G Jahresenergiebedarf

Größe: px
Ab Seite anzeigen:

Download "G Jahresenergiebedarf"

Transkript

1 G Jahresenergiebedarf Heinz Bach G1 Übersicht, Begriffe Der Heizenergiebedarf für ein Gebäude hat eine zunehmende Bedeutung wegen der dadurch verursachten verbrauchsgebundenen Kosten und Umweltbelastungen, weiter auch wegen des Bedürfnisses, die Ressourcen zu schonen oder die Versorgung nachhaltig zu sichern. Verstärkt wird die Entwicklung durch das wachsende Bewusstsein der Energieproblematik und durch die hierdurch ausgelösten staatlichen Verordnungen zum Energiesparen. Der Energiebedarf spielt daher eine wichtige Rolle bereits beim architektonischen Entwurf eines Gebäudes, bei der Konzeption der Heizanlage, beim Vergleich verschiedener Varianten oder der Entwicklung neuer Komponenten, aber auch bei der Beurteilung bestehender Gebäude mit ihren Anlagen für die Heizung und Trinkwassererwärmung. Eine Besonderheit in der Phase des ar chitektonischen Entwurfs und der Anlagenkonzeption stellt auch die Klärung der Frage dar, was in Hinblick auf das Gesamtziel, Energie zu sparen, günstiger ist, die Dämmung des Gebäudes zu erhöhen oder die Anlagentechnik zu optimieren. Weiterhin können Methoden der Bedarfsberech nung herangezogen werden für die Beurteilung von gemessenen Verbrauchswerten oder für ihre nutzengerechte Aufteilung. Insbesondere bei der letztgenannten Aufgabenstellung geht es nicht nur um Bedarfswerte für ein Jahr oder eine Heizperiode, sondern gegebenenfalls um eine wesentlich feinere Aufteilung auf Monate oder Tage. Die Unterschiede im Anlass und beim Ziel einer Bedarfsrechnung begründen die Verschiedenheit der jeweils zweckmäßigen Vorgehensweise. Und umgekehrt richtet sich die Breite und Detailliertheit in der Aussage der hierfür entwickelten Methoden nicht nur nach den jeweils vorhandenen Rechen möglichkeiten, sondern auch nach dem Umfang der gestellten Fragen. So war bei der Einführung der ersten Richtlinie VDI 2067 im Jahr 1957 [G-1] lediglich nach dem Wirtschaftlichkeitsvergleich für verschiedene Brennstoffe gefragt. Damals wurde neben den in Europa traditionell verwendeten Festbrennstoffen Kohle und Koks zunehmend auch Heizöl als Brennstoff eingesetzt. Verglichen wurden nur Warmwasserheizungen, die sich lediglich in der Wärmeerzeugung unterschie-

2 600 G Jahresenergiebedarf den. Die gebäudeseitigen und betrieblichen Randbedingungen waren weitgehend einheitlich. Es lag daher nahe, eine Methode in der Richtlinie zu verankern, bei der Gebäude und Anlage nahezu als Black-Box betrachtet werden (Bild G- 1). In der Berechnungsformel für den sog. Jahresbrennstoff verbrauch wird als Hauptkenngröße für die zu beurteilende Heizanlage der Gesamtwirkungsgrad des Kessels eingesetzt. Für das Gebäude steht der sog. stündliche Wärmebedarf, der der Gebäudenormheizlast entspricht. Die Formel in der damaligen Richtlinie stützt sich auf zahlreiche gemessene Verbräuche, wobei die jeweiligen Wetterunterschiede über Gradtage (siehe später) verrechnet und Unterschiede für den Zustand von Heizanlage und Gebäude sowie in der Betriebs führung über Berichtigungsfaktoren berücksichtigt werden. D. h., die Berichtigungsfaktoren werden über ein einfaches stationäres Modell aus gemessenen Verbräuchen errechnet und für die Richtlinie übernommen. Die Berechnungsmethode kann daher als erfahrungsbasiert bezeichnet werden. Alle späteren Ausgaben der Richtlinie VDI 2067 einschließlich der Ausgabe von 1993 [G-2] behalten trotz aller Erweiterungen und Korrekturen diese Grundstruktur bei. Eine Variante des Black-Box-Ansatzes stellt der Vorschlag von Esdorn [G-3] dar, den Mügge [G-4] und beide [G-5] weiterverfolgen. Hier wird die Verlustseite des Gesamtsystems Gebäude mit Heizanlage genauer betrachtet und detailliert auch der Fremdwärmebezug mit einbezogen. Während die traditionelle 2067-Betrachtung sich auf ein mittleres Nutzerverhalten abstützt (Verwendung von mittleren Verbrauchswerten aus vielen Messungen) wird ein unterer und ein oberer Grenzwert, zwischen denen der tatsächliche Verbrauch üblicherweise liegen muss, eingeführt. Die sog. minimale Jahresheizwärmeabgabe ist der Anteil des Jahres-Gebäudewärmebedarfs, der bei optimaler Nutzung der Fremdwärme durch die Heizung zu decken ist. Er ist vorgegeben durch die Eigenschaften sowie die Nutzung (Innentemperatur, Lüftung, innere Fremdwärme) des Gebäudes und die meteorologischen Randbedingungen. Im Unterschied hierzu ergibt sich die sog. maximale Jahresheizwärmeabgabe nur aus Eigenschaften der Heizanlage also ihrer Dimensionie rung und der verwendeten Heizkurve. Bei der Minimumbetrachtung in der Black-Box-Darstellung (Bild G-1) umfasst die Systemgrenze ein Gebäude mit einer Idealheizanlage, d. h., anlagentechnische Unterschiede spielen hier keine Rolle. Mithin ist eine Black-Box- Bild G-1 Black-Box-Darstellung der Energieströme in ein und aus einem beheizten Gebäude

3 G1 Übersicht, Begriffe 601 Untersuchung auch ausreichend. Bei der Maximumbetrachtung ist die Systemgrenze um eine quasistationär betriebene reale Heizung (die selbstverständlich zu einem bestimmten Gebäude gehört) gezogen. Eine detaillierte Bewertung des Innern der Black-Box findet ebenso wie bei der historischen VDI 2067, abgesehen von der Wärmeerzeugung und der Wärmeverteilung, nur stark vereinfacht statt. Eine energetische Be wertung insbesondere des Übergabesystems ist daher nicht möglich. Dies ist ein prinzipieller Nachteil aller Black-Box-Methoden zur Vorausberechnung des Energieverbrauchs. Mit den neuen Möglichkeiten der rechnerischen Betriebssimulation sind nunmehr die Vorgänge sozusagen im Innern der Black-Box und dabei insbesondere der Prozess der Übergabe darzustellen (reproduzierbar). So entstand die so genannte Bedarfsentwicklungsmethode, auf der die neue VDI 2067 aufbaut [G-6]. Wie Bild G-2 zeigt, wird die Bedarfsentwicklung durch die Anlage hindurch von der Übergabe über die Verteilung bis zur Erzeugung verfolgt. Ausgegangen wird von einem Referenzenergiebedarf, der begrifflich identisch ist mit der von Esdorn eingeführten Minimalen Jahresheizwärmeabgabe 1. Unterschieden wird zwischen dem durch die Nutzung bedingten Re fe renz - energiebedarf Q 0,N und dem bauphysikalisch bedingten Q 0,G (für Einheitsbedingungen mit durch gehender Beheizung und ohne inneren Lasten). Der in der Anlage vom Referenzenergiebedarf Q 0,N über den jeweiligen Aufwand sich weiterentwickelnde Bedarf (Q 1 für die Übergabe, Q 2 für die Verteilung und Q 3 für die Erzeugung) wird bereichsweise über Aufwandszahlen e 1 bis e 3 unter Berück- Bild G-2 Schematische Darstellung der Gliederung einer Heizanlage und der Bedarfsentwicklung 1 Anstelle der zunächst verwendeten Bezeichnung Mindestjahresenergiebedarf wurde der allgemeinere Referen zenergiebedarf eingeführt mit Rücksicht auf den in der Raumlufttechnik vorkommenden Fall, dass das vorgegebene einfache Referenzsystem einen höheren Bedarf hat als das komplexere real ausgeführte System; da generell bei Wirtschaftlichkeitsbetrachtungen Jahresbeträge verwendet werden, ist auch der Hinweis auf das Jahr in der Bezeich nung entbehrlich.

4 602 G Jahresenergiebedarf sichtigung aller Verknüpfungen und zeitlichen Zuordnungen berechnet (siehe Bild G-2). Die mit der Bedarfsentwicklungsmethode gebotene Darstellbarkeit des Übergabeprozesses liefert nun auch die Möglichkeit, den Energieaufwand von Einzelraumheizgeräten, wie Öfen, Elektrodirekt- oder -speicherheizgeräten, reproduzierbar zu bestimmen. Im Unterschied zur dreigeglieder ten Warmwasser- Zentralheizung ist hier eine Aufteilung oder gar Trennung von Übergabe und Erzeugung nicht sinnvoll. Aus dem Referenzenergiebedarf Q 0,N entwickelt sich ohne Aufgliederungs möglichkeit unmittelbar der Q 3 entsprechende Gesamtaufwand Q ges, der zugleich den Gesamtbedarf darstellt. Die Diskussion über Fragen des Heizenergiebedarfs von Gebäuden mit ihren Heizanlagen wird mit nicht immer eindeutig verwendeten Begriffen geführt. Beispiele sind hier Wärmeverbrauch, Wärme bedarf, Wärmeverlust und Wärmeabgabe. Häufig werden auch genormte Benennungsgrundsätze für physikalische Größen nicht beachtet [G-7], was das Verständnis der komplexen Zusammenhänge bei der Entstehung des Bedarfs oder Aufwandes erschwert. Hinzu kommt, dass vor allem von den Praktikern Begriffe verwendet werden, die vor Jahrzehnten geprägt und alle Normungs- und Vereinheitlichungsbemühungen überdauert haben. Selbst bestehende Fachnormen und -richtlinien enthalten solche Relikte. Um hier Klarheit zu schaffen, wird im Folgenden eine Übersicht über die wichtigsten Begriffe mit ihren Definitionen gegeben: Verbrauch: Ein Verbrauch wird nach einer Verbrauchszeit durch eine Messung festgestellt. Es kann sich dabei um eine Menge an Wasser, elektri schen Strom oder Brennstoff handeln. Je nachdem wird von Wasser verbrauch, Stromverbrauch, Brennstoffverbrauch oder bei letzteren allgemein auch von Wärmeverbrauch bzw. Energieverbrauch gespro chen. Zur Präzisierung wird zusätzlich der Verbrauchszeitraum angegeben z. B. Jahresenergieverbrauch. Bedarf: Der Bedarf an Heizwärme oder allgemein an Energie, auch in der Form von elektrischem Strom oder Brennstoff, wird unter definierten Randbedingungen vorausberechnet. Diese Randbedingungen gelten für die Wetter, das Gebäude, seine Nutzung und die Heizanlage. Meist wird unter dem Begriff Bedarf eine Menge, eine Energiemenge, gemeint. Gelegentlich spricht man aber auch von einem Leistungsbedarf und versteht darunter die zu installierende Leistung (ebenfalls errechnet). In diesem Sinne ist auch vom Wärmebedarf immer noch die Rede, so auch dem Norm-Wärmebedarf nach DIN Für Wärmebedarf wird heute der treffendere Begriff Heizlast verwendet. Bedarf/Aufwand: Das Begriffspaar Bedarf/Aufwand stellt Wegmarken auf dem Ent wicklungsweg des Bedarfes durch eine Anlage dar (siehe Bild G-2). Jede Anlage lässt sich in Untersysteme auf-

5 G1 Übersicht, Begriffe 603 Nutzungsgrad: Aufwandszahl: Gradtage: Energiekennwert: Raumlast: gliedern, an deren Grenzen jeweils am Eingang ein Bedarf ansteht und am Ausgang ein Aufwand hierfür festzustellen ist. Z. B. wird die Aufwands-Bedarfs-Beziehung hergestellt für die Übergabe, die Verteilung, die Erzeugung oder die Gesamtanlage im Gebäude, wobei der Aufwand bei der Erzeugung identisch ist mit dem Aufwand bei der Gesamtanlage und zahlenmäßig gleich ist dem Bedarf des nachfolgenden Systems, der Energieversor gung; hier wird dann vom Energiebedarf des Gebäudes gesprochen. Der Nutzungsgrad ist das Verhältnis von Bedarf zu Aufwand; er ist immer ein Energiemengen-Verhältnis und gilt nur für ein bestimmtes System sowie einen bestimmten Zeitraum. Die Aufwandszahl ist der Kehrwert des Nutzungsgrades Die Gradtage stellen das Integral der Differenzkurve zwischen der Außentemperatur und der Heizgrenztemperatur über der Zeit in Ta gen gezählt dar. Als Außentemperatur wird der Tagesmittelwert verwendet. Die Integrationsgrenzen sind gegeben durch den Schnitt der Temperaturkurve mit der Heizgrenztemperatur (z. B. 15 C; man verwendet dann die Bezeichnung G 15 ). Die Zeitspanne zwischen den beiden Grenzen sind die Heiztage z. Die in Deutschland meist angege benen Gradtage G t besitzen nach einem Vorschlag von Raiß [G-8] zusätzlich einen Summanden, gebildet aus dem Produkt Heiztage mal der Temperaturdifferenz gegenüber der Heizgrenze (z. B. 20 C 15 C) 2. Gemäß VDI 3807 [G-11] ist der Energieverbrauchkennwert (Energie bedarfskennwert) das Verhältnis des jährlichen Energieverbrauchs (Energiebedarfs) zu einer das Gebäude kennzeichnenden Fläche. Als Bezugsfläche wird die Summe aller beheizbaren Brutto-Grundflächen eines Gebäudes genommen. Es wird generell ein auf ein Durch schnittsklima über die Gradtage umgerechneter sog. be reinigter Energieverbrauch eingesetzt. Nach einem Vorschlag von Esdorn [G-9] sind Raumlasten Energie ströme oder Stoffströme, die in einem Raum wirksam werden und z. B. als Heizlasten durch Heizen weggetragen werden. Bei aus schließlichem Heizen (keine weitere Luftbehandlung, deswegen wer den Stofflasten auch nicht beachtet) ist diese Art von Wärmelast nur sensibel. Zusam- 2 Der häufig zu findende Begriff Gradtagszahl wird unter Beachtung von DIN 5485 [G-7] vermieden, da der Begriff -zahl speziellen Größen der Dimension 1 vorbehalten ist.

