerhalb der Subjekte werden korrigierte Tests angezeigt. Diese Tabelle zeigt das Greenhouse- Geisser-epsilon zur Korrektur der Freiheitsgrade an. Quelle Bewertung Bewertung * gesch Fehler(Bewertung) Sphärizität angenommen Greenhouse-Geisser Huynh-Feldt Sphärizität angenommen Greenhouse-Geisser Huynh-Feldt Sphärizität angenommen Greenhouse-Geisser Huynh-Feldt Tests der Innersubjekteffekte Quadratsum Mittel der Partielles me vom Typ III df Quadrate F Signifikanz Eta-Quadrat In einer Tabelle werden die Ergebnisse der Varianzanalyse für die within -Komponenten wiedergegeben. Es ist die Greenhouse-Geisser-Korrektur der Freiheitsgrade von 5 auf zu erkennen (Huynh-Feldt ist eine weiter Korrekturprozedur). An dem Ergebnis selbst ändert sich nichts. Die Interaktion zwischen den Bildpersonen und dem Geschlecht ist statistisch signifikant bei einer aufgeklärten Varianz von 28 %. Dies ist ein sehr hoher Wert. Aber auch die Bildpersonen allein sind statistisch signifikant, d.h. sie werden unterschiedlich beurteilt bei einer erklärten Varianz von 29.3 %. Beispiel_Varianzanalyse_mitMW_V01.doc - 6 -

7 Transformierte Variable: Mittel Quelle Konstanter Term gesch Fehler Tests der Zwischensubjekteffekte Quadratsum Mittel der Partielles me vom Typ III df Quadrate F Signifikanz Eta-Quadrat In einer weiteren Tabelle wird der Haupteffekt der Geschlechts der Bildperson ausgegeben. Es sind keine statistisch signifikanten Unterschiede erkennbar, die Nullhypothese muss beibehalten werden. Die Mittelwerte der Bewertung der Bildpersonen nach dem Kriterium gebildet sind: Bildperson Bildperson 95% Konfidenzintervall Mittelwert Standardfehler Untergrenze Obergrenze Obwohl die Bildpersonen nach ihrer physischen Attraktivität geordnet sind, ist ein linearer Trend nicht erkennbar, die Bildpersonen werden nicht mit steigender physischen Attraktivität linear als gebildeter bewertet. Die Abbildung zeigt eindeutig einen unterschiedlichen Profilverlauf und somit eine Interaktion zwischen Bildperson und Geschlecht: Die weibliche Bildperson mit der geringsten physischen Attraktivität wird von den Männern am ungebildetsten bewertet, während die männliche Bildperson mit der geringsten physischen Attraktivität von den weiblichen Versuchspersonen als sehr gebildet bewertet wird. Unterschiede sind noch bei der Bildperson 2 zu beobachten, weitere geschlechtsspezifische Unterschiede waren nicht erkennbar. Beispiel_Varianzanalyse_mitMW_V01.doc - 7 -

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben

SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben SPSS V Gruppenvergleiche ( 2 Gruppen) abhängige (verbundene) Stichproben ÜBERSICHT: Testverfahren bei abhängigen (verbundenen) Stichproben parametrisch nicht-parametrisch 2 Gruppen t-test bei verbundenen

Mehr

Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav

Beispiel für eine Profilanalyse Daten: POKIII_AG1_V03.sav Beispiel für eine Daten: POKIII_AG1_V03.sav Es soll überprüft werden, ob es geschlechtsspezifische Unterschiede bei den Einstellungen zum Tanz gibt. Aus dem Fragebogen der AG 1 des POK III wurden folgende

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für einen chi²-test Daten: afrikamie.sav Im Rahmen der Evaluation des Afrikamie-Festivals wurden persönliche Interviews durchgeführt. Hypothese: Es gibt einen Zusammenhang zwischen dem Geschlecht

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 6 behandelten zweifaktoriellen

Mehr

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse

Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Allgemeines Lineares Modell: Univariate Varianzanalyse und Kovarianzanalyse Univariate Varianz- und Kovarianzanlyse, Multivariate Varianzanalyse und Varianzanalyse mit Messwiederholung finden sich unter

Mehr

Hypothesentests mit SPSS

Hypothesentests mit SPSS Beispiel für eine einfache Regressionsanalyse (mit Überprüfung der Voraussetzungen) Daten: bedrohfb_v07.sav Hypothese: Die Skalenwerte auf der ATB-Skala (Skala zur Erfassung der Angst vor terroristischen

Mehr

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV

Hypothesentests mit SPSS. Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Beispiel für eine zweifaktorielle Varianzanalyse Daten: POK07_AG4_HU_V04.SAV Hypothese: Typische Eigenschaften von Terroristen (Prototypikalität) und die nationale Herkunft (Ausländer vs. Deutsche) haben

