Kommunikationstechnik II Wintersemester 08/09

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Kommunikationstechnik II Wintersemester 08/09"

Transkript

1 Kommunikationstechnik II Wintersemester 8/9 Prof. Dr. Stefan Weinzierl Musterlösung: 8. Aufgabenblatt Lösung in der Rechenübung am Aufgabe: Fehlererkennung/-korrektur Audio Symbole mit einer Länge von 8 bit werden mit einem Paritätsbit zur Fehlererkennung kodiert. a) Wird bei einer Paritätsprüfung das empfangene Kodewort 1111 als fehlerfrei klassifiziert? Je nach Paritäts-Typ würde dieses Wort als gültig oder ungültig erkannt werden. Bei der häufiger anzutreffenden even parity wird das angefügte Prüfbit so gewählt, dass die Anzahl der Einsen im Gesamtwort (9-bit) gerade ist. Für diesen Fall wäre unser Kodewort gültig, auch wenn wir damit die (geringe) Restfehlerwahrscheinlichkeit, dass genau, 4, 6 oder gar 8 Bit fehlerhaft sind, außer Acht lassen. Bei odd parity würde das Kodewort als fehlerhaft erkannt werden. JA für even parity NEIN für odd parity Ein Nachteil einfacher Paritätskodes ist, dass nur eine ungeradzahlige Anzahl von fehlerhaften Bits erkannt wird. Zudem können diese nicht korrigiert werden, da durch den Paritätscheck nur erkannt wird, dass ein Fehler existiert, nicht aber wo er sich befindet. b) Wie groß ist die Wahrscheinlichkeit einer falschen Klassifizierung, wenn in dem so kodierten Kanal Bitfehler (random bit errors) mit einer Bit Error Rate (BER) von 1-3 auftreten? Die Wahrscheinlichkeit einer falschen Klassifizierung, d.h. der fälschlichen Akzeptanz eines fehlerhaften Kodewortes durch die Paritätsprüfung kann man mithilfe der Bernoulllischen Formel zur Binominalverteilung berechnen. p k = n ' p k ( (1) p) n)k k mit ' n n! = k k!( n! k)! Sie gibt die Wahrscheinlichkeit an, dass bei einem n mal wiederholten Zufallsexperiment (n voneinander unabhängigen Einzelversuche) das Ereignis A mit der Wahrscheinlichkeit p genau k mal auftritt. Im Kontext der Bitfehlerbetrachtung ist dabei A: Auftreten eines fehlerhaften Bits n = 9 Bit bzw. 9 Versuche je Kodewort

2 k = Anzahl fehlerhafter Bits (Ereignisse) pro Kodewort (Versuchsreihe n) p= Auftretenswahrscheinlichkeit eines Bitfehlers Der Term p k beschreibt die Wahrscheinlichkeit, dass genau k Bits fehlerhaft sind (multiplikative Verknüpfung der Wahrscheinlichkeiten konjunkter Ereignisse: p tot = p(a) p(b)). Der Term (1 - p) n-k beschreibt die Wahrscheinlichkeit, dass die restlichen n-k Bits fehlerfrei sind. Die Konjunktivität (Gleichzeitigkeit) der zwei beschriebenen Zustände verlangt die multiplikative Zusammenfassung der zwei Terme. Der n Term! beschreibt die Gesamtanzahl aller verschiedenen Anordnungen von k fehlerhaften Bits in einem n-stelligen Kodewort (Fehlermuster) und muss mit den beiden k anderen Termen multipliziert werden. Um nun die Wahrscheinlichkeit für Falschklassifikation bei Paritätskanalcodierung zu bestimmen, muss man sich zuerst klarmachen, welche Fehler zur Falschakzeptanz eines Kodeworts führen: Die Paritätsprüfung erkennt dann Fehler nicht, wenn sie geradzahlig d.h. -, 4-, 6-, 8- fach usw. auftreten. Die Kodewortfehlerwahrscheinlichkeit ergibt sich nach dem Additionstheorem für disjunkte Ereignisse (p tot = p(a)+p(b)) als Summe der Einzelwahrscheinlichkeiten: p Kodewortfehler = p Fehler + p 4 Fehler + p 6Fehler + p 8Fehler Man berechnet also die Auftretenswahrscheinlichkeiten P aller Bitfehlermuster, die von der Paritätsprüfung nicht erkannt werden und summiert diese zur Gesamtfehlerwahrscheinlichkeit P Kodewort auf. p Kodewort = p k [k =,4,6,8] k p Kodewort = 9 ' 1 (3) (1(1 (3 ) ' 1 (3)4 (1(1 (3 ) ' 1 (3)6 (1(1 (3 ) ' 1 (3)8 (1(1 (3 ) 1 p Kodewort = 3, , , ,991 4 p Kodewort = 3, Quantisierung und Dither (aus Klausur WS 6/7) Gegeben sei ein A/D-Wandler mit linearer Quantisierungskennlinie und der Stufenbreite Q. Zur Festlegung der erforderlichen Wortlänge z.b. eines PCM- Sprachübertragungssystems mit dieser Quantisierung gelte für die Quantisierungsrauschleistung Q { q [ n] } 1 W Q = E = a) Wie ist unter dieser Voraussetzung die Wortbreite w zu wählen, damit für ein Sinussignal bei Vollaussteuerung ein Signal-Rauschabstand von SNR > 45 db erreicht wird?