6 604 G Jahresenergiebedarf Referenzheizenergiebedarf: Gebäudewärmeverlust: Relative Heizlast: men mit den übrigen dem Raum von innen und außen zugeführten Energieströmen (Fremdlasten) muss mit der über die Heizanlage zugeführten Heizleistung, die den negativen Wert der Heizlast besitzt, die Energiebilanz des Raums ausgeglichen sein. Die Normheizlast entspricht einer speziellen Heizlast unter in DIN 4701 festgelegten Bedingungen, bei denen insbesondere keine Fremdlast berücksichtigt wird. Der Referenzheizenergiebedarf ist das Integral der Heizlast über das Jahr. Maßgeblich ist der Referenzenergiebedarf, bei dem die spezielle Nutzung des Gebäudes berücksichtigt ist (Q 0,N ). Dieser Referenzheiz energiebedarf entspricht in etwa der sog. minimalen Jah resheizwärmeabgabe nach Esdorn [G-3]. Der Gebäudewärmeverlust ist der Energiestrom, der sich zu einem Zeitpunkt aufgrund von Transmission durch die Außenbauteile an die Außenluft und das Erdreich sowie durch Lüftung, also durch den Austausch wärmerer Raumluft durch kalte Außenluft ergibt. Der Begriff Gebäudewärmeverlust wird auch für die entsprechende Energiemenge gebraucht, die während eines Zeitraumes z. B. einer Heizperiode, vom Gebäude an seine Umgebung abgegeben wird. Da im Gebäudewärmeverlust auch alle Fremdlasten mit eingehen, stellt er nicht einmal annähernd ein Maß für den realen Jahres-Heizenergiebe darf dar! Die relative Heizlast ist das Verhältnis von Heizlast zu Normheizlast. 3 Das Jahresmittel der relativen Heizlast als Verhältnis des Referenz-Heizenergiebedarfs zum Produkt aus Normheizlast und Jahresstunden lässt sich als Maß für den Fremdlasteinfluss verwenden, wenn die Nutzung des Gebäudes nach Art und Ablauf festgelegt ist. Die relative Heizlast unterscheidet sich nach ihrer Definition zum Belastungs grad nach Esdorn [G-3]. Er ist das Verhältnis von Temperaturdiffe renzen Innen-Außen im Betriebspunkt zum Normpunkt. 3 Der Begriff -grad wird hier vermieden; er ist gemäß DIN 5485 [G-7] dem Verhältnis zweier messbaren Größen gleicher Dimension vorbehalten. Hier ist der Bezugswert eine reine Rechengröße.

7 G2 Black-Box -Methode 605 G2 Black-Box -Methode Um die Vorgehensweise bei der Black-Box -Methode zu verdeutlichen, seien lediglich die Grund züge der historischen VDI 2067 [G-2] dargelegt. Es werden die Begriffe und Bezeichnungen dieser Richtlinie verwendet, soweit hier (Band 1) nicht bereits Festlegungen getroffen sind. Der voraussichtliche Jahresheizwärmeverbrauch Q Ha (eigentlich ein Bedarf) wird in zwei Schritten berechnet: Der sog. Jahresheizwärmeverbrauch ohne Berücksichtigung von Fremdwärmegewinn Q Ga wird aus dem Gebäude-Normwärmebedarf Q N,Geb, einer mittleren relativen Übertemperatur ( ϑ i ϑ a )/(ϑ in ϑ a ), der Heizzeit Z in Stunden und einem Produkt von fünf Korrekturfaktoren berechnet: ( ) i= 5 ( in an) f i,, i ϑi ϑa Q Ga =Q N,Geb Z ϑ ϑ (G2-1) Die Heizzeit Z errechnet sich aus den tabellierten Heiztagen z im Jahr [G-2] mit dem Faktor 24 h/d, so dass [Q Ga ] = Wh. Die mittlere Außentemperatur ϑ a erhält man aus den tabellierten Gradtagen G t gemäß t ϑ a =20 C G (G2-2) z Es folgt im zweiten Schritt der Jahres-Fremdwärmegewinn Q FG aus dem sog. äußeren Fremdwärmeanfall durch die Sonne Q Sa und den inneren Fremdwärmeanfall Q Ia : Q = f Q Q ( ) (G2-3) FG 6 Sa + Ia mit Berücksichtigung des Fremdwärmegewinns erhält man demnach Q Ha =QGa QFG (G2-4) Daraus lässt sich nun der sog. Jahresbrennstoffverbrauch B Ha mit dem Heizwert H U und einem sog. Jahresnutzungsgrad der Gesamtanlage η ges berechnen: B = Q Ha (G2-5) Ha H η U ges Dieser Jahresnutzungsgrad der Gesamtanlage setzt sich zusammen aus dem mittlerem Jahresnut zungsgrad von Wärmeerzeugungsanlagen η a und dem Verteilungsnutzungsgrad η V zu Berücksichti gung von Rohrleitungsverlusten: η = η η (G2-6) ges a V

8 606 G Jahresenergiebedarf Der Jahresnutzungsgrad für den Wärmerzeuger und für die Verteilung sind die einzigen Kenn größen, die eine Anlagenvariante für ein Bauobjekt als solche von anderen unterscheidet. Für die fünf Korrekturfaktoren in Gleichung G2-1 und den sechsten in G2-3 wird in [G-2] folgendes angegeben: Der erste Faktor soll einen zusätzlichen Lüftungswärmeverbrauch aufgrund der Nutzer gewohnheiten berücksichtigen. Der zweite Faktor erfasst die Verminderung des Wärmeverbrauchs durch zeitlich einge schränkten Betrieb von einzelnen Räumen, Heizzonen, Gebäuden oder Gebäudeteilen. Dabei wird die Gebäudeschwere (Abstufung etwa wie bei der Kühllastregel VDI 2078 [G-10]) durch eine tabellierte Abkühlzeitkonstante des Gebäudes berücksichtigt. Mit dem dritten Faktor lässt sich der räumlich eingeschränkte Heizbetrieb in Abhängigkeit vom Anteil der unbeheizten Fläche berücksichtigen. Der Faktor f 4 ist nun für die Ausstattung mit Regelgeräten vorgesehen. Er gilt nur für die in den Tabellen aufgelisteten Stellorgane und Regeleinrichtungen und erfasst nicht abgese hen von der Unterscheidung Radiatorenheizung/Fußbodenheizung den erheblichen Einfluss der verschiedenen Heizflächen mit ihren unterschiedlichen Zeitkonstanten und Auslegungstemperaturen (vergl. Kap. E). Mit dem fünften Faktor können Raumtemperaturen, die vom Normwert abweichen, berücksichtigt werden. Der sechste Faktor soll die Ausnutzung der Fremdwärme erfassen. Er ist das Produkt aus einem sog. Bewertungsfaktor für Fremdwärme f F, der wie bei f 4 gerätebezogen tabelliert ist, und dem als reine Gebäudeeigenschaft aufgefassten Fremdwärmenutzungsgrad η F. Dass vor allem die Eigenschaften der Raumheizfläche in Verbindung mit dem jeweiligen Regelsystem für die Nutzung der Fremdwärme maßgeblich sind, bleibt unbeachtet. Abgesehen von Kesseln, eigentlich speziellen Wärmeerzeugern, und der Wärmeverteilung ist eine energetische Beurteilung von Anlagenkonzepten anhand der bestehenden VDI 2067 [G-2] nicht möglich. Als Ergebnis erhält man lediglich rechnerische Verbräuche auf der Grundlage von vereinbarten Ausgangsdaten, die zu den speziellen Eigenschaften der zu beurteilenden Anlage wenig Bezug haben. Die vorausberechneten Verbräuche liegen in einem Unsicherheitsband von wenigs tens ± 40%. Dieses einzugrenzen ist neben anderem Ziel der Vorschläge von Esdorn und Mügge [G-3 bis -5]. Der häufig vorgebrachte Einwurf, allein der Nutzer würde durch sein unterschiedliches Verhalten eine derart große Streubreite hervorrufen, ist in Hinblick auf den Verbrauch zutreffend (bei schlecht gedämmten Gebäuden verhalten sich die Verbräuche etwa wie 1:2, bei gut gedämmten wie 1:4), geht aber am Ziel einer Vorabbewertung z. B. im Rahmen einer Wirtschaftlichkeits betrachtung vorbei! Vergleiche unter verschiedenen Anlagenkonzepten (siehe Teil C) dürfen nur bei vollständig gleichen Bedingungen stattfinden, d. h. also auch gleichem Nutzerverhalten. Auch

9 G2 Black-Box -Methode 607 diese eigentlich selbstverständliche Bedingung ist in der notwendigen Klarheit in der VDI 2067 [G-2] nicht enthalten. Das geht allein schon aus der Weiterbenutzung des Begriffes Verbrauch hervor, wo doch bei der Weiterentwicklung der Richtlinie bis zur Fassung von 1993 [G-2] eigentlich Bedarf gemeint war. Tatsächlich aber eignet sich der Ansatz nach Gleichung G2-1 und -4, insbesondere mit der Anwendung der Gradtage nach G-2 nur für die Vorausberechnung eines wahrscheinlichen Verbrauchs auf der Basis eines gemessenen unter der Annahme, dass die betrach tete Anlage gleich bleibt und zudem der Nutzer sich weiter gleich verhält. Diese Annahmen liegen auch der Berechnung von Energieverbrauchskennwerten für Gebäude zu Grunde [G-11]. Um sich über die energetische Qualität eines Gebäudes mit seinen Anlagen rasch verständigen zu können, wurde als Kenngröße die sog. Energiekennzahl vorgeschlagen. Sie wird generell als Verhältnis des jährlichen Energieverbrauchs (Brennstoff, Wärme, elektrische Energie) zu einer das Gebäude kennzeichnenden Fläche dargestellt. Eine erste Regel wurde hierüber in der Schweiz geschaffen [G-12]. Da ein solcher Kennwert z. B. auch als Richtwert und Vorgabe bei Planungen von Neu- und Umbauten verwendet werden soll, werden neben Verbrauchswerten auch Bedarfs werte benötigt (siehe Begriffe in Kapitel H1). In der später erschienenen entsprechenden deutschen Richtlinie [G-11] wird daher ausdrücklich zwischen diesen beiden Begriffen unterschieden. Es wird dort auch vom Kennwert gesprochen, da der Begriff -zahl nach internationalen Begriffsverein barungen [G-7] Größen der Dimension 1 vorbehalten ist. Besteht also nur die Absicht, ein bestimm tes Gebäude mit festgelegter Nutzung in seinem energetischen Verhalten in bestimmten Zeit abständen zu beurteilen oder gar Gebäude gleicher Art und Nutzung miteinander zu vergleichen, dann sind Energieverbrauchskennwerte zu verwenden. Unter Energieverbrauch wird der gemessene Energieeinsatz E Vg verstanden; mit den Begriffen und Bezeichnungen der VDI 3807: E = B H (G2-7) Vg Vg Mit der gemessenen verbrauchten Energiemenge in der jeweiligen Mengeneinheit (z. B. bei Heizöl El) B Vg und dem Heizwert H in kwh je Mengeneinheit (ohne Index u, da ja auch die Energieart elektrischer Strom mitbehandelt wird). Der sog. bereinigte Energieverbrauch E V liegt vor, wenn als wesentlicher Einfluss das Wetter über die Heizgradtage erfasst wird: 15 E =E G (G2-8) V Vg G15 Die hier verwendeten Gradtage (G 15 steht beispielsweise für die jeweils aufgetretenen Heizgradtage und G 15 für einen langjährigen Mittelwert) unterscheiden sich von den in VDI 2067 [G-2] de finierten Gradtagen G t, dass hier die Temperaturkurve über der Zeit nur bis zu einer mittleren Heizgrenze von 15 C integriert wird (siehe Bild G-3). Im Unterschied dazu wird nach der Definition in der VDI 2067 und auch in Band 1 Teil B der Rechteckblock zwischen der Heiz-