Mehr

Kapitel 5: Einfaktorielle Varianzanalyse

Kapitel 5: Einfaktorielle Varianzanalyse Kapitel 5: Einfaktorielle Varianzanalyse Durchführung einer einfaktoriellen Varianzanalyse ohne Messwiederholung Dieser Abschnitt zeigt die Durchführung der in Kapitel 5 vorgestellten einfaktoriellen Varianzanalyse

Mehr

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav

Hypothesentests mit SPSS. Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Beispiel für eine einfaktorielle Varianzanalyse Daten: museum_m_v05.sav Hypothese: Die Beschäftigung mit Kunst ist vom Bildungsgrad abhängig. 1. Annahmen Messniveau: Modell: Die Skala zur Erfassung der

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Durchführung einer zweifaktoriellen Varianzanalyse ohne Messwiederholung 1 Effektstärke und empirische Teststärke einer zweifaktoriellen Varianzanalyse ohne Messwiederholung

Mehr

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben

Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Beispiel 1: Zweifache Varianzanalyse für unabhängige Stichproben Es wurden die Körpergrößen von 3 Versuchspersonen, sowie Alter und Geschlecht erhoben. (Jeweils Größen pro Faktorstufenkombination). (a)

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 7 a)

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 7 a) LÖSUNG 7 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Aufrufen der Varianzanalyse: "Analysieren", "Mittelwerte vergleichen", "Einfaktorielle ANOVA ", "Abhängige Variablen:" TVHOURS;

Mehr

Einführung in die Varianzanalyse mit SPSS

Einführung in die Varianzanalyse mit SPSS Einführung in die Varianzanalyse mit SPSS SPSS-Benutzertreffen am URZ Carina Ortseifen 6. Mai 00 Inhalt. Varianzanalyse. Prozedur ONEWAY. Vergleich von k Gruppen 4. Multiple Vergleiche 5. Modellvoraussetzungen

Mehr

5. Lektion: Einfache Signifikanztests

5. Lektion: Einfache Signifikanztests Seite 1 von 7 5. Lektion: Einfache Signifikanztests Ziel dieser Lektion: Du ordnest Deinen Fragestellungen und Hypothesen die passenden einfachen Signifikanztests zu. Inhalt: 5.1 Zwei kategoriale Variablen

Mehr

Varianzananalyse. How to do

Varianzananalyse. How to do Varianzananalyse How to do Die folgende Zusammenfassung zeigt beispielhaft, wie eine Varianzanalyse mit SPSS durchgeführt wird und wie die Ergebnisse in einem Empra-Bericht oder in einer Bachelor- oder

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre II Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 18.2.15 Psychologie als Wissenschaft

Mehr

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav

Beispiel für eine multivariate Varianzanalyse (MANOVA) Daten: POKIV_Terror_V12.sav Beispiel für eine multivariate Varianzanalyse () Daten: POKIV_Terror_V12.sav Es soll überprüft werden, inwieweit das ATB-Syndrom (Angst vor mit den drei Subskalen affektive Angst von, Terrorpersistenz,

Mehr

Anhang A: Fragebögen und sonstige Unterlagen

Anhang A: Fragebögen und sonstige Unterlagen Anhang Anhang A: Fragebögen und sonstige Unterlagen A.: Flyer zur Probandenrekrutierung 46 A.: Fragebogen zur Meditationserfahrung 47 48 A.3: Fragebogen Angaben zur Person 49 5 5 A.4: Termin- und Einladungsschreiben

Mehr

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis

1. Inhaltsverzeichnis. 2. Abbildungsverzeichnis 1. Inhaltsverzeichnis 1. Inhaltsverzeichnis... 1 2. Abbildungsverzeichnis... 1 3. Einleitung... 2 4. Beschreibung der Datenquelle...2 5. Allgemeine Auswertungen...3 6. Detaillierte Auswertungen... 7 Zusammenhang

Mehr

Methodenlehre. Vorlesung 11. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 11. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 11 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 03.12.13 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie

Mehr

13. Anhang. Teilstudie 1. Anhang 1: Fragebogen zur Hauptbefragung der Schüler. Anhang 2: Fragebogen zur Vorbefragung der Schüler

13. Anhang. Teilstudie 1. Anhang 1: Fragebogen zur Hauptbefragung der Schüler. Anhang 2: Fragebogen zur Vorbefragung der Schüler . Anhang. Anhang Teilstudie Anhang : Fragebogen zur Hauptbefragung der Schüler Anhang : Fragebogen zur Vorbefragung der Schüler Anhang : Fragebogen zur Vorbefragung der Lehrer Anhang 4: Statistische Berechnungen