3 Bestimmen Sie zunächst die Leistung eines vollausgesteuerten Sinussignals in Abhängigkeit von der Wortbreite w und der Stufenbreite Q, geben Sie einen Ausdruck für den resultierenden SNR an und bestimmen Sie w so, dass der geforderte SNR erreicht wird. Signalenergie: W S = A ' Stufenbreite: Q = A Q w A = w also: W S = w Q ' = w Q W S = w Q 1 8 W Q 8 Q = w 3 SNR = 1log W S W Q ' =1log w ( 3 ' = w (1log ( ) +1log 3 ' = w 6. db+1,76 db Wortbreite w für 45 db SNR: 45 db=! w 6. db+1,76 db w min = 45 db1,76 db 6. db = bit b) Welcher Signal-Rauschabstand ergibt sich für w = 5? SNR 5bit = 5 6. db+1,76 db = 31.9 db c) Welche Bedingung muss erfüllt sein, damit sich ein Quantisierungsfehler als Rauschsignal (wie in a)) modellieren lässt? Die Amplitudendichteverteilung des Quantisierungsrauschens wird als rechteckförmig (gleichverteilt) vorausgesetzt. Dies kann bei hoch ausgesteuerten, mit ausreichender Wortbreite quantisierten Signalen angenommen werden. d) Was ist ein Dither-Signal? Wie wirkt es sich auf das Leistungsdichtespektrum (LDS) des Quantisierungsfehlers aus? Dither ist Rauschen, das vor dem Quantisieren oder Requantisieren additiv zum Eingangssignal zugefügt wird. Dies führt zu einer Linearisierung der Quantisierungskennlinie. Die Rauschmodulation kann durch eine geeignete ADV des Dithers unterdrückt werden. Die Korrelation zwischen Eingangssignal und Quantisierungsfehler wird aufgehoben, dadurch wird das LDS des Quantisierungsfehlers weiß bzw. die ADV wird rechteckförmig e) Gegeben sei ein Dither-Signal mit folgender Amplitudendichteverteilung (ADV)

4 Skalieren Sie die Verteilungsdichte (y-achse) so, dass die Normierung für die ADV erfüllt ist. p Q! ( q) dq = 1 Die Fläche eines Dreiecks berechnet sich wie folgt: A = b h Hier ist A=1, b=4q, demnach ist h = A b = 4Q = 1 1 f) Berechnen Sie die Leistung des Dithersignals als Varianz der Rauschamplitude q. Geben sie hierfür einen abschnittsweisen Verlauf von p Q (q) an und berechnen E q Sie den quadratischen Mittelwert { } Mit y = mx + b ist hier b = 1 m = y x = 1 1 = 1 4Q (Steigung) (Schnittpunkt mit der y-achse) und Also ist: p Q (q) = ± 1 4Q q + 1 Es gilt: E q also: E q = 1 ) ( { } = q p Q (q)dq 1 = q 4Q q + 1 ' ) dq + q 1 ( 4Q q + 1 ' ) dq ( { } = q p Q (q)dq q 3 + q ' dq + ) ( q3 + q ' dq' = 1 * q 4 8Q + q 3-, / + 3. = Q Q4 8 3 Q3 ( + 16 ' 8Q Q Q3 (( = + 8 '' 3 Q = 3 ( * + ( q4 8Q + q 3-, / + 3. g) Bestimmen Sie den Signal-Rauschabstand zu einem vollausgesteuerten Sinussignal in Anwesenheit des Dither-Signals. '

5 Die Gesamtfehlerleistung ergibt sich durch Addition der Quantisierungsfehler- und der Ditherleistung. Bei gleichverteiltem Quantisierungsfehler (siehe Aufgabe a)) ist dies also: W F = W Q + W D = Q = 9Q 1 = 3Q 4 SNR = 1log W S W F ' =1log w ( 1 6 = w 6, db 7,78 db W S = w Q W F 8 ' = w ( 6, db+1log 1 6 ' 4 3Q = w 1 6 h) Welchen Vorzug hat dreieckverteilter Dither wie in e) gegenüber rechteckverteiltem Dither? Die Rauschmodulation wird ideal unterdrückt.

Prof. Dr. Stefan Weinzierl Audiosymbole mit einer Länge von 8 bit werden mit einem Paritätsbit zur Fehlererkennung kodiert.

Prof. Dr. Stefan Weinzierl Audiosymbole mit einer Länge von 8 bit werden mit einem Paritätsbit zur Fehlererkennung kodiert. Audiotechnik II Digitale Audiotechnik: 8. Tutorium Prof. Dr. Stefan Weinzierl 9.2.23 Musterlösung: 9. Dezember 23, 8:34 Fehlerkorrektur II Audiosymbole mit einer Länge von 8 bit werden mit einem Paritätsbit

Mehr

Kommunikationstechnik II Wintersemester 07/08

Kommunikationstechnik II Wintersemester 07/08 Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 5. Aufgabenblatt 1. Aufgabe: Kanalkodierung Zweck der Kanalcodierung: - Abbildung der information bits des Quellkodes

Mehr

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise

Prof. Dr. Stefan Weinzierl SNR V = P signal P noise Audiotechnik II Digitale Audiotechnik: 5. Tutorium Prof. Dr. Stefan Weinzierl 0.11.01 Musterlösung: 1. November 01, 15:50 1 Dither a) Leiten sie den SNR eines idealen, linearen -bit Wandlers her. Nehmen

Mehr

Musterlösung: 23. Oktober 2014, 16:42

Musterlösung: 23. Oktober 2014, 16:42 Audiotechnik II Digitale Audiotechnik:. Übung Prof. Dr. Stefan Weinzierl 3..4 Musterlösung: 3. Oktober 4, 6:4 Amplitudenstatistik analoger Signale a) Ein Signal (t) hat die durch die Abbildung gegebene

Mehr

1 Amplitudenstatistik analoger Signale

1 Amplitudenstatistik analoger Signale Audiotechnik II Digitale Audiotechnik:. Tutorium Prof. Dr. Stefan Weinzierl 3..2 Musterlösung: 28. Oktober 23, 22:25 Amplitudenstatistik analoger Signale a) Ein Signal x(t) hat die durch Abb. gegebene

Mehr

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main

9. Vorlesung. Systemtheorie für Informatiker. Dr. Christoph Grimm. Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main 9. Vorlesung Systemtheorie für Informatiker Dr. Christoph Grimm Professur Prof. Dr. K. Waldschmidt, Univ. Frankfurt/Main Letzte Woche: Abtastung und Rekonstruktion Abtastung: Wandelt bandbegrenzte kontinuierliche

Mehr

Einführung in die Nachrichtenübertragung

Einführung in die Nachrichtenübertragung Klausur Einführung in die Nachrichtenübertragung Vorlesung und Rechenübung - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:................................... Matr.Nr:..........................