10 608 G Jahresenergiebedarf Bild G-3 Schematische Darstellung der Gradtagzahl G t nach VDI 2067 und der Heizgradtage G 15 nach VDI 3807 z. B. für die Heizgrenztemperatur 15 C grenztemperatur und der Raumlufttemperatur hinzuaddiert. Die Heizgradtage G 15 sind die Summe der Differenzen zwischen der Heizgrenztemperatur von 15 C und den Tagesmitteln der Außentemperaturen ϑ a,n über alle Kalendertage mit einer Tagesmitteltemperatur unter 15 C: Z ( an) n= 1 G = 15 C ϑ, (G2-9) 15 Der Zusammenhang mit den Heizgradtagen nach VDI 2067 [G-2] lautet mit der Zahl der Heiztage z und der Temperaturdifferenz 5 K G15 = Gta, 5K z (G2-10) Dieser im übrigen auch international übliche Ansatz für die Gradtage geht von der Annahme aus, dass der Rechteckblock zwischen der Heizgrenze und der Raumtemperatur vollständig durch Fremdwärmezufuhr aufgebracht wird. Dies mag insbesondere an Tagen mit niedriger Außen temperatur nicht vollständig zutreffen, ist aber bei einem an die Außentemperatur angepassten Nutzerverhalten (weniger Lüften an den kalten Tagen) auch nicht unwahrscheinlich. In jedem Fall aber trifft dieser Ansatz an Tagen mit einer Außentemperatur in der Nähe der Heizgrenze exakt zu. Neuere Überlegungen im VDI 4710-Ausschuss zur Verbesserung des Gradtageverfahrens führen dazu, objektbezogen veränderliche Heizgrenztemperaturen einzuführen. Unterschiede bei den Dämmqualitäten der Gebäude, der Lüftung und der gewählten realen Rauminnentemperatur legen diesen Gedanken auch nahe. Als Bezugsfläche A E wird nach VDI 3807 die Summe aller beheizbaren Brutto-Grundflächen eines Gebäudes genommen. Die Grundflächen werden nach

11 G3 Bedarfsentwicklungsmethode 609 den Außenmaßen der Vollgeschosse eines Gebäude ermittelt. Sie darf nicht verwechselt werden mit der sog. Wohnfläche, in der z. B. auch andere Nutzflächen wie Balkone enthalten sind, oder mit der Nettogrundfläche, die ohne Mauerwerk zu verstehen ist. Der so definierte Energieverbrauchskennwert lautet nunmehr: V e = E (G2-11) V AE Ist allein Heizenergie gemeint, so ist im Index von E noch H hinzuzufügen, und ist die Energie elektrischer Strom, dann ein S. Wenn Bedarfswerte verwendet werden, ändert sich die Bezeichnung des Energiebedarfs zu E B und des Energiebedarfskennwertes zu e B ; die übrigen Definitionen bleiben erhalten. Analog zur Anwendung der Gradtage bei den Energieverbrauchskennwerten ist bei der Heizkosten verteilung (siehe Teil H) vorzugehen. Auch hier dürfen nur die Gradtage mit der Heizgrenztempera tur als oberem Grenzwert eingesetzt werden. D. h. die vom Wetteramt mitgeteilten Gradtage, die meist für den oberen Grenzwert 20 C gelten, sind umzurechnen, indem von den veröffentlichten Werten gemäß Gleichung G2-10 das Produkt aus der Anzahl der jeweiligen Heiztage und der Differenz zwischen Heizgrenztemperatur und 20 C abzuziehen ist (gerade in den Übergangszeiten würden ohne diese Korrektur erhebliche Verbrauchsunterschiede errechnet werden). G3 Bedarfsentwicklungsmethode G3.1 Referenzenergiebedarf Die Entwicklung des Bedarfs in einem Gebäude mit der zugehörigen Nutzung hin zum Bedarf bei der Verteilung bis zu dem bei der Erzeugung lässt sich nur verfolgen, wenn zunächst raumweise der zeitliche Verlauf sämtlicher Energieströme aufgenommen wird. Es genügt keinesfalls, unter An nahme annähernd konstanter Bedingungen Tages- oder gar Jahresenergiemengen zu betrachten. Die erforderliche Untersuchungsgenauigkeit liefert die VDI-Kühllastregel [G- 10]; sie ist auch auf den Heizfall anwendbar. In der dort entwickelten Betrachtungsweise werden alle Energieströme positiv gezählt, wenn sie dem Raum zugeführt werden (siehe Bild G-4, die verwendeten Bezeichnungen und Begriffe sind eingetragen). Man unterscheidet, ob die Heiz- oder RLT-Einrichtungen konvektiv oder radiativ wirken, und spricht dann von konvektiver oder Strahlungsraumbelastung durch die Anlage (Q KA und Q SA ). Die Heizlast des Raumes ist nach dieser Kühllast-Definition negativ: Q = Q + Q ( ) (G3-1) HR KA SA

12 610 G Jahresenergiebedarf Bild G-4 Die dem Raum zugeführten Energieströme Q (t) Q A äußere Kühllast, Indizes: Außenwand W, Fenster F, Fensterlüftung FL, Transmission T, Strahlung S Q I innere Kühllast, Indizes: Personen P, elektr. Geräte E, Räume R, Beleuchtung B, Maschinen M, Geräte G, Kühlung C Q KA, Q SA Belastung durch die Anlage, konvektiv K, radiativ S Aus Energiebilanzgründen muss für jeden Zeitpunkt gelten: Q I+Q A+Q KA+Q SA= 0 (G3-2) Im Heizfall, also wenn die Außentemperaturen deutlich unter der Heizgrenztemperatur liegen, sind alle Terme, aus denen sich die äußere Kühllast Q A zusammensetzt, negativ bis auf Q S, der Kühllast infolge Strahlung durch das Fenster; die inneren Kühllasten Q I sind alle positiv. Die sich aus der Bilanz (G3-2) ergebende Rauminnentemperatur ϑ i ist zunächst unbekannt. Die Raumbelastung durch die Anlage (Q KA und Q SA ) kann aber auch so gewählt werden, dass ein gewünschter Temperaturverlauf entsteht (Solltemperatur). Um insbesondere die Funktionen einer Heizanlage, die Behaglichkeitsdefizite beseitigen sollen, bewerten zu können, wird nach einem Vorschlag von Bauer [G-13] eine rechnerisch reproduzierbare Referenzsituation hergestellt, bei der eine örtlich wirksame Heizlast als ein Behaglichkeitsdefizit aufgefasst wird. Dies soll in aller Strenge auch dann gelten, wenn das rechnerisch feststellbare Behaglichkeitsdefizit unterhalb der Empfin dungsschwelle von Raumnutzern liegt. Bei einer Idealheizung soll die konvektive Heizlast Q KR exakt mit der konvektiven Raumbelastung durch die Anlage Q KA ausgeglichen werden; entsprechendes gilt für die Strahlungsheizlast des Raumes Q SR. Der konvektive Anteil der Heizlast beinhaltet zum einen die Lüftungswärmeverluste zum Erwärmen der Außenluft auf Raumtemperatur, zum anderen auch das Erwärmen der Fallluftströme an kalten Umfassungsflächen A UF Q =m KR, ZUc pl ϑr ϑau + αkuf, A ϑ UF n ( ) j= 1 ( ϑ ϑ ) UF R UF die Temperatur der Umfassungsfläche j α K,UF der konvektive Wärmeüberganskoeffizient an dieser Fläche. j (G3-3)

13 G3 Bedarfsentwicklungsmethode 611 Im radiativen Anteil sind die Strahlungsdefizite der Umfassungsflächen enthalten n Q = SR, αsuf, AUF ϑr ϑ UF (G3-4) j= 1 ( ) j Vereinfachend wird der Wärmeübergang durch Strahlung in linearer Form angegeben mit α S,UF dem Wärmeübergangskoeffizienten für die Strahlung. Die Referenzsituation für die Bewertung einer Heizanlage ist durch folgendes Gleichungssystem beschrieben: Q KR, = ( QKA, ) Q = Q SR, ( SA, ) (G3-5) Q =Q ON, H, R Die Heizlast in der Referenzsituation für einen Raum mit einer bestimmten Nutzung wird mit Q 0,N bezeichnet. Das zeitliche Integral über diese Heizlast ist der Referenzenergiebedarf Q 0,N. t Q 0, N = Q0, N dt (G3-6) t= 0 Es wird zwischen zwei Werten des Referenzenergiebedarfs unterschieden: für einen Grundnutzen mit der Bezeichnung Q 0,G, um überwiegend Gebäudeeigenschaften beurteilen zu können, und für eine spezielle Nutzung des Gebäudes mit der Bezeichnung Q 0,N, um die energetische Qualität einer Heiz- oder/und RLT-Anlage beurteilen zu können. Der Referenzenergiebedarf wird ausgehend von der VDI-Kühllastregel [G-10] mit einem weiter entwickelten Algorithmus nach der neuen VDI-2067 [G-14] berechnet. Dabei wird ein definierter Satz von Klimadaten verwendet (Testreferenzjahr TRY des Standortes [G-15]). Der Umfang der Eingabedaten geht nur unwesentlich über den der Daten für eine Heizlastberechnung heraus; es sind im einzelnen: Abmessungen der Räume einschließlich aller Teilflächen wie Fenster, Türen, Brüstungen u. a., bei den nicht transparenten Bauteilen ihr Schichtaufbau (Dicke, Dichte, Leitfähigkeit, Wärmekapazität), bei den Fenstern Transmissions- sowie Reflektionseigenschaften, Energiedurchlassgrade, Sonnenschutzeinrichtungen, Orientierung der Außenwände und Fenster.

14 612 G Jahresenergiebedarf Der Grundnutzen für Q 0,G ist folgendermaßen definiert: Raumtemperatur 22 C und konstant, Außenluftwechsel 0,8 h 1 und konstant, Sonnenschutz, soweit vorhanden, betätigt für alle Außentemperaturen 15 C Innenlasten: keine innere Quelle. Der gebäudeeigene Nutzen für Q 0,N enthält in jedem Fall: Außenluftwechsel 0,8 h 1 und konstant, Sonnenschutz, soweit vorhanden, betätigt für alle Außenlufttemperaturen 15 C. Und ggf. zusätzlich: zum festen Außenluftwechsel einen maschinellen, maschineller Luftwechsel als Zeitprofil, veränderliche Raumtemperatur als Zeitprofil, innere Lasten als Zeitprofil. Nahezu im gleichen Rechengang wie für den Referenzenergiebedarf fällt auch die Normheizlast Q N an. Mit ihr lässt sich in einem weiteren Schritt das Jahresmittel der relativen Heizlast berechnen:,n β Q = Q 0 t Q (G3-7) Jahr N Mit der Jahreszeit t Jahr = 8760 h. Diese relative Heizlast ist ein Maß für die Belastungssituation, die für die dynamischen Eigenschaften des Übergabesystems der Heizanlage wesentlich ist. Für Abschät zungen liegt die relative Heizlast beim Dämmstandard Altbau (errichtet vor etwa 1985) zwischen 0,24 und 0,1. Geringe Fremdlasten (wenig Sonne und Geräte) führen zu dem höheren Wert, hohe zu dem kleineren; Wohnräume tendieren demnach zu den höheren, Räume auf Gebäudesüdseiten sowie Büroräume zu den niedrigeren Werten. Auch der Heizbetrieb beeinflusst β Q, so reduziert die Nachtabsenkung sie um etwa 6%. Der Dämmstandard durch die WSV 95 verringert den oberen Betrag von 0,24 auf unter 0,22 und die Energiesparverordnung (EnEV) weiter auf unter 0,2; beim unteren Betrag wirkt sich die erhöhte Dämmung etwas stärker aus. G3.2 Energieaufwand einer Warmwasserheizung Um den Heizenergiebedarf eines oder mehrerer Räume in einem Gebäude decken zu können, entsteht bei einer realen Heizanlage ein über den Bedarf hinaus gehender Aufwand. Dieser Aufwand wird bei Warmwasserheizungen