Mehr

Statistik-Team. Tobias Kley: Übung: Freitag, Uhr, HGA 10 Tutorium (SPSS) - ab

Statistik-Team. Tobias Kley: Übung: Freitag, Uhr, HGA 10 Tutorium (SPSS) - ab Statistik-Team Tobias Kley: tobikley@uni-muenster.de Übung: Freitag, 9.00-10.00 Uhr, HGA 10 Tutorium (SPSS) - ab 26.10.2009 Koordination: Dr. Helge Thiemann Helge.Thiemann-i5m@ruhr-uni-bochum.de 0234/

Mehr

Anwendungsaufgaben. Effektgröße bei df Zähler = df A = 1 und N = 40 (zu berechnen aus df Nenner ): Der aufgedeckte Effekt beträgt also etwa 23 %.

Anwendungsaufgaben. Effektgröße bei df Zähler = df A = 1 und N = 40 (zu berechnen aus df Nenner ): Der aufgedeckte Effekt beträgt also etwa 23 %. Anhang A: Lösungen der Aufgaben 39 beiden Kombinationen sehr hoch ist. (Dieses Ergebnis wäre aber in diesem Beispiel nicht plausibel.) 5. Der Faktor A und die Wechselwirkung werden signifikant: Lärm hat

Mehr

Online Statistik-Coaching

Online Statistik-Coaching Online Statistik-Coaching Modul 3 Statistisches Testen - Auswahl der passenden Methode - Durchführung mit SPSS - Interpretation und Darstellung Dipl.-Math. Daniela Keller www.statistik-und-beratung.de

Mehr

Hypothesentests mit SPSS. Beispiel für einen t-test

Hypothesentests mit SPSS. Beispiel für einen t-test Beispiel für einen t-test Daten: museum-f-v04.sav Hypothese: Als Gründe, in ein Museum zu gehen, geben mehr Frauen als Männer die Erweiterung der Bildung für Kinder an. Dies hängt mit der Geschlechtsrolle

Mehr

Statistik II Übung 3: Hypothesentests

Statistik II Übung 3: Hypothesentests Statistik II Übung 3: Hypothesentests Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier Stichproben). Verwenden

Mehr

Informationen zur KLAUSUR am

Informationen zur KLAUSUR am Wiederholung und Fragen 1 Informationen zur KLAUSUR am 24.07.2009 Raum: 032, Zeit : 8:00 9:30 Uhr Bitte Lichtbildausweis mitbringen! (wird vor der Klausur kontrolliert) Erlaubte Hilfsmittel: Alle Unterlagen,

Mehr

Aufgaben zu Kapitel 7:

Aufgaben zu Kapitel 7: Aufgaben zu Kapitel 7: Aufgabe 1: In einer Klinik sollen zwei verschiedene Therapiemethoden miteinander verglichen werden. Zur Messung des Therapieerfolges werden die vorhandenen Symptome einmal vor Beginn

Mehr

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell

Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Einfaktorielle Versuchspläne 27/40 Weitere (wählbare) Kontraste in der SPSS Prozedur Allgemeines Lineares Modell Abweichung Einfach Differenz Helmert Wiederholt Vergleich Jede Gruppe mit Gesamtmittelwert

Mehr

Kapitel 6: Zweifaktorielle Varianzanalyse

Kapitel 6: Zweifaktorielle Varianzanalyse Kapitel 6: Zweifaktorielle Varianzanalyse Berechnen der Teststärke a priori bzw. Stichprobenumfangsplanung 1 Teststärkebestimmung a posteriori 4 Berechnen der Effektgröße f² aus empirischen Daten und Bestimmung

Mehr

Varianzanalyse (ANOVA: analysis of variance)

Varianzanalyse (ANOVA: analysis of variance) Varianzanalyse (AOVA: analysis of variance) Einfaktorielle VA Auf der Basis von zwei Stichproben wird bezüglich der Gleichheit der Mittelwerte getestet. Variablen müssen Variablen nur nominalskaliert sein.

Mehr

Messwiederholungen und abhängige Messungen

Messwiederholungen und abhängige Messungen Messwiederholungen und abhängige Messungen t Tests und Varianzanalysen für Messwiederholungen Kovarianzanalyse Thomas Schäfer SS 009 1 Messwiederholungen und abhängige Messungen Bei einer Messwiederholung

Mehr

1. Es sind einfach zu viele! Varianzanalytische Verfahren.

1. Es sind einfach zu viele! Varianzanalytische Verfahren. 1. Es sind einfach zu viele! Varianzanalytische Verfahren. In diesem Kapitel behandeln wir die Varianzanalyse (ANOVA). Varianzanalysen kommen in sehr sehr vielen verschiedenen Gestalten einher. Das Ziel