Mehr

Musterlösung: 11. Dezember 2014, 10:43. Informationstheorie und Entropiekodierung

Musterlösung: 11. Dezember 2014, 10:43. Informationstheorie und Entropiekodierung Audiotechnik II Digitale Audiotechnik: 8. Übung Prof. Dr. Stefan Weinzierl 11.12.2014 Musterlösung: 11. Dezember 2014, 10:43 Informationstheorie und Entropiekodierung Bei der Entropiekodierung werden die

Mehr

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir?

Rechnernetze Übung 5. Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai Wo sind wir? Rechnernetze Übung 5 Frank Weinhold Professur VSR Fakultät für Informatik TU Chemnitz Mai 2012 Wo sind wir? Quelle Nachricht Senke Sender Signal Übertragungsmedium Empfänger Quelle Nachricht Senke Primäres

Mehr

Grundlagen der Statistischen Nachrichtentheorie

Grundlagen der Statistischen Nachrichtentheorie Grundlagen der Statistischen Nachrichtentheorie - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der

Mehr

Klausur Informationstheorie und Codierung

Klausur Informationstheorie und Codierung Klausur Informationstheorie und Codierung WS 2013/2014 23.01.2014 Name: Vorname: Matr.Nr: Ich fühle mich gesundheitlich in der Lage, die Klausur zu schreiben Unterschrift: Aufgabe A1 A2 A3 Summe Max. Punkte

Mehr

Error detection and correction

Error detection and correction Referat Error detection and correction im Proseminar Computer Science Unplugged Dozent Prof. M. Hofmann Referent Pinto Raul, 48005464 Datum 19.11.2004 Error detection and correction 1. Fehlererkennung

Mehr

Übung zu Drahtlose Kommunikation. 1. Übung

Übung zu Drahtlose Kommunikation. 1. Übung Übung zu Drahtlose Kommunikation 1. Übung 22.10.2012 Termine Übungen wöchentlich, Montags 15 Uhr (s.t.), Raum B 016 Jede Woche 1 Übungsblatt http://userpages.uni-koblenz.de/~vnuml/drako/uebung/ Bearbeitung

Mehr

Population und Stichprobe: Wahrscheinlichkeitstheorie

Population und Stichprobe: Wahrscheinlichkeitstheorie Population und Stichprobe: Wahrscheinlichkeitstheorie SS 2001 4. Sitzung vom 15.05.2001 Wahrscheinlichkeitstheorie in den Sozialwissenschaften: Stichprobenziehung: Aussagen über Stichprobenzusammensetzung

Mehr

Grundlagen der Statistischen Nachrichtentheorie

Grundlagen der Statistischen Nachrichtentheorie - Prof. Dr.-Ing. Thomas Sikora - Name:............................ Vorname:......................... Matr.Nr:........................... Ich bin mit der Veröffentlichung des Klausurergebnisses unter meiner

Mehr

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen

Übungen zur Vorlesung Grundlagen der Rechnernetze. Zusätzliche Übungen Übungen zur Vorlesung Grundlagen der Rechnernetze Zusätzliche Übungen Hamming-Abstand d Der Hamming-Abstand d zwischen zwei Codewörtern c1 und c2 ist die Anzahl der Bits, in denen sich die beiden Codewörter

Mehr

3. Grundbegriffe der Wahrscheinlichkeitstheorie

3. Grundbegriffe der Wahrscheinlichkeitstheorie 03. JULI 2006: BLATT 17 3. Grundbegriffe der Wahrscheinlichkeitstheorie (v.a. nach Manning/Schütze: 40ff und Fahrmeir /Künstler/Pigeot/Tutz: 171ff) Übersicht Um entscheiden zu können, ob eine statistische

Mehr

(Prüfungs-)Aufgaben zur Codierungstheorie

(Prüfungs-)Aufgaben zur Codierungstheorie (Prüfungs-)Aufgaben zur Codierungstheorie 1) Gegeben sei die folgende CCITT2-Codierung der Dezimalziffern: Dezimal CCITT2 0 0 1 1 0 1 1 1 1 1 0 1 2 1 1 0 0 1 3 1 0 0 0 0 4 0 1 0 1 0 5 0 0 0 0 1 6 1 0 1

Mehr

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals

1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines Sinussignals Audiotechnik II Digitale Audiotechnik: 2. utorium Prof. Dr. Stefan Weinzierl 5. November 213 Musterlösung: 5. November 213, 18:25 1 Autokorrelation, Leistung und Wahrscheinlichkeitsdichtefunktion eines

Mehr

Aufgabe 1 - Pegelrechnung und LTI-Systeme

Aufgabe 1 - Pegelrechnung und LTI-Systeme KLAUSUR Nachrichtentechnik 06.08.0 Prof. Dr.-Ing. Dr. h.c. G. Fettweis Dauer: 0 min. Aufgabe 3 4 Punkte 5 0 4 50 Aufgabe - Pegelrechnung und LTI-Systeme Hinweis: Die Teilaufgaben (a), (b) und (c) können

Mehr

Kommunikationstechnik II Wintersemester 07/08

Kommunikationstechnik II Wintersemester 07/08 Kommunikationstechnik II Wintersemester 07/08 Prof. Dr. Stefan Weinzierl Musterlösung: 3. Aufgabenblatt. Aufgabe: Up-/Downsampling Die Abtastfolge x[n] wird mit dem Faktor M unter- und dem Faktor L überabgetastet.