15 G3 Bedarfsentwicklungsmethode 613 wegen der stark unterschiedlichen Gestaltung ihrer Hauptbereiche, Übergabe, Verteilung und Erzeugung, zweckmäßigerweise, aber auch einer detaillierten Bewertbar keit wegen, in die Teilaufwände aufgegliedert (siehe Bild G-2). Der Teilaufwand für die Übergabe gestaltet sich am unterschiedlichsten, da hier einerseits die größte Variationsbreite bei den anlagentechnischen Möglichkeiten besteht, andererseits bei den vielfältigen Nutzenanforderungen (festgelegt in der Referenzsituation) die dargebotene Heizleistung verschieden gut an die Heizlast anzupassen ist. Neben dem durch die Lastschwankungen hervorgerufenen zeitlichen Anpassungsproblem (es wächst mit steigender Gebäudedämmung) besteht auch ein räumliches. Hierauf hat bereits Rietschel [G-16] hingewiesen: Die vollkommenste Heizungsanlage würde diejenige sein, die an jeder Stelle eines Wärmeverlustes einen gleich großen Wärmeersatz zu liefern im Stande wäre. Beim Ausgleich der verschiedenen Behaglichkeitsdefizite ist ausschlag gebend, ob die von einer Heizfläche an den Raum abgegebenen Wärme in der vorgegebenen Anforderungszone [A-9] wirksam wird, also zu nutzen ist. Da es nicht darum geht, einfach nur Wärme zu übergeben, teilweise ohne Behaglichkeitseffekt, wird im Sinne einer genaueren Quantifi zierung des Aufwandes von Nutzenübergabe gesprochen. Die den räumlich und zeitlich vorgegebenen Nutzen (Bedarf) überschreitende Wärmezufuhr wird als Mehraufwand aufintegriert. Voraussetzungsgemäß wird dabei die Anlage so betrieben, dass ein Unterschreiten der Nutzen vorgaben nicht auftritt. Das unvermeidliche Überschwingen der Temperaturen im Raum über den Sollwert wird nicht als Maß für einen Mehraufwand herangezogen, weil es 1. von Fremdlasten herrühren und 2. ein Zuviel an Heizleistung über die Strahlung auch gespeichert sein kann, ohne dass eine Veränderung der Raumtemperatur auftritt. Auch die jedermann geläufige stationäre Betrach tungsweise, nach der die Temperaturdifferenz zwischen innen und außen ursächlich für die Heizwär meströme nach außen ist, geht erheblich an der Realität eines dynamischen Heizbetriebs vorbei: Wenn die Fremdlast ein Vielfaches der Heizlast beträgt, besteht nahezu keine Abhängigkeit mehr von der Temperaturdifferenz innen außen, wohl aber vom Verlauf der Fremdlast (siehe Bild G-5). Die Aufwandszahl für die Nutzenübergabe, definiert (für eine Einzelheizfläche) als 1 Q 0,N e= Q 1 (G3-8) mit Q 0,N, dem Referenzenergiebedarf nach Gleichung G3-6, und Q 1, dem Jahresenergieaufwand für die Übergabe. Dieser ist abhängig von: der Zeitkonstanten T der Raumheizfläche (z. B. Fußboden Heizfläche, Heizkörper, Lufter wärmer), der Auslegungsabkühlzahl Φ 0 bei Einbau eines realen Reglers, dem Jahresmittel der relativen Heizlast β Q,

16 614 G Jahresenergiebedarf Bild G-5 Beispiel einer Simulation des Übergabevorgangs: Heizlastgang vor allem durch Fremdwärmeströme beeinflusst, reale Heizleistung folgt nur unvollkommen. Unter der Heizlastkurve liegt die Q 0,N -Fläche, unter der Heizleistungskurve die Q 1 -Fläche, die Differenz der Flächen ist der Mehraufwand dem Übertragungsverhalten des (realen) Heizflächenreglers und der Heizflächenanordnung. Wie in Teil E dargelegt, sind bei realem instationären Heizbetrieb von den drei Betriebsformen: Aufheizen, instationäre Teillast und Absenken in Hinblick auf den Energieaufwand nur die beiden letztgenannten maßgeblich. Das Zeitverhalten der Heizflächen hierfür lässt sich mit den gleichen Bewertungsgrößen beschreiben: der Zeitkonstanten T nach Gleichung E und dem Übertragungsbeiwert K Q nach Gleichung E Die Aufwandszahl e 1 ist um so näher an 1, je kleiner die Zeitkonstante ist, d. h. Gewicht und Wasser inhalt der Heizfläche müssen klein sein und ihre Normleistung möglichst hoch. Allerdings sinkt das Leistungsvermögen ka nach Gleichung D geringfügig mit der mittleren Übertemperatur ϑ H der Heizfläche, weshalb dadurch entsprechend die Zeitkonstante zunimmt T T n ( ka) n n = = ϑ ka ϑ n 1 (G3-9) und die Wahl der Übertemperatur bei der Auslegung der Raumheizfläche sich auf die Aufwandszahl auswirkt: Sie steigt bei gleichbleibender Heizflächenart gering mit abnehmender Übertemperatur, weil die Heizfläche an sich größer wird. Bei der Auslegung ist auf eine weitere Einflussgröße zu achten, nämlich das Verhältnis von Vorlauf übertemperatur zu Spreizung, also 1/Φ 0. Reale Heizflä-

17 G3 Bedarfsentwicklungsmethode 615 chenregler reagieren generell in einem gewissen Maß unvollkommen auf Änderungen beim arbeitspunktabhängigen Übertragungsverhalten der Heizfläche. Hierfür ist der Übertragungsbeiwert K Q maßgeblich. Nach Gleichung E ist K Q abhängig von der Auslegungsabkühlzahl Φ 0 (=(σ/ ϑ V ) 0 ; siehe auch Gleichung E3.2-36). Aus Gleichung E lässt sich mit den Normwerten (Übertemperaturverhältnis 55/45) ein Zu sammenhang zwischen der Auslegungsabkühlzahl und dem Auslegungsmassenstromverhältnis herstellen: 1 ln 1 Φ σ m n n =, m = m n 0 ϑ lg n 0 m 0 55 m ln = 0, m n 0 (G3-10) Damit ist z. B. im Heizkörper-Auslegungs-Diagramm (Bilder C1-8 und -9) für eine mindest er forderliche Auslegungsabkühlzahl das maximal zulässige Massenstromverhältnis aufzufinden und der Auslegungsbereich einzugrenzen (siehe auch VDI 6030 [A-9], dort wird vereinfacht eine Mindest spreizung für Φ 0,min = 1/3 angegeben). Neben den beiden auslegungsbestimmten und heizflächeneigenen Größen, der Zeitkonstanten T und der Abkühlzahl Φ 0 hat die Belastungssituation einen starken Einfluss auf den energetischen Aufwand bei der Übergabe. Je höher der Anteil der Fremdlasten also der Summe der Wärmeströme aus äußeren- und inneren Wärmequellen wird, um so stärker verändert sich zeitlich die relative Heizlast. Für einen festgelegten Nutzen lässt sich, wie Bauer [G-13] nachweist, dieser Einfluss auch mit einer Jahresbetrachtung erfassen und genügend genau durch nur eine Größe, nämlich das Jahresmittel der relativen Heizlast β Q, kennzeichnen (siehe Gleichung G3-7). Eine Zusammenfassung der ersten vier Einflüsse auf die Aufwandszahl für die Wärmeübergabe bei Heizkörpern zeigt Bild G-6 in einer Prinzipdarstel- Bild G-6 Prinzipieller Einfluss der Auslegungsabkühlzahl Φ 0 auf den Energieaufwand e 1 von Raumheizflächen mit unterschiedlichen Reglern und den Parametern Zeitkonstante T sowie relativer Heizlast β Q ; zusätzlich: Einfluss einer Lufttemperaturanhebung zur Kompensation eines fehlenden Abstrahlungsausgleiches (alles qualitativ und vereinfacht)

18 616 G Jahresenergiebedarf lung. Hier ist die Aufwandszahl e 1 über dem Kehrwert der Auslegungsabkühlzahl Φ 0 aufgetragen. Bei Heizflächen mit realen Reglern steigt die Aufwandszahl mit 1/Φ 0 an (hier vereinfacht linear). Dabei ist der Ausgangspunkt dieser Geraden scharen von der Zeitkonstanten T der Raumheizfläche abhängig (die Geraden gelten demnach für eine bestimmte mittlere Übertemperatur). Ihre Steigung hängt von dem Jahresmittel der relativen Heizlast β Q ab. Die Geraden liegen flacher bei einer hohen relativen Heizlast (siehe Bild G-6). Die Steigung hängt aber auch von Übertragungsverhalten des Heizflächenreglers ab; je günstiger, um so flacher. Bei Raumheizflächen mit idealer Regelung, also ohne bleibende Regelabweichung, bestimmt allein die Zeitkonstante T die Aufwandszahl. In diesem Fall wirkt sich weder die relative Heizlast noch die Auslegungsabkühlzahl, also auch nicht die Auslegungsvorlauftemperatur oder die Sprei zung aus. Für bestimmte Raumheizflächen-Regler-Kombinationen geben im untersuchten Bereich Hyperbeln den Zusammenhang zwischen der Aufwandszahl e 1 und dem Jahresmittel der relativen Heizlast β Q wieder (eine Extrapolation über den untersuchten Bereich hinaus ist nicht zulässig). Einige typische Beispiele (Auszüge aus [G-17]) zeigen Bild G-7 für Raumheizkörper und Bild G-8 für Fußbodenhei zungen. In Bild G-7 sind als Parameter der Reglereinfluss und die Auslegevorlauftemperatur, in Bild G-8 die Speicherkapazität gewählt. Die Aufwandszahlen e 1 für übliche Kombinationen von Raum heizfläche und Regler sind in der VDI-Regel 2067 Blatt 20 [G-17] mit Angabe der Randbedingun gen tabellarisch zusammengestellt (Beispiele siehe Tabelle G-1). Die Grundlagen hierzu sind bei Bauer [G-13] zu finden. Die e 1,β Q -Hyperbeln (als Regressions- Bild G-7 Mittlere Aufwandszahl e 1 über der mittleren relativen Heizlast β Q von unterschiedlich geregelten leichten Heizkörpern in Räumen mit Nachtabsenkung; Auslegung mit hoher (> 71 C) und niedriger (< 50 C) Vorlauftemperatur; Proportionalitätsbereich des Thermostatventils 2 K

19 G3 Bedarfsentwicklungsmethode 617 Bild G-8 Mittlere Aufwandszahl e 1 über der mittleren relativen Heizlast β Q für einheitlich mit PI-Regler (stetig, mit Hilfsantrieb) ausgerüstete Fußbodenheizung in leichter und schwerer Ausführung, ohne Nachtabsenkung (Auszug aus [G-17]) kurven der Simulationsergebnisse) haben die für die Tabellierung verwendete Form: b e1 = a + β Q (G3-11) Der an fünfter Stelle als wesentlich aufgezählte Einfluss ist die Heizflächenanordnung. Er ist insbesondere dann zu beachten, wenn z. B. ein Strahlungsausgleich vor einer kalten Fläche nicht hergestellt wird. Ist gemäß Teil C3 eine vollständige Vergleichbarkeit gefordert, besteht in diesem Fall nur die Möglichkeit, durch Anheben der Raumlufttemperatur ersatzweise die Gleichwertigkeit des betrachteten Heizsystems mit der ungünstig angeordneten Heizfläche zu dem mit einer optimal angeordneten herzustellen. Dies führt zu einer Parallelverschiebung der für eine Heizflächen-Regler-Kombination geltenden Geraden, wie sie beispielhaft in Bild G-6 eingezeichnet ist. Zur Gesamtbewertung einer vollständigen Warmwasser-Heizanlage ist zunächst aus dem bisher behandelten Einzelaufwand einer Übergabestelle das Zusammenwirken mehrerer gegebenenfalls verschieden großer oder verschiedenartiger Übergabestellen festzustellen. Es sei beschrieben durch eine mittlere Aufwandszahl e 1, mit der die von der Verteilung anzuliefernde Gesamtwärmemenge zu berechnen ist. Analog zu Gleichung G3-8 wird definiert: Q 1 = e 1 Q 0, N (G3-12)