Mehr

Nichtparametrische Varianzanalysen - praktische Anwendung

Nichtparametrische Varianzanalysen - praktische Anwendung Nichtparametrische Varianzanalysen - praktische Anwendung Nichtparametrische Varianzanalysen sind primär anzuwenden, wenn die abhängige Variable entweder metrisch ist und die Voraussetzungen Normalverteilung

Mehr

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik

fh management, communication & it Constantin von Craushaar fh-management, communication & it Statistik Angewandte Statistik fh management, communication & it Folie 1 Überblick Grundlagen (Testvoraussetzungen) Mittelwertvergleiche (t-test,..) Nichtparametrische Tests Korrelationen Regressionsanalyse... Folie 2 Überblick... Varianzanalyse

Mehr

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers

4.1. Verteilungsannahmen des Fehlers. 4. Statistik im multiplen Regressionsmodell Verteilungsannahmen des Fehlers 4. Statistik im multiplen Regressionsmodell In diesem Kapitel wird im Abschnitt 4.1 zusätzlich zu den schon bekannten Standardannahmen noch die Annahme von normalverteilten Residuen hinzugefügt. Auf Basis

Mehr

Statistik II: Signifikanztests /1

Statistik II: Signifikanztests /1 Medien Institut : Signifikanztests /1 Dr. Andreas Vlašić Medien Institut (0621) 52 67 44 vlasic@medien-institut.de Gliederung 1. Noch einmal: Grundlagen des Signifikanztests 2. Der chi 2 -Test 3. Der t-test

Mehr

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav)

Varianzanalytische Methoden Zweifaktorielle Versuchspläne 4/13. Durchführung in SPSS (File Trait Angst.sav) Zweifaktorielle Versuchspläne 4/13 Durchführung in SPSS (File Trait Angst.sav) Analysieren > Allgemeines Lineares Modell > Univariat Zweifaktorielle Versuchspläne 5/13 Haupteffekte Geschlecht und Gruppe

Mehr

Kapitel 7: Varianzanalyse mit Messwiederholung

Kapitel 7: Varianzanalyse mit Messwiederholung Kapitel 7: Varianzanalyse mit Messwiederholung Durchführung einer einfaktoriellen Varianzanalyse mit Messwiederholung 1 Durchführung einer zweifaktoriellen Varianzanalyse mit Messwiederholung auf einem

Mehr

Inhaltsverzeichnis. Über die Autoren Einleitung... 21

Inhaltsverzeichnis. Über die Autoren Einleitung... 21 Inhaltsverzeichnis Über die Autoren.... 7 Einleitung... 21 Über dieses Buch... 21 Was Sie nicht lesen müssen... 22 Törichte Annahmen über den Leser... 22 Wie dieses Buch aufgebaut ist... 23 Symbole, die

Mehr

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt?

? Unterscheiden sich Burschen und Mädchen im Ausmaß der Mithilfe im Haushalt? 341 i Metrische und kategoriale Merkmale An einer Beobachtungseinheit werden metrische und kategoriale Variable erhoben. Beispiel: Hausarbeit von Teenagern (Stunden/Woche) 25 15 STUNDEN 5-5 weiblich männlich?

Mehr

Statistik II Übung 3: Hypothesentests Aktualisiert am

Statistik II Übung 3: Hypothesentests Aktualisiert am Statistik II Übung 3: Hypothesentests Aktualisiert am 12.04.2017 Diese Übung beschäftigt sich mit der Anwendung diverser Hypothesentests (zum Beispiel zum Vergleich der Mittelwerte und Verteilungen zweier

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Musterlösung Aufgabe 1 (40 Punkte) Auf der dem Kurs beigelegten CD finden Sie im Unterverzeichnis Daten/Excel/ die Datei zahlen.xlsx. Alternativ können Sie

Mehr

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist

Eigene MC-Fragen SPSS. 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist Eigene MC-Fragen SPSS 1. Zutreffend auf die Datenerfassung und Datenaufbereitung in SPSS ist [a] In der Variablenansicht werden für die betrachteten Merkmale SPSS Variablen definiert. [b] Das Daten-Editor-Fenster

Mehr

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1

SPSS-Ausgabe 1: Univariate Varianzanalyse. Profildiagramm. [DatenSet1] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav. Seite 1 SPSS-Ausgabe : Univariate Varianzanalyse [DatenSet] D:\Sozialwiss2006_7\STAT2\Daten\mathsalaries.sav Tests der Zwischensubjekteffekte Abhängige Variable: Einkommen Quelle Korrigiertes Modell Konstanter

Mehr

Einfache statistische Auswertungen mit dem Programm SPSS

Einfache statistische Auswertungen mit dem Programm SPSS Einfache statistische Auswertungen mit dem Programm SPSS Datensatz: fiktive_daten.sav Dipl. Päd. Anne Haßelkus Dr. Dorothea Dette-Hagenmeyer 11/2011 Überblick 1 Deskriptive Statistiken; Mittelwert berechnen...