Mehr

Grundlagen Digitaler Systeme (GDS)

Grundlagen Digitaler Systeme (GDS) Grundlagen Digitaler Systeme (GDS) Prof. Dr. Sven-Hendrik Voß Sommersemester 2015 Technische Informatik (Bachelor), Semester 1 Termin 10, Donnerstag, 18.06.2015 Seite 2 Binär-Codes Grundlagen digitaler

Mehr

Kapitel 5 Stochastische Unabhängigkeit

Kapitel 5 Stochastische Unabhängigkeit Kapitel 5 Stochastische Unabhängigkeit Vorlesung Wahrscheinlichkeitsrechnung I vom SoSe 2009 Lehrstuhl für Angewandte Mathematik 1 FAU 5.1 Das Konzept der stochastischen Unabhängigkeit. 1 Herleitung anhand

Mehr

Kapitel 5: Digitale Übertragung im Basisband

Kapitel 5: Digitale Übertragung im Basisband ZHW, NTM, 25/6, Rur 1 Kapitel 5: Digitale Übertragung im Basisband 5.2. Nichtlineare Amplitudenquantisierung 5.2.1. Einleitung...1 5.2.2. Das A-Law Kompressionsverfahren...3 5.2.3. Das A-Law Verfahren

Mehr

Prof. Dr. Stefan Weinzierl

Prof. Dr. Stefan Weinzierl Audiotechnik II 3.Übungstermin Prof. Dr. Stefan Weinzierl 4.11.2010 1. Aufgabe: Dither a. Erweitern Sie die Funktion xquant vom 2. Aufgabenblatt (28.10.2010) so, dass die Möglichkeit besteht, einen gleich-

Mehr

Theoretische Grundlagen der Informatik WS 09/10

Theoretische Grundlagen der Informatik WS 09/10 Theoretische Grundlagen der Informatik WS 09/10 - Tutorium 6 - Michael Kirsten und Kai Wallisch Sitzung 13 02.02.2010 Inhaltsverzeichnis 1 Formeln zur Berechnung Aufgabe 1 2 Hamming-Distanz Aufgabe 2 3

Mehr

Statistik für Ingenieure Vorlesung 2

Statistik für Ingenieure Vorlesung 2 Statistik für Ingenieure Vorlesung 2 Prof. Dr. Hans-Jörg Starkloff TU Bergakademie Freiberg Institut für Stochastik 24. Oktober 2016 2.4 Bedingte Wahrscheinlichkeiten Häufig ist es nützlich, Bedingungen

Mehr

Grundlagen der Nachrichtentechnik

Grundlagen der Nachrichtentechnik Universität Bremen Arbeitsbereich Nachrichtentechnik Prof. Dr.-Ing. A. Dekorsy Schriftliche Prüfung im Fach Grundlagen der Nachrichtentechnik Name: Vorname: Mat.-Nr.: BSc./Dipl.: Zeit: Ort: Umfang: 07.

Mehr

Klausur vom

Klausur vom UNIVERSITÄT KOBLENZ LANDAU INSTITUT FÜR MATHEMATIK Dr. Dominik Faas Stochastik Wintersemester 00/0 Klausur vom 09.06.0 Aufgabe (++4=9 Punkte) Bei einer Umfrage wurden n Personen befragt, an wievielen Tagen

Mehr

10 Bedingte Wahrscheinlichkeit

10 Bedingte Wahrscheinlichkeit 10 Bedingte Wahrscheinlichkeit Vor allem dann, wenn man es mit mehrstufigen Zufallsexperimenten zu tun hat, kommt dem Begriff der bedingten Wahrscheinlichkeit eine bedeutende Rolle zu. Wir klären dazu

Mehr

Auswirkungen der Quantisierung bei nichtlinearen Funktionen

Auswirkungen der Quantisierung bei nichtlinearen Funktionen Adv. Radio Sci., 4, 37 4, 6 www.adv-radio-sci.net/4/37/6/ Author(s 6. his work is licensed under a Creative Commons License. Advances in Radio Science Auswirkungen der Quantisierung bei nichtlinearen Funktionen

Mehr

Fit for Abi & Study Stochastik

Fit for Abi & Study Stochastik Fit for Abi & Study Stochastik Prof. Dr. Tilla Schade Hochschule Harz 15. und 16. April 2014 No. 1 Stochastik besteht aus: Wahrscheinlichkeitsrechnung Statistik No. 2 Gliederung Grundlagen Zufallsgrößen

Mehr

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen

Aufgabe 1. Übung Wahrscheinlichkeitsrechnung Markus Kessler Seite 1 von 8. Die Ereignisse A, B und C erfüllen die Bedingungen Ü b u n g 1 Aufgabe 1 Die Ereignisse A, B und C erfüllen die Bedingungen P(A) = 0. 7, P(B) = 0. 6, P(C) = 0. 5 P(A B) = 0. 4, P(A C) = 0. 3, P(B C) = 0. 2, P(A B C) = 0. 1 Bestimmen Sie P(A B), P(A C),

Mehr

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!)

(Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Teil 1: Fragen und Kurzaufgaben (Bitte geben Sie bei der Beantwortung von Fragen eine Begründung bzw. bei der Lösung von Kurzaufgaben eine kurze Berechnung an!) Frage 1 (6 Punkte) Es wird ein analoges

Mehr

Kommunikationstechnik II. Prof. Dr. Stefan Weinzierl

Kommunikationstechnik II. Prof. Dr. Stefan Weinzierl Kommunikationstechnik II Prof. Dr. Stefan Weinzierl Autoren: Stefan Weinzierl & Alexander Lerch Wintersemester 2008/2009 Inhaltsverzeichnis 1 Einleitung 5 2 Grundlagen 7 2.1 Abtastung..................................

Mehr

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff?

Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? 2. Übung: Wahrscheinlichkeitsrechnung Aufgabe 1 Welche Axiome sind Grundlage der axiomatischen Wahrscheinlichkeitsdefinition von Kolmogoroff? a) P ist nichtnegativ. b) P ist additiv. c) P ist multiplikativ.