20 618 G Jahresenergiebedarf Tabelle G-1 Parameter der Regressionskurven nach Gleichung G3-11 aus VDI 2067, Bl. 20 [G-17] für schwere (s) und leichte (l) Raumheizflächen mit hoher ( 71 C), mittlerer (51 C ϑ V 70 C) und niedriger Vorlauftemperatur (h, m, n). Das Thermostatventil hat einen Auslegungsproportional bereich von 2 K, der PI-Regler ist stetig und hat Hilfsantrieb, Schnellaufheizung durch zentrales Anheben der Vorlauftemperatur. Betriebsführung: Durchheizen Nachtabsenkung mit Schnellaufheizung a b a b a b Heizkörper s, m 1,0752 0,0089 1,1016 0,0143 1,1556 0,0114 l, m 1,0817 0,0071 1,1003 0,0126 1,0919 0,0126 l, n 1,0765 0,0044 1,0793 0,0104 1,0795 0,0112 l, h 1,1455 0,0083 1,1453 0,0157 1,1312 0,0159 s, n 1,0543 0,0090 1,0650 0,0130 1,0831 0,0133 s, h 1,1441 0,0094 1,1306 0,0176 1,149 0,0158 Thermo statventil Heizkörper s, m 1,0008 0,0088 1,0170 0,0155 1,0026 0,0143 l, m 1,0011 0,0049 1,0350 0,0103 1,0387 0,0056 l, n 0,9851 0,0091 1,0125 0,0148 1,0924 0,0043 l, h 1,0068 0,0042 1,0316 0,0098 1,0962 0,0092 s, n 0,9651 0,0202 0,9950 0,0260 1,0062 0,0209 s, h 1,0114 0,0065 1,0304 0,0126 1,0759 0,0110 Fußbodenhzg. PI-Regler ohne Raum- Regler (Altanl.) s 1,2576 0,0242 1,3180 0,0294 l 1,1747 0,0216 1,2625 0,0280 Fußbodenhzg. PI-Regler s 1,0411 0,0070 1,1211 0,0124 1,0475 0,0130 l 1,0308 0,0042 1,0687 0,0114 1,0077 0,0111 Genügend genau kann für eine Gruppe von Raumheizflächen unterschiedlicher Größe, aber gleicher Art (einschließlich Regelung), die zugehörige mittlere Aufwandszahl e 1 über einer mittleren relativen Heizlast β Q im e 1,β Q -Diagramm (Bild G-7 oder -8) abgelesen werden. Sie lautet analog zu Glei chung G3-7: β Q = t Q N 0, Jahr Q N (G3-13)

21 G3 Bedarfsentwicklungsmethode 619 Die Summen werden für die jeweilige Heizflächengruppe mit der zugehörigen Hyperbel im e 1,β Q -Diagramm gebildet. Bei mehreren verschiedenartigen Heizflächen und entsprechend verschiedenen Hyperbeln sind die gefundenen mittleren Aufwandszahlen e 1,i mit den ( Q 0,N ) i gewichtet zu mitteln: ( e1, i ( Q0, N, ) i ) e1 = (G3-14) Q ges 0, N Der so gefundene Mittelwert e 1 liefert mit Gleichung G3-12 den Gesamtaufwand der Übergabe Q 1, der für den nachfolgenden Systembereich, die Verteilung, zugleich den Bedarf und somit die Eingangsgröße für die Restanlage darstellt. Wie hier weiter vorzugehen ist, teilen Hirschberg und der Verfasser in [G-18] als vorläufigen Ersatz zu den noch fehlenden Blättern der neuen VDI 2067 [G-6] mit (zeitgleich mit dieser Veröffentlichung wird die alte VDI 2067, Blatt 2 [G-2] zurückgezogen). Der Aufwand der Verteilung besteht in der Wärmeabgabe des Verteilsystems und in dem Strom aufwand für die Umwälzung. Auf letzteres wird zunächst nicht eingegangen. Die Verteilung über nimmt die mittlere Belastung der Übergabe, allerdings nur während der Heizzeit t H, in der sie in Betrieb ist 4. Die mittlere Belastung der Verteilung ist demnach: ta βd = e βq (G3-15) 1 th mit t a, den Jahresstunden 8760 h/a; der Index D steht für Distribution. Da die Wärmeübergabe unabhängig von der Art der Regelung nur von der (logarithmischen) Übertemperatur abhängt und diese Übertemperatur zeitgleich auch in der Verteilung herrscht, gilt. 1 D n 0 ϑ = β ϑlg, (G3-16) mit n, der Hochzahl in der Potenzfunktion für die Raumheizflächen, und ϑ lg,o, der logarithmischen Übertemperatur im Auslegepunkt. Danach kann für verschiedene Auslegetemperaturen die längenbe zogene Wärmeabgabe q 2 für Rohrleitungen im beheizten (Bild G-9) und unbeheizten Bereich (Bild G-10) des betreffenden Gebäudes in Abhängigkeit von der mittleren Belastung in der Verteilung β D angegeben werden. Die eingezeichneten Kurven gelten für Dämmschichtdicken und Wärmeleitkoef fizienten, wie sie in den neuesten Wärmeschutzbestimmungen vorgeschrieben sind. 4 Die Heizzeit ist entweder bei der jeweils gewählten zentralen Steuerung durch eine bestimmte Außentemperatur grenze gegeben oder fällt bei der Berechnung des Referenzenergiebedarfs nach VDI 2067, Bl. 11 an.

22 620 G Jahresenergiebedarf Bild G-9 Längenbezogene Wärmeabgabe q 2 von Rohrleitungen im beheizten Bereich von Gebäuden abhängig von der mittleren Belastung β D der Verteilung nach Gleichung G3-14 Bild G-10 Längenbezogene Wärmeabgabe q 2 von Rohrleitungen im unbeheizten Bereich von Gebäuden abhängig von der mittleren Belastung β ρ der Verteilung nach Gleichung G3-14 Mit den Rohrlängen L i in den verschiedenen Bereichen des Verteilsystems mit seinen Anbindungs-, Strang- und Verteilleitungen sowie den zugehörigen eine nicht nutzbare Wärmeabgabe erfassenden Faktoren f n,i (siehe unten) kann der Zusatzaufwand berechnet werden. Q2 = th ΣLi q2, i fn, i (G3-17) i Dabei wird die Heizzeit t H für das Verteilsystem gleich angenommen. Die längenbezogene Wärme abgabe q 2 ist in den Diagrammen Bild G-9 und -10 je nachdem, ob die Leitungen im beheizten oder unbeheizten Gebäudebereich liegen, abzulesen. Die Faktoren für die nichtnutzbare Wärmeabgabe betragen: f n = 0,12 für Anbindungsleitungen im beheizten Bereich f n = 0,15 für Strang- und Verteilleitungen im beheizten Bereich f n = 1 für Verteilleitungen im unbeheizten Bereich.

23 G3 Bedarfsentwicklungsmethode 621 Die mittlere Aufwandszahl für die Wärmeabgabe der Verteilung ist definiert: ΣQ1+ Q2 Q2 e2 = = 1+ (G3-18) Σ Q1 Σ Q1 Für die von der Verteilung bei der Übergabe anzuliefernde Gesamtwärmemenge folgt aus den Gleichungen G3-12 und -13 ΣQ = e β t ΣQ (G3-19) 1 1 Q a N Damit kann die mittlere Aufwandszahl der Verteilung auch dargestellt werden durch Q2 ( ta ΣQ N) e2 = 1+ (G3-20) e β 1 Q Der Zählerausdruck in Gleichung G3-20 gibt den mittleren relativen Zusatzaufwand der Verteilung an, der Nennerausdruck stellt die Verknüpfung zur Übergabe dar: Je kleiner die relative Heizlast ist, um so größer wird die Aufwandszahl für die Wärmeabgabe der Verteilung. Auch hier besteht wie beim Aufwand für die Übergabe eine hyperbolische Abhängigkeit. Die Wärmeabgabe der Rohrleitungen und Armaturen im Anschlussbereich des Wärmeerzeugers sind gesondert im Zusammenhang mit diesem zu erfassen. Sie können bei kleinen Anlagen (unter 20 kw) die Größenordnung der Wärmeabgabe der Verteilung insgesamt erreichen, weil die Armaturen oder Pumpen usw. häufig nur wenig oder gar nicht gedämmt sind (siehe D ). Zu ihrer Berechnung kann sinngemäß das Diagramm in Bild G-10 herangezogen werden. Wie bereits erwähnt, ist beim energetischen Aufwand der Verteilung neben dem für die Wärmeabgabe auch der für den Bedarf an elektrischem Strom zur Umwälzung zu erfassen. Er hängt von der Art der Regelung bei der Überga be, der Gestaltung des Verteilsystems, der Art der zentralen Vorlaufregelung, von den Umwälzpum pen (geregelt, ungeregelt) und von der Betriebsführung ab (siehe Teil D2 und Vorarbeiten von Hirschberg [G-20] zu VDI 2067 Blatt 30 [G-21]). Der Aufwand bei der Wärmeerzeugung ist unterschiedlich zu bestimmen, je nach dem ob diese durch Wärmeübertragung (Sonne, Fernwärme), aus Brennstoff, aus Strom, mit einer Wärmepumpe oder einem Blockheizkraftwerk vorgenommen wird. Bei Wärmeübertragung von der Sonne, also Solaranlagen (siehe D3.2.1), ist vom Vorhandensein eines parallel betriebenen weiteren Wärmerzeugungssystem auszugehen. Mit der Solaranlage wird daher nur eine Verminderung des Heizenergiebedarfs der Verteilung Q 2 erreicht. Der Minderungs betrag ist ein Ergebnis ihrer Auslegung (siehe D ). Als einziger energetischer Aufwand ist bei Solaranlagen der Strombedarf für Umwälzpumpen und ähnliches zu berücksichtigen.

24 622 G Jahresenergiebedarf Bei Wärmeübertragung aus Fernwärme mit Wasser/Wasser-Wärmeaustauschern (siehe D3.2.2) sind lediglich die Oberflächenverluste des Wärmeaustauschers zusammen mit der Übergabestation Q U zu erfassen. Die Aufwandszahl lautet QU e3 = 1+ (G3-21) e2 Σ Q1 Generell wird der Aufwand im Prozessbereich der Wärmeerzeugung (aus Brennstoff oder Strom mit einem Kessel, mit einer Wärmepumpe oder einem BHKW) durch die vorgelagerten Prozesse und maßgeblich durch das Verhältnis der Summe der Normheizlasten Q N zur Nennwärmeleistung des Wärmeerzeugers Q K,N bestimmt. Die mittlere Belastung des Wärmeerzeugers β G (Index G für Generator) beträgt dann: ΣQ N βg = βd Q (G3-22) KN, Ausgehend von den Wirkungsgradanforderungen für Niedertemperaturund Brennwertkessel nach der europäischen Wirkungsgradrichtlinie [G-22] können die mittleren Aufwandszahlen e 3 in Abhän gigkeit der Nennwärmeleistung und der mittleren Belastung des Wärmeerzeugers angegeben werden (Bilder G-11 und -12). Damit beträgt der Aufwand für die Wärmeerzeugung, oder aus der Sicht des nachfolgenden Systems, dem Energielieferanten, der Bedarf an zuzuführender Energie: Q 3 = e 3 Q 2 = e 1 e 2 e 3 Σ Q 0, N (G3-23) Bild G-11 Aufwandszahlen e 3 für Niedertemperaturkessel über der mittleren Belastung β G für Kesselnennleistungen von 10 bis 1000 kw

Energetische Klassen von Gebäuden

Energetische Klassen von Gebäuden Energetische Klassen von Gebäuden Grundsätzlich gibt es Neubauten und Bestandsgebäude. Diese Definition ist immer aktuell. Aber auch ein heutiger Neubau ist in drei (oder vielleicht erst zehn?) Jahren

Mehr

0 50 100 150 200 250 300 350 und mehr. Verwaltungsgebäude mit Bibliothek, Hörsaal. Umweltbundesamt, Wörlitzer Platz 1, 06844 Dessau.

0 50 100 150 200 250 300 350 und mehr. Verwaltungsgebäude mit Bibliothek, Hörsaal. Umweltbundesamt, Wörlitzer Platz 1, 06844 Dessau. Erstellt am: 20.02.2006 Gesamtbewertung Primärenergiebedarf Dieses Gebäude 73,1 kwh/(m²a) 0 50 100 150 200 250 300 350 und mehr Neubau modernisierter Altbau Hauptnutzung Adresse Baujahr Gebäude Baujahr

Mehr

Bericht Nr. H.0906.S.633.EMCP-k

Bericht Nr. H.0906.S.633.EMCP-k Beheizung von Industriehallen - Rechnerischer Vergleich der Wärmeströme ins Erdreich bei Beheizung mit Deckenstrahlplatten oder Industrieflächenheizungen Auftragnehmer: HLK Stuttgart GmbH Pfaffenwaldring

Mehr

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität

Übung 5 : G = Wärmeflussdichte [Watt/m 2 ] c = spezifische Wärmekapazität k = Wärmeleitfähigkeit = *p*c = Wärmediffusität Übung 5 : Theorie : In einem Boden finden immer Temperaturausgleichsprozesse statt. Der Wärmestrom läßt sich in eine vertikale und horizontale Komponente einteilen. Wir betrachten hier den Wärmestrom in

Mehr

ENERGIEAUSWEIS für Nichtwohngebäude

ENERGIEAUSWEIS für Nichtwohngebäude ENERGIEAUSWEIS für Nichtwohngebäude gemäß den 16 ff. Energieeinsparverordnung (EnEV) Berechneter Energiebedarf des Gebäudes Erfenschlager Straße 73 Neubau Projekthaus METEOR 2 Primärenergiebedarf Gesamtenergieeffizienz

Mehr

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen

geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Gehen wir einmal davon aus, dass die von uns angenommenen geben. Die Wahrscheinlichkeit von 100% ist hier demnach nur der Vollständigkeit halber aufgeführt. Gehen wir einmal davon aus, dass die von uns angenommenen 70% im Beispiel exakt berechnet sind. Was würde