Mehr

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011

Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Einführung in die Statistik für Politikwissenschaftler Sommersemester 2011 Es können von den Antworten alle, mehrere oder keine Antwort(en) richtig sein. Nur bei einer korrekten Antwort (ohne Auslassungen

Mehr

Kapitel 9: Verfahren für Nominaldaten

Kapitel 9: Verfahren für Nominaldaten Kapitel 9: Verfahren für Nominaldaten Eindimensionaler Chi²-Test Der eindimensionale χ²-test wird dann herangezogen, wenn die Versuchspersonen einer Population anhand eines Merkmals mit zwei oder mehr

Mehr

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen.

Etwas positive Tendenz ist beim Wechsel der Temperatur von 120 auf 170 zu erkennen. Explorative Datenanalyse Erstmal die Grafiken: Aufreisskraft und Temperatur 3 1-1 N = 1 15 17 Temperatur Diagramm 3 1 95% CI -1 N = 1 15 17 Temperatur Etwas positive Tendenz ist beim Wechsel der Temperatur

Mehr

Inhaltsverzeichnis Einführung und deskriptive Statistik Grundlagen der Inferenzstatistik 1: Zufallsvariablen

Inhaltsverzeichnis Einführung und deskriptive Statistik Grundlagen der Inferenzstatistik 1: Zufallsvariablen Inhaltsverzeichnis 1 Einführung und deskriptive Statistik... 1 1.1 Wichtige mathematische Schreibweisen... 1 1.1.1 Das Summenzeichen... 1 1.1.2 Mengentheoretische Schreibweisen... 3 1.1.3 Variablentransformationen...

Mehr

Mehrfaktorielle Varianzanalyse

Mehrfaktorielle Varianzanalyse Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Mehrfaktorielle Varianzanalyse Überblick Einführung Empirische F-Werte zu einer zweifaktoriellen

Mehr

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS (ab V. 11.0)

Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische Modelle Lösung von Grundaufgaben mit SPSS (ab V. 11.0) Ausgewählte Kapitel der Statistik: Regressions- u. varianzanalytische e Lösung von Grundaufgaben mit SPSS (ab V..0) Text: akmv_v.doc Daten: akmv??.sav Lehrbuch: W. Timischl, Biostatistik. Wien - New York:

Mehr

Mathematische und statistische Methoden I

Mathematische und statistische Methoden I Prof. Dr. G. Meinhardt Statistik & Mathematische und statistische Methoden I Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung Wallstr. 3, 6. Stock, Raum 06-06 Dr. Malte Persike persike@uni-mainz.de

Mehr

Aufgaben zu Kapitel 5:

Aufgaben zu Kapitel 5: Aufgaben zu Kapitel 5: Aufgabe 1: Ein Wissenschaftler untersucht, in wie weit die Reaktionszeit auf bestimmte Stimuli durch finanzielle Belohnung zu steigern ist. Er möchte vier Bedingungen vergleichen:

Mehr

Lernziele Experimentelles Praktikum

Lernziele Experimentelles Praktikum Lernziele Experimentelles Praktikum Inhaltsverzeichnis 1. Theoretischer Hintergrund des Artikels 2. Grundlagen des Experimentierens 3. Schritte der allgemeinen Versuchsplanung 4. Unabhängige Variablen

Mehr

Angewandte Statistik 3. Semester

Angewandte Statistik 3. Semester Angewandte Statistik 3. Semester Übung 5 Grundlagen der Statistik Übersicht Semester 1 Einführung ins SPSS Auswertung im SPSS anhand eines Beispieles Häufigkeitsauswertungen Grafiken Statistische Grundlagen

Mehr

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind.

entschieden hat, obwohl die Merkmalsausprägungen in der Grundgesamtheit voneinander abhängig sind. Bsp 1) Die Wahrscheinlichkeit dafür, dass eine Glühbirne länger als 200 Stunden brennt, beträgt 0,2. Wie wahrscheinlich ist es, dass von 10 Glühbirnen mindestens eine länger als 200 Stunden brennt? (Berechnen

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Varianzanalyse Statistik

Mehr

B. Regressionsanalyse [progdat.sav]

B. Regressionsanalyse [progdat.sav] SPSS-PC-ÜBUNG Seite 9 B. Regressionsanalyse [progdat.sav] Ein Unternehmen möchte den zukünftigen Absatz in Abhängigkeit von den Werbeausgaben und der Anzahl der Filialen prognostizieren. Dazu wurden über

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Karin Waldherr & Pantelis Christodoulides 11. Juni 2014 Waldherr / Christodoulides Einführung in Quantitative Methoden 1/46 Anpassungstests allgemein Gegeben: Häufigkeitsverteilung