Mehr

Zahlenformate. SigProc-4-Zahlenformate 1

Zahlenformate. SigProc-4-Zahlenformate 1 Zahlenformate SigProc-4-Zahlenformate 1 Einfluss der Zahlendarstellung Auf Genauigkeit und Implementierungs- Aufwand (HW-Kosten) Einfache Formate einfach in HW zu implementieren aber begrenzter Zahlenbereich

Mehr

Auswertung und Lösung

Auswertung und Lösung Dieses Quiz soll Ihnen helfen, Kapitel 4.6 und 4.7 besser zu verstehen. Auswertung und Lösung Abgaben: 59 / 265 Maximal erreichte Punktzahl: 8 Minimal erreichte Punktzahl: 0 Durchschnitt: 4.78 1 Frage

Mehr

Klausur zur Vorlesung Informationstheorie

Klausur zur Vorlesung Informationstheorie INSTITUT FÜR INFORMATIONSVERARBEITUNG UNIVERSITÄT HANNOVER Appelstraße 9A 0167 Hannover Klausur zur Vorlesung Informationstheorie Datum:.02.2006 Uhrzeit: 9:00 Uhr Zeitdauer: 2 Stunden Hilfsmittel: ausgeteilte

Mehr

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3

Grundlagen der Technischen Informatik. Hamming-Codes. Kapitel 4.3 Hamming-Codes Kapitel 4.3 Prof. Dr.-Ing. Jürgen Teich Lehrstuhl für Hardware-Software-Co-Design Inhalt Welche Eigenschaften müssen Codes haben, um Mehrfachfehler erkennen und sogar korrigieren zu können?

Mehr

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man

Primzahlen zwischen 50 und 60. Primzahlen zwischen 70 und 80. Primzahlen zwischen 10 und 20. Primzahlen zwischen 40 und 50. den Term 2*x nennt man die kleinste Primzahl zwischen 0 und 60 zwischen 0 und 10 zwischen 60 und 70 zwischen 70 und 80 zwischen 80 und 90 zwischen 90 und 100 zwischen 10 und 20 zwischen 20 und 0 zwischen 0 und 40 zwischen 40

Mehr

Einführung in die Wahrscheinlichkeitsrechnung

Einführung in die Wahrscheinlichkeitsrechnung Einführung in die Wahrscheinlichkeitsrechnung Sven Garbade Fakultät für Angewandte Psychologie SRH Hochschule Heidelberg sven.garbade@hochschule-heidelberg.de Statistik 1 S. Garbade (SRH Heidelberg) Wahrscheinlichkeitsrechnung

Mehr

Statistische Kenngrößen. Histogramm. Grundlagen zur statistischen Signalverarbeitung. Statistische Beschreibung von Audio

Statistische Kenngrößen. Histogramm. Grundlagen zur statistischen Signalverarbeitung. Statistische Beschreibung von Audio 8.3.6 Statistische Kenngrößen Grundlagen zur statistischen Signalverarbeitung Dr. Detlev Marpe Fraunhofer Institut für achrichtentechnik HHI Histogramm Wahrscheinlichkeitsdichteverteilung Mittelwert µ

Mehr

WHB11 - Mathematik. AFS II: Umgang mit Zufall und Wahrscheinlichkeiten. Thema: Summierte Binomialverteilung

WHB11 - Mathematik. AFS II: Umgang mit Zufall und Wahrscheinlichkeiten. Thema: Summierte Binomialverteilung Binomialverteilung Bisher haben wir berechnet, wie groß die Wahrscheinlichkeit dafür ist, dass bei einer Bernoulli-Kette n der Länge genau k Treffer auftreten. Die Formel dafür war: B (n;p;k) = P (X=k)

Mehr

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse

Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse Digitale Signalverarbeitung, Vorlesung 2: Quantisierung, Frequenzanalyse 31. Oktober 2016 Eigenschaften diskreter Signale Quantisierung Frequenzbereichsmethoden Anhang Wesentliches Thema heute: 1 Eigenschaften

Mehr

Grundbegrie der Codierungstheorie

Grundbegrie der Codierungstheorie Grundbegrie der Codierungstheorie Pia Lackamp 12. Juni 2017 Inhaltsverzeichnis 1 Einleitung 2 2 Hauptteil 3 2.1 Blockcodes............................ 3 2.1.1 Beispiele.......................... 3 2.2

Mehr

Grundlagen der Informatik II Übungsblatt: 5, WS 17/18 mit Lösungen

Grundlagen der Informatik II Übungsblatt: 5, WS 17/18 mit Lösungen PD. Dr. Pradyumn Shukla Marlon Braun Micaela Wünsche Dr. Friederike Pfeiffer-Bohnen Dr. Lukas König Institut für Angewandte Informatik und Formale Beschreibungsverfahren Grundlagen der Informatik II Übungsblatt:

Mehr

Bild-Erfassung Digitalisierung Abtastung/Quantisierung

Bild-Erfassung Digitalisierung Abtastung/Quantisierung Multimediatechnik / Video Bild-Erfassung Digitalisierung Abtastung/Quantisierung Oliver Lietz Bild-Erfassung Abtastung / Digitalisierung Scanner: Zeilenweise Abtastung mit CCD Digitale Kamera: Flächenweise

Mehr

1.3 Digitale Audiosignale

1.3 Digitale Audiosignale Seite 22 von 86 Abb. 1.2.12 - Wirkung der Schallverzögerung Effekte sind: Delay, Echo, Reverb, Flanger und Chorus Hört man ein akustisches Signal im Raum, dann werden die Signale von Wänden und anderen

Mehr

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 3

Einführung in die Wahrscheinlichkeitstheorie Lösungsvorschläge zu Übungsblatt 3 TUM, Zentrum Mathematik Lehrstuhl für Mathematische Physik WS 2013/14 Prof. Dr. Silke Rolles Thomas Höfelsauer Felizitas Weidner Einführung in die Wahrscheinlichkeitstheorie svorschläge zu Übungsblatt

Mehr

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240.

Grundwissen Mathematik Klasse 8. Beispiel: m= 2,50 1 = 5,00. Gleichung: y=2,50 x. Beispiel: c=1,5 160=2,5 96=3 80=6 40=240. I. Funktionen 1. Direkt proportionale Zuordnungen Grundwissen Mathematik Klasse x und y sind direkt proportional, wenn zum n fachen Wert für x der n fache Wert für y gehört, die Wertepaare quotientengleich

Mehr

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0.

und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei t=0 mit dem Zeitindex n=0. Aufgabe 1 Das periodische Signal x t) 0,5 sin(2 f t) 0,5 cos(2 f t) mit f 1000Hz und mit f 2000Hz ( 1 2 1 2 und mit t in Sekunden wird mit einer Frequenz von 8000 Hz abgetastet. Die Abtastung beginnt bei

Mehr

Praxiswerkstatt Algorithmen der Signalcodierung

Praxiswerkstatt Algorithmen der Signalcodierung Praxiswerkstatt Algorithmen der Signalcodierung 2. Termin Themen heute: Abtastung Lineare Zeitinvariante Systeme Seite 1 Abtastung letztes Mal haben wir gesehen: 3,9 khz kaum noch hörbar bei 8 khz Abtastrate.