Mehr

Energieberatung. Beratung Konzept Planung Begleitung Förderungen Zuschüsse DIE ZUKUNFT ÖKOLOGISCH VORBILDLICH. Fragen rund um den Energieausweis

Energieberatung. Beratung Konzept Planung Begleitung Förderungen Zuschüsse DIE ZUKUNFT ÖKOLOGISCH VORBILDLICH. Fragen rund um den Energieausweis Beratung Konzept Planung Begleitung Förderungen Zuschüsse DIE ZUKUNFT ÖKOLOGISCH VORBILDLICH Fragen rund um den Energieausweis Energieausweis nach EnEV 2009 Bei Vermietung oder Veräußerung eines Gebäudes

Mehr

ENERGIEAUSWEIS für Wohngebäude

ENERGIEAUSWEIS für Wohngebäude Berechneter Energiebedarf des Gebäudes Energiebedarf Glasbläserallee 18/Fischzug 2-8/Krachtstraße, Bauteil 1 - Haus I-M 2 Endenergiebedarf 73 kwh/(m² a) CO 2 -Emissionen 1) [kg/(m² a)] 43 kwh/(m² a) Primärenergiebedarf

Mehr

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2

Institut für Leistungselektronik und Elektrische Antriebe. Übungen Regelungstechnik 2 Institut für Leistungselektronik und Elektrische Antriebe Prof. Dr.-Ing. J. Roth-Stielow Übungen Regelungstechnik 2 Inhalt der Übungen: 1. Grundlagen (Wiederholung RT1) 2. Störgrößenaufschaltung 3. Störgrößennachbildung

Mehr

Dynamische exergetische Bewertungsverfahren

Dynamische exergetische Bewertungsverfahren Dynamische exergetische Bewertungsverfahren Dr.-Ing. Joachim Seifert Professur für Heiz- und Raumlufttechnik, TU Dresden Dipl.-Ing. Alexander Hoh EBC Lehrstuhl für Gebäude- und Raumklimatechnik Zielgrößen

Mehr

Pufferspeicher sind auch in Niedrigenergiehäusern zur Effizienzsteigerung erforderlich

Pufferspeicher sind auch in Niedrigenergiehäusern zur Effizienzsteigerung erforderlich Pufferspeicher sind auch in Niedrigenergiehäusern zur Effizienzsteigerung erforderlich Dipl.-Ing.(FH) Renate ATZINGER, 2003 Alternative Energiequellen wie die Sonne oder biogene Brennstoffe sind auf Grund

Mehr

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte

50. Mathematik-Olympiade 2. Stufe (Regionalrunde) Klasse 11 13. 501322 Lösung 10 Punkte 50. Mathematik-Olympiade. Stufe (Regionalrunde) Klasse 3 Lösungen c 00 Aufgabenausschuss des Mathematik-Olympiaden e.v. www.mathematik-olympiaden.de. Alle Rechte vorbehalten. 503 Lösung 0 Punkte Es seien

Mehr

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren

Lineargleichungssysteme: Additions-/ Subtraktionsverfahren Lineargleichungssysteme: Additions-/ Subtraktionsverfahren W. Kippels 22. Februar 2014 Inhaltsverzeichnis 1 Einleitung 2 2 Lineargleichungssysteme zweiten Grades 2 3 Lineargleichungssysteme höheren als

Mehr

Plotten von Linien ( nach Jack Bresenham, 1962 )

Plotten von Linien ( nach Jack Bresenham, 1962 ) Plotten von Linien ( nach Jack Bresenham, 1962 ) Ac Eine auf dem Bildschirm darzustellende Linie sieht treppenförmig aus, weil der Computer Linien aus einzelnen (meist quadratischen) Bildpunkten, Pixels

Mehr

Lineare Gleichungssysteme

Lineare Gleichungssysteme Lineare Gleichungssysteme 1 Zwei Gleichungen mit zwei Unbekannten Es kommt häufig vor, dass man nicht mit einer Variablen alleine auskommt, um ein Problem zu lösen. Das folgende Beispiel soll dies verdeutlichen

Mehr

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel

Anhand des bereits hergeleiteten Models erstellen wir nun mit der Formel Ausarbeitung zum Proseminar Finanzmathematische Modelle und Simulationen bei Raphael Kruse und Prof. Dr. Wolf-Jürgen Beyn zum Thema Simulation des Anlagenpreismodels von Simon Uphus im WS 09/10 Zusammenfassung

Mehr

E N E R G I E A U S W E I S

E N E R G I E A U S W E I S Gültig bis: 26.02.2025 1 Gebäude Gebäudetyp Adresse Neubau eines Studentenwohnheimes Gebäudeteil Baujahr Gebäude Baujahr Anlagentechnik 1) Anzahl Wohnungen Gebäudenutzfläche (A N ) Erneuerbare Energien

Mehr

ENERGIEAUSWEIS für Wohngebäude

ENERGIEAUSWEIS für Wohngebäude Gültig bis: 27.09.2019 1 Gebäude Gebäudetyp Mehrfamilien Adresse Marktstraße 6, 91804 Mörnsheim Gebäudeteil Wohnungen Baujahr Gebäude 1700 zuletzt saniert 1992 Baujahr Anlagentechnik 1992 Anzahl Wohnungen

Mehr

10.06.2019. Technische Universität Dresden Dezernat 4 Bergstraße 69 01069 Dresden 11.06.2009. Institutsgeb. für Lehre und Forschung

10.06.2019. Technische Universität Dresden Dezernat 4 Bergstraße 69 01069 Dresden 11.06.2009. Institutsgeb. für Lehre und Forschung 1.6.219 Lieg.Nr. EA33 Geb.Nr. EA33-3522-3523 Institutsgeb. für Lehre und Forschung August-Bebel-Str. 2, 1219 Dresden TU Dresden Haus 83 und Haus 94 1973 5.54 m² Dieses Gebäude 7 5 1 15 2 >2 Vergleichswert

Mehr

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis

Unterrichtsmaterialien in digitaler und in gedruckter Form. Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Unterrichtsmaterialien in digitaler und in gedruckter Form Auszug aus: Übungsbuch für den Grundkurs mit Tipps und Lösungen: Analysis Das komplette Material finden Sie hier: Download bei School-Scout.de

Mehr

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand

Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Entladen und Aufladen eines Kondensators über einen ohmschen Widerstand Vorüberlegung In einem seriellen Stromkreis addieren sich die Teilspannungen zur Gesamtspannung Bei einer Gesamtspannung U ges, der

Mehr

Wie funktioniert ein Mieterhöhungsverlangen?

Wie funktioniert ein Mieterhöhungsverlangen? Wie funktioniert ein Mieterhöhungsverlangen? Grundsätzlich steht einem Vermieter jederzeit die Möglichkeit offen, die gegenwärtig bezahlte Miete gemäß 558 BGB an die ortsübliche Miete durch ein entsprechendes

Mehr

Kapitalerhöhung - Verbuchung

Kapitalerhöhung - Verbuchung Kapitalerhöhung - Verbuchung Beschreibung Eine Kapitalerhöhung ist eine Erhöhung des Aktienkapitals einer Aktiengesellschaft durch Emission von en Aktien. Es gibt unterschiedliche Formen von Kapitalerhöhung.

Mehr

Professionelle Seminare im Bereich MS-Office

Professionelle Seminare im Bereich MS-Office Der Name BEREICH.VERSCHIEBEN() ist etwas unglücklich gewählt. Man kann mit der Funktion Bereiche zwar verschieben, man kann Bereiche aber auch verkleinern oder vergrößern. Besser wäre es, die Funktion

Mehr

QM: Prüfen -1- KN16.08.2010

QM: Prüfen -1- KN16.08.2010 QM: Prüfen -1- KN16.08.2010 2.4 Prüfen 2.4.1 Begriffe, Definitionen Ein wesentlicher Bestandteil der Qualitätssicherung ist das Prüfen. Sie wird aber nicht wie früher nach der Fertigung durch einen Prüfer,

Mehr

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung.

Die Gleichung A x = a hat für A 0 die eindeutig bestimmte Lösung. Für A=0 und a 0 existiert keine Lösung. Lineare Gleichungen mit einer Unbekannten Die Grundform der linearen Gleichung mit einer Unbekannten x lautet A x = a Dabei sind A, a reelle Zahlen. Die Gleichung lösen heißt, alle reellen Zahlen anzugeben,

Mehr

Energie gewinnt - sparen und gewinnen

Energie gewinnt - sparen und gewinnen Gebäudemanagement der Stadt Wuppertal Energie gewinnt - sparen und gewinnen Gebäudemanagement der Stadt Wuppertal Quelle: UfU e.v. / Klimaschutz und Bildung Die Beispielrechung der Gewinnermittlung Die

Mehr

Das Wachstum der deutschen Volkswirtschaft

Das Wachstum der deutschen Volkswirtschaft Institut für Wachstumsstudien www.wachstumsstudien.de IWS-Papier Nr. 1 Das Wachstum der deutschen Volkswirtschaft der Bundesrepublik Deutschland 1950 2002.............Seite 2 Relatives Wachstum in der

Mehr

Hinweise zu den Angaben über die energetische Qualität des Gebäudes

Hinweise zu den Angaben über die energetische Qualität des Gebäudes Gültig bis: 30.04.2024 1 Gebäude Gebäudetyp Adresse Gebäudeteil Baujahr Gebäude Baujahr Anlagentechnik Anzahl Wohnungen 1929 Gebäudenutzfläche 565,20 Erneuerbare Energien Lüftung Anlass der Ausstellung

Mehr

Zeichen bei Zahlen entschlüsseln

Zeichen bei Zahlen entschlüsseln Zeichen bei Zahlen entschlüsseln In diesem Kapitel... Verwendung des Zahlenstrahls Absolut richtige Bestimmung von absoluten Werten Operationen bei Zahlen mit Vorzeichen: Addieren, Subtrahieren, Multiplizieren

Mehr

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen

Austausch- bzw. Übergangsprozesse und Gleichgewichtsverteilungen Austausch- bzw. Übergangsrozesse und Gleichgewichtsverteilungen Wir betrachten ein System mit verschiedenen Zuständen, zwischen denen ein Austausch stattfinden kann. Etwa soziale Schichten in einer Gesellschaft:

Mehr

ENERGIEAUSWEIS für Nichtwohngebäude

ENERGIEAUSWEIS für Nichtwohngebäude ENERGIEAUSWEIS für Nichtwohngebäude Gültig bis: 16.03.2018 Aushang Gebäude Hauptnutzung / Gebäudekategorie Nichtwohngebäude Sonderzone(n) Adresse Gebäudeteil Baujahr Gebäude Baujahr Wärmeerzeuger Kapellenstr.

Mehr

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten

Das große ElterngeldPlus 1x1. Alles über das ElterngeldPlus. Wer kann ElterngeldPlus beantragen? ElterngeldPlus verstehen ein paar einleitende Fakten Das große x -4 Alles über das Wer kann beantragen? Generell kann jeder beantragen! Eltern (Mütter UND Väter), die schon während ihrer Elternzeit wieder in Teilzeit arbeiten möchten. Eltern, die während

Mehr

Sonderrundschreiben. Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen

Sonderrundschreiben. Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen Sonderrundschreiben Arbeitshilfe zu den Pflichtangaben in Immobilienanzeigen bei alten Energieausweisen Sonnenstraße 11-80331 München Telefon 089 / 5404133-0 - Fax 089 / 5404133-55 info@haus-und-grund-bayern.de

Mehr

Inhaltsverzeichnis. Seite 2

Inhaltsverzeichnis. Seite 2 Inhaltsverzeichnis 1 Einleitung... 1 2 Konstruktionsbeschreibung...1 3 Berechnungsgrundlagen...2 4 Randbedingungen für die Berechnung... 4 5 Berechnungsergebnisse...4 6 Ergebnisinterpretation... 5 7 Zusammenfassung...

Mehr

Mean Time Between Failures (MTBF)

Mean Time Between Failures (MTBF) Mean Time Between Failures (MTBF) Hintergrundinformation zur MTBF Was steht hier? Die Mean Time Between Failure (MTBF) ist ein statistischer Mittelwert für den störungsfreien Betrieb eines elektronischen

Mehr

Überschlägiger hydraulischer Abgleich bestehender Fußbodenheizungskreise

Überschlägiger hydraulischer Abgleich bestehender Fußbodenheizungskreise Überschlägiger hydraulischer Abgleich bestehender Fußbodenheizungskreise Regelgenauigkeit und Effizienz werden nur durch ein hydraulisch abgeglichenes System erzielt Eine wichtige Voraussetzung für die

Mehr

Der Leverage-Effekt wirkt sich unter verschiedenen Umständen auf die Eigenkapitalrendite aus.