Mehr

Testen von Unterschiedshypothesen mit parametrischen Verfahren Der t-test

Testen von Unterschiedshypothesen mit parametrischen Verfahren Der t-test Schäfer A & Schöttker-Königer T, Statistik und quantitative Methoden für (2015) Arbeitsblatt 1 SPSS Kapitel 5 Seite 1 Testen von Unterschiedshypothesen mit parametrischen Verfahren Der t-test Im Folgenden

Mehr

Einige Kriterien für die Durchführung einer Varianzanalyse. Jonathan Harrington

Einige Kriterien für die Durchführung einer Varianzanalyse. Jonathan Harrington Einige Kriterien für die Durchführung einer Varianzanalyse Jonathan Harrington ANOVA und Versuchspersonen Zwei Bedingungen für die Durchführung eines ANOVAS Between Within Die selbe Anzahl (meistens mindestens

Mehr

Einführung in Quantitative Methoden

Einführung in Quantitative Methoden Einführung in Quantitative Methoden Pantelis Christodoulides & Karin Waldherr 5. Juni 2013 Christodoulides / Waldherr Einführung in Quantitative Methoden- 11. VO 1/48 Anpassungstests allgemein Gegeben:

Mehr

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben.

Einstieg in SPSS. Man kann auch für jede Ausprägung einer Variablen ein Wertelabel vergeben. Einstieg in SPSS In SPSS kann man für jede Variable ein Label vergeben, damit in einer Ausgabe nicht der Name der Variable (der kryptisch sein kann) erscheint, sondern ein beschreibendes Label. Der Punkt

Mehr

Univariate Kennwerte mit SPSS

Univariate Kennwerte mit SPSS Univariate Kennwerte mit SPSS In diesem Paper wird beschrieben, wie eindimensionale Tabellen und Kennwerte mit SPSS erzeugt werden. Eine Herleitung der Kennwerte und eine inhaltliche Interpretation der

Mehr

Statistisches Testen

Statistisches Testen Statistisches Testen Grundlegendes Prinzip Erwartungswert Bekannte Varianz Unbekannte Varianz Differenzen Anteilswert Chi-Quadrat Tests Gleichheit von Varianzen Prinzip des Statistischen Tests Konfidenzintervall

Mehr

6. METRISCHE UND KATEGORIALE MERKMALE

6. METRISCHE UND KATEGORIALE MERKMALE 6. METRISCHE UND KATEGORIALE MERKMALE wenn an einer Beobachtungseinheit eine (oder mehrere) metrische und eine (oder mehrere) kategoriale Variable(n) erhoben wurden Beispiel: Haushaltsarbeit von Teenagern

Mehr

Stichprobenumfangsplanung

Stichprobenumfangsplanung Professur E-Learning und Neue Medien Institut für Medienforschung Philosophische Fakultät Einführung in die Statistik Stichprobenumfangsplanung Überblick Einführung Signifikanzniveau Teststärke Effektgröße

Mehr

Parametrische vs. Non-Parametrische Testverfahren

Parametrische vs. Non-Parametrische Testverfahren Parametrische vs. Non-Parametrische Testverfahren Parametrische Verfahren haben die Besonderheit, dass sie auf Annahmen zur Verteilung der Messwerte in der Population beruhen: die Messwerte sollten einer

Mehr

Varianzanalyse mit Messwiederholungen (fortgesetzt) path = "Verzeichnis wo Sie anova1 gespeichert haben" attach(paste(path, "anova1", sep="/"))

Varianzanalyse mit Messwiederholungen (fortgesetzt) path = Verzeichnis wo Sie anova1 gespeichert haben attach(paste(path, anova1, sep=/)) Varianzanalyse mit Messwiederholungen (fortgesetzt) Jonathan Harrington Befehle: anova3.txt path = "Verzeichnis wo Sie anova1 gespeichert haben" attach(paste(path, "anova1", sep="/")) 1. Greenhouse-Geisser

Mehr

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade

Formelsammlung für das Modul. Statistik 2. Bachelor. Sven Garbade Version 2015 Formelsammlung für das Modul Statistik 2 Bachelor Sven Garbade Prof. Dr. phil. Dipl.-Psych. Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de

Mehr

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg

Methodenlehre. Vorlesung 12. Prof. Dr. Björn Rasch, Cognitive Biopsychology and Methods University of Fribourg Methodenlehre Vorlesung 12 Prof. Dr., Cognitive Biopsychology and Methods University of Fribourg 1 Methodenlehre I Woche Datum Thema 1 FQ Einführung, Verteilung der Termine 1 25.9.13 Psychologie als Wissenschaft