Mehr

Tipps und Tricks für die Abschlussprüfung

Tipps und Tricks für die Abschlussprüfung Tipps und Tricks für die Abschlussprüfung Rechentipps und Lösungsstrategien mit Beispielen zu allen Prüfungsthemen Mathematik Baden-Württemberg Mathematik-Verlag Vorwort: Sehr geehrte Schülerinnen und

Mehr

11 Unabhängige Ereignisse

11 Unabhängige Ereignisse 11 Unabhängige Ereignisse In engem Zusammenhang mit dem Begriff der bedingten Wahrscheinlichkeit steht der Begriff der Unabhängigkeit von Ereignissen. Wir klären zuerst, was man unter unabhängigen Ereignissen

Mehr

Übersicht Grundwissen 8. Klasse

Übersicht Grundwissen 8. Klasse Übersicht Grundwissen 8. Klasse Direkt proportionale Größen 1. Diese Größen sind direkt proportional, wenn es bei mehreren Äpfeln keinen Preisnachlass (Rabatt) gibt. Diese beiden Größen sind voneinander

Mehr

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005

CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 CODIERUNGSTHEORIE KURS ZELL AN DER PRAM, FEBRUAR 2005 1. Das Problem 1.1. Kanalcodierung und Fehlerkorrektur. Wir wollen eine Nachricht über einen digitalen Kanal, der nur 0 oder 1 übertragen kann, schicken.

Mehr

Eingebettete Systeme

Eingebettete Systeme Institut für Informatik Lehrstuhl für Eingebettete Systeme Prof. Dr. Uwe Brinkschulte Benjamin Betting Eingebettete Systeme 1. Aufgabe (Regelsystem) 3. Übungsblatt Lösungsvorschlag a) Das Fahrzeug kann

Mehr

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1

Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Biomathematik für Mediziner, Klausur WS 1999/2000 Seite 1 Aufgabe 1: Wieviele der folgenden Variablen sind quantitativ stetig? Schulnoten, Familienstand, Religion, Steuerklasse, Alter, Reaktionszeit, Fahrzeit,

Mehr

Vergleich der Hard-Decision Decodierung mit der Soft Decision- Decodierungi (HD- mit SD-Decodierung)

Vergleich der Hard-Decision Decodierung mit der Soft Decision- Decodierungi (HD- mit SD-Decodierung) Vergleich der Hard-Decision Decodierung mit der Soft Decision- Decodierungi (HD- mit SD-Decodierung) Als Beispiel für die folgenden Überlegungen dient der (7,4,3)-Hamming- oder BCH-Code). Wegen des Mindestabstands

Mehr

Statistik I für Humanund Sozialwissenschaften

Statistik I für Humanund Sozialwissenschaften Statistik I für Humanund Sozialwissenschaften 3. Übung Lösungsvorschlag Gruppenübung G 8 a) Ein Professor möchte herausfinden, welche 5 seiner insgesamt 8 Mitarbeiter zusammen das kreativste Team darstellen.

Mehr

2D Graphik: Bildverbesserung. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005

2D Graphik: Bildverbesserung. Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005 2D Graphik: Bildverbesserung Vorlesung 2D Graphik Andreas Butz, Otmar Hilliges Freitag, 2. Dezember 2005 Themen heute Rauschen, Entropie Bildverbesserung Punktbasiert Flächenbasiert Kantenbasiert Was ist

Mehr

Kombinatorik. 1. Permutationen 2. Variationen 3. Kombinationen. ad 1) Permutationen. a) Permutationen von n verschiedenen Elementen

Kombinatorik. 1. Permutationen 2. Variationen 3. Kombinationen. ad 1) Permutationen. a) Permutationen von n verschiedenen Elementen Kombinatorik Zur Berechnung der Wahrscheinlichkeit eines zusammengesetzten Ereignisses ist oft erforderlich, zwei verschiedene Anzahlen zu berechnen: die Anzahl aller Elementarereignisse und die Anzahl

Mehr

Mecklenburg-Vorpommern Pflichtaufgaben ohne Hilfsmittel

Mecklenburg-Vorpommern Pflichtaufgaben ohne Hilfsmittel Abiturprüfung 016 Mecklenburg-Vorpommern Pflichtaufgaben ohne Hilfsmittel Zuerst nur die Prüfungsaufgaben, dann die sehr ausführlichen Musterlösungen und Hintergrundwissen zum Trainieren Datei Nr. 75160

Mehr

Digital Signal Processing

Digital Signal Processing - for Master Study by TFH Bochum - Analog Signal I OO O I I I O O O Digital Signal Seite 1 Zielsetzung der Signalverarbeitung Analyse: H(t), H(f) Modellieren y(t) {} Physikalische Größe und Prozesse Synthese

Mehr

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression

Übungsklausur zur Vorlesung Wahrscheinlichkeit und Regression Thema: Wahrscheinlichkeit. Übungsklausur Wahrscheinlichkeit und Regression Übungsklausur Wahrscheinlichkeit und Regression 1. Welche der folgenden Aussagen treffen auf ein Zufallsexperiment zu? a) Ein Zufallsexperiment ist ein empirisches Phänomen, das in stochastischen Modellen

Mehr

Mathematische und statistische Methoden II

Mathematische und statistische Methoden II Methodenlehre e e Prof. Dr. G. Meinhardt 6. Stock, Wallstr. 3 (Raum 06-206 Sprechstunde jederzeit nach Vereinbarung und nach der Vorlesung. Mathematische und statistische Methoden II Dr. Malte Persike

Mehr

Codierungstheorie Teil 1: Fehlererkennung und -behebung

Codierungstheorie Teil 1: Fehlererkennung und -behebung Codierungstheorie Teil 1: Fehlererkennung und -behebung von Manuel Sprock 1 Einleitung Eine Codierung ist eine injektive Abbildung von Wortmengen aus einem Alphabet A in über einem Alphabet B. Jedem Wort