Der Leverage-Effekt wirkt sich unter verschiedenen Umständen auf die Eigenkapitalrendite aus. Anhang Leverage-Effekt Leverage-Effekt Bezeichnungs- Herkunft Das englische Wort Leverage heisst Hebelwirkung oder Hebelkraft. Zweck Der Leverage-Effekt wirkt sich unter verschiedenen Umständen auf die

Mehr

Berechnungsgrundlagen

Berechnungsgrundlagen Inhalt: 1. Grundlage zur Berechnung von elektrischen Heizelementen 2. Physikalische Grundlagen 3. Eigenschaften verschiedener Medien 4. Entscheidung für das Heizelement 5. Lebensdauer von verdichteten

Mehr

ENERGIEAUSWEIS für Wohngebäude

ENERGIEAUSWEIS für Wohngebäude freiwillige Aushangseite bedarfsbasierter Energieausweis Gültig bis: typ Adresse Baujahr foto (freiwillig) Baujahr Anlagentechnik 1) Anzahl Wohnungen nutzfläche (A N ) Erneuerbare Energien Lüftung Anlass

Mehr

Energiesysteme Teil: Elektrische Energieversorgungssysteme (S8804) Seite 5.1 Wirtschaftliche Aspekte

Energiesysteme Teil: Elektrische Energieversorgungssysteme (S8804) Seite 5.1 Wirtschaftliche Aspekte Energiesysteme Teil: Elektrische Energieversorgungssysteme (S8804) Seite 5.1 5. 5.1 Gestehungskosten für die elektrische Energie Der jährliche Leistungskostenanteil eines Betriebsmittels errechnet sich

Mehr

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 5: Messungen der Thermospannung nach der Kompensationsmethode

Mehr

1.1 Allgemeines. innerhalb der Nachtzeit (19:00 24:00) Gesamte Normalarbeitszeit (16:00 19:00)

1.1 Allgemeines. innerhalb der Nachtzeit (19:00 24:00) Gesamte Normalarbeitszeit (16:00 19:00) Abschnitt 1 Überstunden in der Nacht 11 1.1 Allgemeines # Die Ermittlung und Abrechnung von Überstunden unter der Woche, an Sonn- und Feiertagen wurde bereits im Band I, Abschnitt 3 behandelt. Sehen wir

Mehr

Wohnfläche nach der II.BVO

Wohnfläche nach der II.BVO Wohnfläche nach der II.BVO 1 Wohnflächenberechnung ( 42, 44 II BV) Wohnfläche Summe der anrechenbaren Grundflächen der Räume, die ausschließlich zu der Wohnung gehören. Zur Wohnfläche gehört nicht die

Mehr

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz:

kg K dp p = R LuftT 1 ln p 2a =T 2a Q 12a = ṁq 12a = 45, 68 kw = 288, 15 K 12 0,4 Q 12b =0. Technische Arbeit nach dem Ersten Hauptsatz: Übung 9 Aufgabe 5.12: Kompression von Luft Durch einen Kolbenkompressor sollen ṁ = 800 kg Druckluft von p h 2 =12bar zur Verfügung gestellt werden. Der Zustand der angesaugten Außenluft beträgt p 1 =1,

Mehr

ENERGIEAUSWEIS für Wohngebäude

ENERGIEAUSWEIS für Wohngebäude Gültig bis: 29.04.2024 1 Gebäude Gebäudetyp Adresse Gebäudeteil Baujahr Gebäude Baujahr Anlagentechnik Anzahl Wohnungen Gebäudenutzfläche (A N ) Erneuerbare Energien Lüftung Mehrfamilienhaus 1896 1896

Mehr

effektweit VertriebsKlima

effektweit VertriebsKlima effektweit VertriebsKlima Energie 2/2015 ZusammenFassend - Gas ist deutlich stärker umkämpft als Strom Rahmenbedingungen Im Wesentlichen bleiben die Erwartungen bezüglich der Rahmenbedingungen im Vergleich

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1

Korrelation. Übungsbeispiel 1. Übungsbeispiel 4. Übungsbeispiel 2. Übungsbeispiel 3. Korrel.dtp Seite 1 Korrelation Die Korrelationsanalyse zeigt Zusammenhänge auf und macht Vorhersagen möglich Was ist Korrelation? Was sagt die Korrelationszahl aus? Wie geht man vor? Korrelation ist eine eindeutige Beziehung

Mehr

Der Endenergieverbrauch für Wärme wird bestimmt aus der Summe aller Wärmeverluste des Gebäudes abzüglich der nutzbaren Anteile der Fremdwärme.

Der Endenergieverbrauch für Wärme wird bestimmt aus der Summe aller Wärmeverluste des Gebäudes abzüglich der nutzbaren Anteile der Fremdwärme. Kennwerte Wärmeverbrauch 1. Kurzinfo Der Endenergieverbrauch für Wärme wird bestimmt aus der Summe aller Wärmeverluste des Gebäudes abzüglich der nutzbaren Anteile der Fremdwärme. Zu den Wärmeverlusten

Mehr

Primzahlen und RSA-Verschlüsselung

Primzahlen und RSA-Verschlüsselung Primzahlen und RSA-Verschlüsselung Michael Fütterer und Jonathan Zachhuber 1 Einiges zu Primzahlen Ein paar Definitionen: Wir bezeichnen mit Z die Menge der positiven und negativen ganzen Zahlen, also

Mehr

4.2.5 Wie berücksichtigt man den Einsatz und die Abnutzung der Anlagen?

4.2.5 Wie berücksichtigt man den Einsatz und die Abnutzung der Anlagen? Seite 1 4.2.5 4.2.5 den Einsatz und die Bei der Erzeugung von Produkten bzw. der Erbringung von Leistungen sind in der Regel Anlagen (wie zum Beispiel Gebäude, Maschinen, Betriebs- und Geschäftsausstattung)

Mehr

Der hydraulische Abgleich der Heizung

Der hydraulische Abgleich der Heizung Der hydraulische Abgleich der Heizung - Warum und welchen Nutzen bringt das? - Wer verlangt ihn? Warum soll ich das machen? Meine Heizung wird doch warm! Oder kann da doch etwas sein? Bei unserm Sohn oben

Mehr

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik

Behörde für Bildung und Sport Abitur 2008 Lehrermaterialien zum Leistungskurs Mathematik Abitur 8 II. Insektenpopulation LA/AG In den Tropen legen die Weibchen einer in Deutschland unbekannten Insektenpopulation jedes Jahr kurz vor Beginn der Regenzeit jeweils 9 Eier und sterben bald darauf.

Mehr

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W

P = U eff I eff. I eff = = 1 kw 120 V = 1000 W Sie haben für diesen 50 Minuten Zeit. Die zu vergebenen Punkte sind an den Aufgaben angemerkt. Die Gesamtzahl beträgt 20 P + 1 Formpunkt. Bei einer Rechnung wird auf die korrekte Verwendung der Einheiten

Mehr

ENERGIEAUSWEIS für Wohngebäude

ENERGIEAUSWEIS für Wohngebäude Gültig bis: 3.0.08 Gebäude Gebäudetyp Zweifamilienhaus Adresse Muster, 45000 Muster Gebäudeteil Haus Baujahr Gebäude 94 Gebäudefoto (freiwillig) Baujahr Anlagentechnik 980 Anzahl Wohnungen Gebäudenutzfläche

Mehr

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775,

V 2 B, C, D Drinks. Möglicher Lösungsweg a) Gleichungssystem: 300x + 400 y = 520 300x + 500y = 597,5 2x3 Matrix: Energydrink 0,7 Mineralwasser 0,775, Aufgabenpool für angewandte Mathematik / 1. Jahrgang V B, C, D Drinks Ein gastronomischer Betrieb kauft 300 Dosen Energydrinks (0,3 l) und 400 Liter Flaschen Mineralwasser und zahlt dafür 50, Euro. Einen

Mehr

Passnummer Nr. Aussteller Erstellt am Gültig bis P.20080101.1234.43.1.1 IP/10545 01.01.2008 31.12.2017

Passnummer Nr. Aussteller Erstellt am Gültig bis P.20080101.1234.43.1.1 IP/10545 01.01.2008 31.12.2017 Energieeffizienzklasse geringer Energiebedarf Wärmeschutzklasse Niedrigenergiehaus Energieeffizienzklasse Die Einstufung in die Energieeffizienzklasse erfolgt nach dem sogenannten Primärenergiebedarf.

Mehr

1 Mathematische Grundlagen

1 Mathematische Grundlagen Mathematische Grundlagen - 1-1 Mathematische Grundlagen Der Begriff der Menge ist einer der grundlegenden Begriffe in der Mathematik. Mengen dienen dazu, Dinge oder Objekte zu einer Einheit zusammenzufassen.

Mehr

Handbuch B54.AT OIB RL 2007. Ing. Günter Grüner GmbH Ing. Günter Grüner

Handbuch B54.AT OIB RL 2007. Ing. Günter Grüner GmbH Ing. Günter Grüner Handbuch B54.AT OIB RL 2007 Ing. Günter Grüner GmbH Ing. Günter Grüner Stand: Juni 2009 Inhalt A) USER GUIDE... 3 1.1. Programmstart... 3 1.2. Anmeldung:... 3 1.3. Allgemeine Daten:... 8 1.4. Erfassung

Mehr

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland

OECD Programme for International Student Assessment PISA 2000. Lösungen der Beispielaufgaben aus dem Mathematiktest. Deutschland OECD Programme for International Student Assessment Deutschland PISA 2000 Lösungen der Beispielaufgaben aus dem Mathematiktest Beispielaufgaben PISA-Hauptstudie 2000 Seite 3 UNIT ÄPFEL Beispielaufgaben

Mehr

EN ERG 1 EAUSWEISfürWohngebäude

EN ERG 1 EAUSWEISfürWohngebäude trag.plan.ing ~ ~-ü~~g~~ei~s_c_haft 0-I EN ERG EAUSWEISfürWohngebäude gemäß den 6 ff. Energieeinsparverordnung (EnEV) Gültig bis: 29.04.2024 Gebäude Gebäudetyp Adresse Wohnhaus Adickesallee 63-65 60322

Mehr

LEITFADEN ZUR SCHÄTZUNG DER BEITRAGSNACHWEISE

LEITFADEN ZUR SCHÄTZUNG DER BEITRAGSNACHWEISE STOTAX GEHALT UND LOHN Stollfuß Medien LEITFADEN ZUR SCHÄTZUNG DER BEITRAGSNACHWEISE Stand 09.12.2009 Seit dem Januar 2006 hat der Gesetzgeber die Fälligkeit der SV-Beiträge vorgezogen. So kann es vorkommen,

Mehr

Kennlinienaufnahme elektronische Bauelemente

Kennlinienaufnahme elektronische Bauelemente Messtechnik-Praktikum 06.05.08 Kennlinienaufnahme elektronische Bauelemente Silvio Fuchs & Simon Stützer 1 Augabenstellung 1. a) Bauen Sie eine Schaltung zur Aufnahme einer Strom-Spannungs-Kennlinie eines

Mehr

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht

8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2 Thermodynamische Gleichgewichte, insbesondere Gleichgewichte in Mehrkomponentensystemen Mechanisches und thermisches Gleichgewicht 8.2-1 Stoffliches Gleichgewicht Beispiel Stickstoff Sauerstoff: Desweiteren

Mehr

«Eine Person ist funktional gesund, wenn sie möglichst kompetent mit einem möglichst gesunden Körper an möglichst normalisierten Lebensbereichen

«Eine Person ist funktional gesund, wenn sie möglichst kompetent mit einem möglichst gesunden Körper an möglichst normalisierten Lebensbereichen 18 «Eine Person ist funktional gesund, wenn sie möglichst kompetent mit einem möglichst gesunden Körper an möglichst normalisierten Lebensbereichen teilnimmt und teilhat.» 3Das Konzept der Funktionalen

Mehr

ENERGIEAUSWEIS für Wohngebäude

ENERGIEAUSWEIS für Wohngebäude Gültig bis: 07.04.2024 Gebäude Gebäudetyp Adresse Mehrfamilienhaus Gebäudeteil - Baujahr Gebäude 1980 Baujahr Anlagentechnik ¹) 2001 Anzahl Wohnungen 47 Gebäudenutzfläche (A ) N 3677 m² Erneuerbare Energien

Mehr

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über

Güte von Tests. die Wahrscheinlichkeit für den Fehler 2. Art bei der Testentscheidung, nämlich. falsch ist. Darauf haben wir bereits im Kapitel über Güte von s Grundlegendes zum Konzept der Güte Ableitung der Gütefunktion des Gauss im Einstichprobenproblem Grafische Darstellung der Gütefunktionen des Gauss im Einstichprobenproblem Ableitung der Gütefunktion

Mehr

Info zum Zusammenhang von Auflösung und Genauigkeit

Info zum Zusammenhang von Auflösung und Genauigkeit Da es oft Nachfragen und Verständnisprobleme mit den oben genannten Begriffen gibt, möchten wir hier versuchen etwas Licht ins Dunkel zu bringen. Nehmen wir mal an, Sie haben ein Stück Wasserrohr mit der