Mehr

Statistik II. IV. Hypothesentests. Martin Huber

Statistik II. IV. Hypothesentests. Martin Huber Statistik II IV. Hypothesentests Martin Huber 1 / 41 Übersicht Struktur eines Hypothesentests Stichprobenverteilung t-test: Einzelner-Parameter-Test F-Test: Multiple lineare Restriktionen 2 / 41 Struktur

Mehr

Webergänzung zu Kapitel 10

Webergänzung zu Kapitel 10 10.1.5 Varianzanalyse (ANOVA: analysis of variance ) Im Kapitel 10 haben wir uns hauptsächlich mit Forschungsbeispielen beschäftigt, die nur zwei Ergebnissätze hatten (entweder werden zwei unterschiedliche

Mehr

Statistische Methoden in den Umweltwissenschaften

Statistische Methoden in den Umweltwissenschaften Statistische Methoden in den Umweltwissenschaften Korrelationsanalysen Kreuztabellen und χ²-test Themen Korrelation oder Lineare Regression? Korrelationsanalysen - Pearson, Spearman-Rang, Kendall s Tau

Mehr

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren

Hypothesenprüfung. Darüber hinaus existieren zahlreiche andere Testverfahren, die alle auf der gleichen Logik basieren Hypothesenprüfung Teil der Inferenzstatistik Befaßt sich mit der Frage, wie Hypothesen über eine (in der Regel unbekannte) Grundgesamtheit an einer Stichprobe überprüft werden können Behandelt werden drei

Mehr

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003

Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003 Prüfung aus Wahrscheinlichkeitstheorie und Statistik MASCHINENBAU 2003. Eine seltene Krankheit trete mit Wahrscheinlichkeit : 0000 auf. Die bedingte Wahrscheinlichkeit, dass ein bei einem Erkrankten durchgeführter

Mehr

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2

Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Grundlagen sportwissenschaftlicher Forschung Inferenzstatistik 2 Dr. Jan-Peter Brückner jpbrueckner@email.uni-kiel.de R.216 Tel. 880 4717 Statistischer Schluss Voraussetzungen z.b. bzgl. Skalenniveau und

Mehr

5. Seminar Statistik

5. Seminar Statistik Sandra Schlick Seite 1 5. Seminar 5. Seminar Statistik 30 Kurztest 4 45 Testen von Hypothesen inkl. Übungen 45 Test- und Prüfverfahren inkl. Übungen 45 Repetitorium und Prüfungsvorbereitung 15 Kursevaluation

Mehr

Statistik II. Weitere Statistische Tests. Statistik II

Statistik II. Weitere Statistische Tests. Statistik II Statistik II Weitere Statistische Tests Statistik II - 19.5.2006 1 Überblick Bisher wurden die Test immer anhand einer Stichprobe durchgeführt Jetzt wollen wir die statistischen Eigenschaften von zwei

Mehr

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil?

Projekt Kaffeemaschine Welche Faktoren beeinflussen das Geschmacksurteil? AKULTÄT ANGEWANDTE SOZIALWISSENSCHATEN PRO. DR. SONJA HAUG Projekt Kaffeemaschine Welche aktoren beeinflussen das Geschmacksurteil? Ausgehend von der Verkostung an der Hochschule Regensburg und der dabei

Mehr

SozialwissenschaftlerInnen II

SozialwissenschaftlerInnen II Statistik für SozialwissenschaftlerInnen II Henning Best best@wiso.uni-koeln.de Universität zu Köln Forschungsinstitut für Soziologie Statistik für SozialwissenschaftlerInnen II p.1 Testen von Hypothesen

Mehr

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften

Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Statistik II Übung 4: Skalierung und asymptotische Eigenschaften Diese Übung beschäftigt sich mit der Skalierung von Variablen in Regressionsanalysen und mit asymptotischen Eigenschaften von OLS. Verwenden

Mehr

Statistik-Quiz Sommersemester

Statistik-Quiz Sommersemester Statistik-Quiz Sommersemester Seite 1 von 8 Statistik-Quiz Sommersemester Die richtigen Lösungen sind mit gekennzeichnet. 1 In einer Gruppe von 337 Probandinnen und Probanden wurden verschiedene Merkmale

Mehr

Multivariate Verfahren

Multivariate Verfahren Selbstkontrollarbeit 1 Multivariate Verfahren Diese Selbstkontrollarbeit bezieht sich auf die Kapitel 1 bis 4 der Kurseinheit 1 (Multivariate Statistik) des Kurses Multivariate Verfahren (883). Hinweise:

Mehr

Kapitel 3: Der t-test

Kapitel 3: Der t-test Kapitel 3: Der t-test Durchführung eines t-tests für unabhängige Stichproben Dieser Abschnitt zeigt die Durchführung des in Kapitel 3.1 vorgestellten t-tests für unabhängige Stichproben mit SPSS. Das Beispiel

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 9A a.