Mehr

Wahrscheinlichkeitsverteilungen

Wahrscheinlichkeitsverteilungen Universität Bielefeld 3. Mai 2005 Wahrscheinlichkeitsrechnung Wahrscheinlichkeitsrechnung Das Ziehen einer Stichprobe ist die Realisierung eines Zufallsexperimentes. Die Wahrscheinlichkeitsrechnung betrachtet

Mehr

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen

Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Zufallsprozesse, Ereignisse und Wahrscheinlichkeiten die Grundlagen Wichtige Tatsachen und Formeln zur Vorlesung Mathematische Grundlagen für das Physikstudium 3 Franz Embacher http://homepage.univie.ac.at/franz.embacher/

Mehr

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen

Passerelle. Beschrieb der Fach-Module. von der Berufsmaturität. zu den universitären Hochschulen Passerelle von der Berufsmaturität zu den universitären Hochschulen Beschrieb der Fach-Module Fachbereich Mathematik Teilmodule Teilmodul 1: Analysis (Differential- und Integralrechnung) Teilmodul 2: Vektorgeometrie

Mehr

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC)

Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Codes (6) Fehlererkennende (EDC) bzw. fehlerkorrigierende Codes (ECC) Definitionen: Codewort:= mit zusätzlichen (redundanten) Kontrollbits versehenes Quellwort m:= Länge des Quellwortes (Anzahl der Nutzdatenbits)

Mehr

Biomathematik für Mediziner

Biomathematik für Mediziner Institut für Medizinische Biometrie, Informatik und Epidemiologie der Universität Bonn (Direktor: Prof. Dr. Max P. Baur) Biomathematik für Mediziner Klausur WS 2002/2003 Aufgabe 1: Man gehe davon aus,

Mehr

Klausur: Diskrete Strukturen I

Klausur: Diskrete Strukturen I Universität Kassel Fachbereich 10/1 13.03.2013 Klausur: Diskrete Strukturen I Name: Vorname: Matrikelnummer: Versuch: Unterschrift: Bitte fangen Sie für jede Aufgabe ein neues Blatt an. Beschreiben Sie

Mehr

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht

Themen. Sicherungsschicht. Rahmenbildung. Häufig bereitgestellte Dienste. Fehlererkennung. Stefan Szalowski Rechnernetze Sicherungsschicht Themen Sicherungsschicht Rahmenbildung Häufig bereitgestellte Dienste Fehlererkennung OSI-Modell: Data Link Layer TCP/IP-Modell: Netzwerk, Host-zu-Netz Aufgaben: Dienste für Verbindungsschicht bereitstellen

Mehr

Klausur zur Mathematik für Biologen

Klausur zur Mathematik für Biologen Mathematisches Institut der Heinrich-Heine-Universität DÜSSELDORF WS 2002/2003 12.02.2003 (1) Prof. Dr. A. Janssen / Dr. H. Weisshaupt Klausur zur Mathematik für Biologen Bitte füllen Sie das Deckblatt

Mehr

Formelsammlung. Wahrscheinlichkeit und Information

Formelsammlung. Wahrscheinlichkeit und Information Formelsammlung Wahrscheinlichkeit und Information Ein Ereignis x trete mit der Wahrscheinlichkeit p(x) auf, dann ist das Auftreten dieses Ereignisses verbunden mit der Information I( x): mit log 2 (z)

Mehr

Übung 14: Block-Codierung

Übung 14: Block-Codierung ZHW, NTM, 26/6, Rur Übung 4: Block-Codierung Aufgabe : Datenübertragung über BSC. Betrachten Sie die folgende binäre Datenübertragung über einen BSC. Encoder.97.3.3.97 Decoder Für den Fehlerschutz stehen

Mehr

Kapitel 8 Absolutstetige Verteilungen

Kapitel 8 Absolutstetige Verteilungen Kapitel 8 Absolutstetige Verteilungen Vorlesung Wahrscheinlichkeitsrechnung I vom 27. Mai 2009 Lehrstuhl für Angewandte Mathematik FAU 8. Absolutstetige Verteilungen Charakterisierung von Verteilungen

Mehr

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3

Lineare Funktionen. 1 Proportionale Funktionen 3 1.1 Definition... 3 1.2 Eigenschaften... 3. 2 Steigungsdreieck 3 Lineare Funktionen Inhaltsverzeichnis 1 Proportionale Funktionen 3 1.1 Definition............................... 3 1.2 Eigenschaften............................. 3 2 Steigungsdreieck 3 3 Lineare Funktionen

Mehr

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur

Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Technische Universität Ilmenau WS 2008/2009 Institut für Mathematik Informatik, 1.FS Dr. Thomas Böhme Aufgabe 1 : Grundlagen und Diskrete Strukturen Aufgaben zur Vorbereitung der Klausur Gegeben sind die

Mehr

7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen

7.1.2 Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen 7.. Lineare Funktionen Schnittpunkte mit den Achsen - Lösungen. Bestimme von den nachfolgenden Funktionsgleichungen zunächst die Schnittpunkte mit den Achsen; stelle sie danach im Koordinatensystem dar.