Mehr

Änderung des IFRS 2 Anteilsbasierte Vergütung

Änderung des IFRS 2 Anteilsbasierte Vergütung Änderung IFRS 2 Änderung des IFRS 2 Anteilsbasierte Vergütung Anwendungsbereich Paragraph 2 wird geändert, Paragraph 3 gestrichen und Paragraph 3A angefügt. 2 Dieser IFRS ist bei der Bilanzierung aller

Mehr

ENERGIEAUSWEIS für Wohngebäude gemäß den 16 ff. Energieeinsparverordnung (EnEV)

ENERGIEAUSWEIS für Wohngebäude gemäß den 16 ff. Energieeinsparverordnung (EnEV) Gültig bis: 29.04.2024 1 Gebäude Gebäudetyp Adresse Gebäudeteil Baujahr Gebäude Baujahr Anlagentechnik Anzahl Wohnungen Gebäudenutzfläche (A N ) freistehendes Einfamilienhaus 1959 1998 1 162,0 m² Erneuerbare

Mehr

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage:

1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Zählen und Zahlbereiche Übungsblatt 1 1. Man schreibe die folgenden Aussagen jeweils in einen normalen Satz um. Zum Beispiel kann man die Aussage: Für alle m, n N gilt m + n = n + m. in den Satz umschreiben:

Mehr

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt

Rekursionen. Georg Anegg 25. November 2009. Methoden und Techniken an Beispielen erklärt Methoden und Techniken an Beispielen erklärt Georg Anegg 5. November 009 Beispiel. Die Folge {a n } sei wie folgt definiert (a, d, q R, q ): a 0 a, a n+ a n q + d (n 0) Man bestimme eine explizite Darstellung

Mehr

ENERGIEAUSWEIS für Wohngebäude

ENERGIEAUSWEIS für Wohngebäude Gültig bis: 21.02.2024 1 Gebäude Gebäudetyp Adresse Gebäudeteil Baujahr Gebäude Baujahr Anlagentechnik 1) Anzahl Wohnungen Gebäudenutzfläche (A N ) Erneuerbare Energien Reihenhaus Matthias-Erzberger-Str.

Mehr

Energie sparen als Mieter

Energie sparen als Mieter Energie sparen als Mieter Allein in den letzten zehn Jahren haben sich die Energiekosten verdoppelt. Längst sind die Heizkosten zur zweiten Miete geworden. Mieter haben meist keine Möglichkeit, die Kosten

Mehr

Häufig wiederkehrende Fragen zur mündlichen Ergänzungsprüfung im Einzelnen:

Häufig wiederkehrende Fragen zur mündlichen Ergänzungsprüfung im Einzelnen: Mündliche Ergänzungsprüfung bei gewerblich-technischen und kaufmännischen Ausbildungsordnungen bis zum 31.12.2006 und für alle Ausbildungsordnungen ab 01.01.2007 Am 13. Dezember 2006 verabschiedete der

Mehr

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie

Protokoll des Versuches 7: Umwandlung von elektrischer Energie in Wärmeenergie Name: Matrikelnummer: Bachelor Biowissenschaften E-Mail: Physikalisches Anfängerpraktikum II Dozenten: Assistenten: Protokoll des Versuches 7: Umwandlung von elektrischer Energie in ärmeenergie Verantwortlicher

Mehr

Dreidimensionale Wärmebrückenberechnung für das Edelstahlanschlusselement FFS 340 HB

Dreidimensionale Wärmebrückenberechnung für das Edelstahlanschlusselement FFS 340 HB für das Edelstahlanschlusselement FFS 340 HB Darmstadt 12.03.07 Autor: Tanja Schulz Inhalt 1 Aufgabenstellung 1 2 Balkonbefestigung FFS 340 HB 1 3 Vereinfachungen und Randbedingungen 3 4 χ - Wert Berechnung

Mehr

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen

11.3 Komplexe Potenzreihen und weitere komplexe Funktionen .3 Komplexe Potenzreihen und weitere komplexe Funktionen Definition.) komplexe Folgen: z n = x n + j. y n mit zwei reellen Folgen x n und y n.) Konvergenz: Eine komplexe Folge z n = x n + j. y n heißt

Mehr

E N E R G I E A U S W E I S gemäß den 16 ff. Energieeinsparverordnung (EnEV)

E N E R G I E A U S W E I S gemäß den 16 ff. Energieeinsparverordnung (EnEV) Gültig bis: 10.2.2017 1 Gebäude Gebäudetyp Adresse Mehrfamilienhaus Parkstraße 1, 10000 Berlin Gebäudeteil Baujahr Gebäude Baujahr Anlagentechnik Anzahl Wohnungen Gebäudenutzfläche (A N ) 1956 1993 13

Mehr

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum

Praktikum Nr. 3. Fachhochschule Bielefeld Fachbereich Elektrotechnik. Versuchsbericht für das elektronische Praktikum Fachhochschule Bielefeld Fachbereich Elektrotechnik Versuchsbericht für das elektronische Praktikum Praktikum Nr. 3 Manuel Schwarz Matrikelnr.: 207XXX Pascal Hahulla Matrikelnr.: 207XXX Thema: Transistorschaltungen

Mehr

ENERGIEAUSWEIS für Wohngebäude

ENERGIEAUSWEIS für Wohngebäude Gültig bis: 10.02.2021 1 Gebäude Gebäudetyp Mehrfamilienhaus, Gebäudeteil Baujahr Gebäude 1966 / 1994 Baujahr Anlagentechnik 1994 Anzahl Wohnungen 3 Gebäudenutzfläche (A N ) 355,2 m² Erneuerbare Energien

Mehr

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung

Mathematik. UND/ODER Verknüpfung. Ungleichungen. Betrag. Intervall. Umgebung Mathematik UND/ODER Verknüpfung Ungleichungen Betrag Intervall Umgebung Stefan Gärtner 004 Gr Mathematik UND/ODER Seite UND Verknüpfung Kommentar Aussage Symbolform Die Aussagen Hans kann schwimmen p und

Mehr

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN

ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN ERGÄNZUNGEN ZUR ANALYSIS II MITTELWERTSATZ UND ANWENDUNGEN CHRISTIAN HARTFELDT. Zweiter Mittelwertsatz Der Mittelwertsatz Satz VI.3.4) lässt sich verallgemeinern zu Satz.. Seien f, g : [a, b] R auf [a,

Mehr

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen

Gleichungen Lösen. Ein graphischer Blick auf Gleichungen Gleichungen Lösen Was bedeutet es, eine Gleichung zu lösen? Was ist überhaupt eine Gleichung? Eine Gleichung ist, grundsätzlich eine Aussage über zwei mathematische Terme, dass sie gleich sind. Ein Term

Mehr

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011

Praktikum Physik. Protokoll zum Versuch: Geometrische Optik. Durchgeführt am 24.11.2011 Praktikum Physik Protokoll zum Versuch: Geometrische Optik Durchgeführt am 24.11.2011 Gruppe X Name1 und Name 2 (abc.xyz@uni-ulm.de) (abc.xyz@uni-ulm.de) Betreuerin: Wir bestätigen hiermit, dass wir das

Mehr

Hausaufgabe: Der Energieeffizienz auf der Spur

Hausaufgabe: Der Energieeffizienz auf der Spur Bevor du startest, lass bitte die folgenden Zeilen deine Eltern lesen und unterschreiben: Ihre Tochter/ Ihr Sohn hat heute ein Energiemessgerät für Energiemessungen zu Hause erhalten. Achten Sie bitte

Mehr

Guide DynDNS und Portforwarding

Guide DynDNS und Portforwarding Guide DynDNS und Portforwarding Allgemein Um Geräte im lokalen Netzwerk von überall aus über das Internet erreichen zu können, kommt man um die Themen Dynamik DNS (kurz DynDNS) und Portweiterleitung(auch

Mehr

Peltier-Element kurz erklärt

Peltier-Element kurz erklärt Peltier-Element kurz erklärt Inhaltsverzeichnis 1 Peltier-Kühltechnk...3 2 Anwendungen...3 3 Was ist ein Peltier-Element...3 4 Peltier-Effekt...3 5 Prinzipieller Aufbau...4 6 Wärmeflüsse...4 6.1 Wärmebilanz...4

Mehr

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR)

Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Abituraufgabe zur Stochastik, Hessen 2009, Grundkurs (TR) Eine Firma stellt USB-Sticks her. Sie werden in der Fabrik ungeprüft in Packungen zu je 20 Stück verpackt und an Händler ausgeliefert. 1 Ein Händler

Mehr

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren:

4. AUSSAGENLOGIK: SYNTAX. Der Unterschied zwischen Objektsprache und Metasprache lässt sich folgendermaßen charakterisieren: 4. AUSSAGENLOGIK: SYNTAX 4.1 Objektsprache und Metasprache 4.2 Gebrauch und Erwähnung 4.3 Metavariablen: Verallgemeinerndes Sprechen über Ausdrücke von AL 4.4 Die Sprache der Aussagenlogik 4.5 Terminologie

Mehr

Bewertung des Blattes

Bewertung des Blattes Bewertung des Blattes Es besteht immer die Schwierigkeit, sein Blatt richtig einzuschätzen. Im folgenden werden einige Anhaltspunkte gegeben. Man unterscheidet: Figurenpunkte Verteilungspunkte Längenpunkte

Mehr

Passnummer Nr. Aussteller Erstellt am Gültig bis P.20100818.8399.2.1.1 AP/1559 18.08.2010 17.08.2020

Passnummer Nr. Aussteller Erstellt am Gültig bis P.20100818.8399.2.1.1 AP/1559 18.08.2010 17.08.2020 geringer Energiebedarf Energiesparhaus hoher Energiebedarf Die Einstufung in die erfolgt nach dem sogenannten Primärenergiebedarf. Dieser berücksichtigt neben dem Wärmeschutz des Gebäudes auch die verwendete

Mehr

Fachgerechte Planung aus Ausführung von konventioneller und regenerativer Haustechnik

Fachgerechte Planung aus Ausführung von konventioneller und regenerativer Haustechnik FORUM VERLAG HERKERT GMBH Mandichostraße 18 86504 Merching Telefon: 08233/381-123 E-Mail: service@forum-verlag.com www.forum-verlag.com Fachgerechte Planung aus Ausführung von konventioneller und regenerativer

Mehr

Auswertung des Fragebogens zum CO2-Fußabdruck

Auswertung des Fragebogens zum CO2-Fußabdruck Auswertung des Fragebogens zum CO2-Fußabdruck Um Ähnlichkeiten und Unterschiede im CO2-Verbrauch zwischen unseren Ländern zu untersuchen, haben wir eine Online-Umfrage zum CO2- Fußabdruck durchgeführt.

Mehr

Die Online-Meetings bei den Anonymen Alkoholikern. zum Thema. Online - Meetings. Eine neue Form der Selbsthilfe?

Die Online-Meetings bei den Anonymen Alkoholikern. zum Thema. Online - Meetings. Eine neue Form der Selbsthilfe? Die Online-Meetings bei den Anonymen Alkoholikern zum Thema Online - Meetings Eine neue Form der Selbsthilfe? Informationsverhalten von jungen Menschen (Quelle: FAZ.NET vom 2.7.2010). Erfahrungen können

Mehr

Grundlagen der Informatik

Grundlagen der Informatik Mag. Christian Gürtler Programmierung Grundlagen der Informatik 2011 Inhaltsverzeichnis I. Allgemeines 3 1. Zahlensysteme 4 1.1. ganze Zahlen...................................... 4 1.1.1. Umrechnungen.................................

Mehr

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch

Thermodynamik I. Sommersemester 2012 Kapitel 4, Teil 2. Prof. Dr.-Ing. Heinz Pitsch Thermodynamik I Sommersemester 2012 Kapitel 4, Teil 2 Prof. Dr.-Ing. Heinz Pitsch Kapitel 4, Teil 2: Übersicht 4 Zweiter Hauptsatz der Thermodynamik 4.5 Entropiebilanz 4.5.1 Allgemeine Entropiebilanz 4.5.2

Mehr

Dipl.-Ing. Herbert Schmolke, VdS Schadenverhütung

Dipl.-Ing. Herbert Schmolke, VdS Schadenverhütung 1. Problembeschreibung a) Ein Elektromonteur versetzt in einer überwachungsbedürftigen Anlage eine Leuchte von A nach B. b) Ein Elektromonteur verlegt eine zusätzliche Steckdose in einer überwachungsbedürftigen

Mehr

ENERGIEAUSWEIS für Wohngebäude

ENERGIEAUSWEIS für Wohngebäude Gültig bis: 29.07.2018 1 Gebäude Gebäudetyp Adresse Heim/Herberge C Dr.- Gessler- Str.: 1-7, 93051 Regensburg Gebäudeteil Baujahr Gebäude 1977 Gebäudefoto (freiwillig) Baujahr Anlagentechnik 1996 Anzahl

Mehr