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1. LÖSUNG 9A a. LÖSUNG 9A a. Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Das Regressionsmodell soll nur für Büropersonal angewendet werden Management- und Bewachungspersonal (MIND =0) soll nicht einbezogen

Mehr

Methodik für Linguisten

Methodik für Linguisten Claudia Methodik für Linguisten Eine Einführung in Statistik und Versuchsplanung narr VERLAG 1 Reisevorbereitungen und Wegweiser 2 Linguistik als empirische Wissenschaft 15 2.1 Karl Popper und der Falsifikationismus

Mehr

Übungsblätter zu Methoden der Empirischen Sozialforschung IV: Regressionsanalyse. Lösungsblatt zu Nr. 2

Übungsblätter zu Methoden der Empirischen Sozialforschung IV: Regressionsanalyse. Lösungsblatt zu Nr. 2 Martin-Luther-Universität Halle-Wittenberg Institut für Soziologie Dr. Wolfgang Langer 1 Übungsblätter zu Methoden der Empirischen Sozialforschung IV: Regressionsanalyse Lösungsblatt zu Nr. 2 1. a) Je

Mehr

Bivariater Zusammenhang in der Vierfeldertafel PEΣO

Bivariater Zusammenhang in der Vierfeldertafel PEΣO Bivariater Zusammenhang in der Vierfeldertafel PEΣO 12. Oktober 2001 Zusammenhang zweier Variablen und bivariate Häufigkeitsverteilung Die Bivariate Häufigkeitsverteilung gibt Auskunft darüber, wie zwei

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 4B a.) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Mit "Deskriptive Statistiken", "Kreuztabellen " wird die Dialogbox "Kreuztabellen" geöffnet. POL wird in das Eingabefeld von

Mehr

Zweifache Varianzanalyse

Zweifache Varianzanalyse Zweifache Varianzanalyse Man kann mittels VA auch den (gleichzeitigen) Einfluss mehrerer Faktoren (unabhängige Variablen) auf ein bestimmtes Merkmal (abhängige Variable) analysieren. Die Wirkungen werden

Mehr

Analytische Statistik II

Analytische Statistik II Analytische Statistik II Institut für Geographie 1 Schätz- und Teststatistik 2 Das Testen von Hypothesen Während die deskriptive Statistik die Stichproben nur mit Hilfe quantitativer Angaben charakterisiert,

Mehr

Lösungen zum Aufgabenblatt 2: Bivariate Kreuztabellen mit nominalem Messniveau

Lösungen zum Aufgabenblatt 2: Bivariate Kreuztabellen mit nominalem Messniveau Lösungen zum Aufgabenblatt 2 1 Lösungen zum Aufgabenblatt 2: Bivariate Kreuztabellen mit nominalem Messniveau Nach dem Laden des Datensatzes (G:\DATEN\METH2\DATEN\EUROBAR\ Euba30.sav) ist zunächst der

Mehr

Statistik. Jan Müller

Statistik. Jan Müller Statistik Jan Müller Skalenniveau Nominalskala: Diese Skala basiert auf einem Satz von qualitativen Attributen. Es existiert kein Kriterium, nach dem die Punkte einer nominal skalierten Variablen anzuordnen

Mehr

Vorlesung: Multivariate Statistik für Psychologen

Vorlesung: Multivariate Statistik für Psychologen Vorlesung: Multivariate Statistik für Psychologen 10. Vorlesung: 1.0.2003 Agenda 3. Multivariate Varianzanalyse i. Einführung in die multivariate Variananalyse Grundidee und Ziele der MANOVA Beispiele

Mehr

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS

Sozialwissenschaftliche Fakultät der Universität Göttingen. Sommersemester 2009, Statistik mit SPSS Sommersemester 2009, Statistik mit SPSS 26. August 2009 26. August 2009 Statistik Dozentin: mit Anja SPSS Mays 1 Bivariate Datenanalyse, Überblick bis Freitag heute heute Donnerstag Donnerstag Freitag

Mehr

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1

Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 LÖSUNG 13 a) Lösungen zu Janssen/Laatz, Statistische Datenanalyse mit SPSS 1 Die Variablen sollten hoch miteinander korrelieren. Deshalb sollten die einfachen Korrelationskoeffizienten hoch ausfallen.

Mehr

Brückenkurs Statistik für Wirtschaftswissenschaften

Brückenkurs Statistik für Wirtschaftswissenschaften Peter von der Lippe Brückenkurs Statistik für Wirtschaftswissenschaften Weitere Übungsfragen UVK Verlagsgesellschaft mbh Konstanz Mit UVK/Lucius München UVK Verlagsgesellschaft mbh Konstanz und München

Mehr