Mehr

Die Mathematik in der CD

Die Mathematik in der CD Lehrstuhl D für Mathematik RWTH Aachen Lehrstuhl D für Mathematik RWTH Aachen St.-Michael-Gymnasium Monschau 14. 09. 2006 Codes: Definition und Aufgaben Ein Code ist eine künstliche Sprache zum Speichern

Mehr

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück

STOCHASTISCHE UNABHÄNGIGKEIT. Annika Pohlmann Philipp Oel Wilhelm Dück STOCHASTISCHE UNABHÄNGIGKEIT Annika Pohlmann Philipp Oel Wilhelm Dück 1 GLIEDERUNG 1) Bedingte Wahrscheinlichkeiten 2) Unabhängigkeit für mehr als zwei Ereignisse 3) Unabhängigkeit für Zufallsvariable

Mehr

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes

Grundlagen der Technischen Informatik. Codierung und Fehlerkorrektur. Kapitel 4.2. Codewörter. Codewörter. Strukturierte Codes Codewörter Grundlagen der Technischen Informatik Codierung und Fehlerkorrektur Kapitel 4.2 Allgemein: Code ist Vorschrift für eindeutige Zuordnung (Codierung) Die Zuordnung muss nicht umkehrbar eindeutig

Mehr

Direkt und indirekt proportionale Größen

Direkt und indirekt proportionale Größen 8.1 Grundwissen Mathematik Algebra Klasse 8 Direkt und indirekt proportionale Größen Direkte Proportionalität x und y sind direkt proportional, wenn zum doppelten, dreifachen,, n-fachen Wert für x der

Mehr

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte

Einführung. Wahrscheinlichkeit. 1 Wahrscheinlichkeit: Definition und Interpretation. 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Einführung 1 Wahrscheinlichkeit: Definition und Interpretation 2 Elementare Wahrscheinlichkeitsrechnung, bedingte Wahrscheinlichkeit Axiome nach Kolmogorov Gegeben sei ein Zufallsexperiment mit Ergebnisraum

Mehr

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016

Prof. Dr. Christoph Karg Hochschule Aalen. Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik. Sommersemester 2016 Prof. Dr. Christoph Karg 5.7.2016 Hochschule Aalen Klausur zur Vorlesung Wahrscheinlichkeitstheorie und Statistik Sommersemester 2016 Name: Unterschrift: Klausurergebnis Aufgabe 1 (15 Punkte) Aufgabe 3

Mehr

Einführung in die medizinische Bildverarbeitung WS 12/13

Einführung in die medizinische Bildverarbeitung WS 12/13 Einführung in die medizinische Bildverarbeitung WS 12/13 Stephan Gimbel Kurze Wiederholung Landmarkenbasierte anhand anatomischer Punkte interaktiv algorithmisch z.b. zur Navigation im OP Markierung von

Mehr

Einführung in die Kodierungstheorie

Einführung in die Kodierungstheorie Einführung in die Kodierungstheorie Einführung Vorgehen Beispiele Definitionen (Code, Codewort, Alphabet, Länge) Hamming-Distanz Definitionen (Äquivalenz, Coderate, ) Singleton-Schranke Lineare Codes Hamming-Gewicht

Mehr

Basiswissen Daten und Zufall Seite 1 von 8 1 Zufallsexperiment Ein Zufallsexperiment ist ein Versuchsaufbau mit zufälligem Ausgang, d. h. das Ergebnis kann nicht vorhergesagt werden. 2 Ergebnis (auch Ausgang)

Mehr

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen)

Dr. Jürgen Senger INDUKTIVE STATISTIK. Wahrscheinlichkeitstheorie, Schätz- und Testverfahren. 1. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen) Dr. Jürgen Senger INDUKTIVE STATISTIK Wahrscheinlichkeitstheorie, Schätz- und Testverfahren ÜUNG. - LÖSUNGEN. Zweimaliges Ziehen aus einer Urne (ohne Zurücklegen Die Urne enthält 4 weiße und 8 rote Kugeln.

Mehr

Was sind Dezibel (db)?

Was sind Dezibel (db)? Was sind Dezibel (db)? Jürgen Stuber 2013-05-01 Jürgen Stuber () Was sind Dezibel (db)? 2013-05-01 1 / 13 Dezibel Logarithmische Skala zur Angabe von Leistung oder Intensität (Leistung pro Fläche) Jürgen

Mehr

Wahrscheinlichkeitsrechnung

Wahrscheinlichkeitsrechnung Abiturvorbereitung Wahrscheinlichkeitsrechnung S. 1 von 9 Wahrscheinlichkeitsrechnung Kombinatorik Formeln für Wahrscheinlichkeiten Bedingte Wahrscheinlichkeiten Zusammenfassung wichtiger Begriffe Übungsaufgaben

Mehr

Übungsaufgaben zur Vorlesung Quellencodierung

Übungsaufgaben zur Vorlesung Quellencodierung Übungsaufgaben zur Vorlesung Quellencodierung Aufgabe 1: Gegeben seien die Verbundwahrscheinlichkeiten zweier diskreter Zufallsvariablen x und y: P(x, y) x 1 = 1 x 2 = 2 x 3 = 3 y 1 = 1 0.1 0.1 0.1 y 2

Mehr

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011

Fehlerfortpflanzung. M. Schlup. 27. Mai 2011 Fehlerfortpflanzung M. Schlup 7. Mai 0 Wird eine nicht direkt messbare physikalische Grösse durch das Messen anderer Grössen ermittelt, so stellt sich die Frage, wie die Unsicherheitsschranke dieser nicht-messbaren

Mehr

Statistik I für Wirtschaftswissenschaftler Klausur am ,

Statistik I für Wirtschaftswissenschaftler Klausur am , 1 Statistik I für Wirtschaftswissenschaftler Klausur am.1.1, 13.45 15.45. Bitte unbedingt beachten: a) Gewertet werden alle 9 gestellten Aufgaben. b) Lösungswege sind anzugeben. Die Angabe des Endergebnisses

Mehr

Forschungsstatistik I

Forschungsstatistik I Prof. Dr. G. Meinhardt 2. Stock, Nordflügel R. 02-429 (Persike) R. 02-431 (Meinhardt) Sprechstunde jederzeit nach Vereinbarung Forschungsstatistik I Dr. Malte Persike persike@uni-mainz.de WS 2008/2009

Mehr

Technische Informatik - Eine Einführung

Technische Informatik - Eine Einführung Martin-Luther-Universität Halle-Wittenberg Fachbereich Mathematik und Informatik Lehrstuhl für Technische Informatik Prof. P. Molitor Technische Informatik - Eine Einführung Darstellung von Zeichen und

Mehr

Einführung in die Codierungstheorie

Einführung in die Codierungstheorie Einführung in die Codierungstheorie Monika König 11.12.2007 Inhaltsverzeichnis 1 Einführung und Definitionen 2 2 Fehlererkennende Codes 3 2.1 Paritycheck - Code............................... 3 2.2 Prüfziffersysteme................................

Mehr