Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 3: Induktion
|
|
- Christoph Lichtenberg
- vor 2 Jahren
- Abrufe
Transkript
1 Lehrstuhl für Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Prof. Dr.-Ing. Manfred Albach Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 3: Induktion Datum: Name: Betreuer: Lernziel: Induktivitätsberechnung Sättigungseffekte bei Ferritkernen Spannungsübersetzung beim Transformator Geräte und Werkzeuge: Funktionsgenerator mit einstellbarer Offsetspannung Oszilloskop (2-Kanal), 1 Tastkopf 1:1 (1X), 2 Tastköpfe 10:1 (10X) Lötkolben Versuchsaufbau mit Klemmvorrichtung 1 Koaxialkabel Strippe ( einadrige Leitung) für Sekundärwicklung Material: Wickelkörper mit 100 Windungen Kupferlackdraht Ferritkern, bestehend aus 2 Kernhälften U20/16/10 Abstandsfolie für Luftspalt, Dicke d 0,1 mm Zange bzw. Pinzette Lötzinn Kurzschlusswindung Widerstand 1 Ω Versuch 3 Induktion 3-1
2 1. Induktivität einer Spule Bauen Sie aus den beiden Kernhälften, der vorgegebenen Luftspule mit N 100 Windungen und einer Abstandsfolie zur Realisierung des Luftspalts eine Spule mit Ferritkern gemäß Abbildung 1 auf und schließen Sie diese wie gezeigt an den Generator und das Oszilloskop an, so dass Spulenstrom und Generatorspannung dargestellt werden können. Generator Spule Oszilloskop i CH 1 CH 2 TRIG u0 R 1Ω u1 Abbildung 1: Messschaltung für Spulenstrom und Spulenspannung V Berechnung der Induktivität Berechnen Sie mit den folgenden Daten die Induktivität L der Spule (vgl. Band I, Kap. 5.13/5.14): 7 µ 4 10 Vs Folie µ 0 π, µ µ 0 Am Ferrit µ r µ bei T 20 C 2 Kernquerschnitt A 56mm, effektive Kernlänge l Kern 68mm Bemerkung: der gesamte Luftspalt setzt sich aus 2 Luftspalten der Länge d zusammen. L 1.1 Messtechnische Bestimmung der Induktivität Verwenden Sie zur Bestimmung des Stroms den Tastkopf mit dem Teilerverhältnis 1:1 und unterdrücken Sie die Gleichspannung an beiden Kanälen. Stellen Sie die das Tastteilerverhältnis am Oszilloskop ein und führen Sie, wo nötig, einen Tastkopfabgleich durch. Am Generator sind folgende Werte einzustellen: Versuch 3 Induktion 3-2
3 Sinussignal, Frequenz f 10 khz Generatorstrom i ˆ 10mA (entspricht u ˆ1 10mV bzw. u 20mV!). Leiten Sie den Zusammenhang zwischen der Induktivität L und den am Oszilloskop gemessenen Spannungsamplituden û 1 und û 0 für die Messschaltung nach Abbildung 1 ab. Der ohmsche Widerstand der Spulenwicklung kann vernachlässigt werden. ss Für folgende Fälle soll die Induktivität durch Messung ermittelt werden: a) U-Kerne ohne Luftspalt, direkter Kontakt der beiden Kernhälften Messwerte : L b) U-Kerne mit einer Foliendicke Abstand zwischen den beiden Kernhälften Messwerte : L c) Luftspule (ohne Ferritkern messen); die Spule ist mit den beiden Anschlüssen in die Vorrichtung gesteckt und kann zum Entfernen der unteren Ferritkernhälfte herausgezogen werden. Messwerte : L Beschreiben Sie die Messergebnisse: Versuch 3 Induktion 3-3
4 2. Sättigung des Ferritkerns V Verinnerlichen Sie folgende Erklärung Hystereseschleife (vgl. Grundlagen, Band 1, Kapitel ): Die Hystereseschleife ist die grafische Darstellung der Flussdichte B als Funktion der Feldstärke H. Der Verlauf ist unter anderem material-, frequenz- und temperaturabhängig. Wird das Material zum ersten Mal magnetisiert, so ergibt sich ein Flussdichteverlauf entlang der Neukurve. Da die Materialien ihre Magnetisierung bei Abnahme der Feldstärke (Verringern des Stroms) nicht sofort verlieren, sondern eine gewisse Speicherwirkung (Remanenz) haben, entsteht eine zweite Kurve (links) die den Zusammenhang von B und H bei Abnahme von H kennzeichnet. Daraus ist zu erkennen, dass selbst wenn H gleich Null ist, immer noch eine gewisse magnetische Flussdichte B vorhanden ist. Wird H nun negativ, so wird B immer geringer, irgendwann Null und schließlich auch negativ. Die rechte Kurve beschreibt den umgekehrten Fall, also dass die Flussdichte vom negativen Maximum aus gegen Null läuft und schließlich positiv wird. Eine wichtige Erkenntnis die aus der Hystereseschleife (bei Betrachtung des Verlaufs) gewonnen werden kann, ist, dass der Zusammenhang zwischen B und H nicht linear ist. Es kann aber in einem begrenzten Bereich näherungsweise von einem linearen Zusammenhang zwischen B und H ausgegangen werden. Die abflachende Steilheit der Kurve im Bereich des oberen und unteren Maximums ist durch Sättigungseffekte des Materials begründet. Abbildung 2: Hystereseschleife 2.1 Messungen Bauen Sie die Spule wieder mit dem Ferritkern zusammen. Geben Sie die Gleichspannungsanteile auf beiden Messkanälen wieder frei. Der Messaufbau entspricht Abbildung 1 mit der Frequenz f 200Hz. Hinweis: Bei den folgenden Messungen darf der Maximalwert des Generatorstroms nicht größer als 0,9 A werden. Bestimmen Sie jetzt die maximale Amplitude des Spulenstromes, bei dem noch keine oder nur eine geringe sichtbare Verzerrung der Sinusform erkennbar ist. Versuch 3 Induktion 3-4
5 Hinweis: In der XY-Darstellung des Signals sind Verzerrungen als Abweichung von der Ellipsenform gut sichtbar! V Anmerkung zur XY-Darstellung: Eine weitere Betriebsart des Oszilloskops, neben dem Normal- oder YT-Betrieb, ist der XY- Betrieb. Im XY-Betrieb wird der Momentanwert des Spannungssignals an Kanal 2 ( u y ) als Funktion des Momentanwertes des Signals am Kanal 1 ( u x ) dargestellt. Auf dem Schirm erscheint dann das Bild des Signals u y ( u x ). Die Spannung an Kanal 1 ist auf der X-Achse, die Spannung an Kanal 2 ist auf der Y-Achse dargestellt. y u y ( t 1 ) u ( t 1 ) x u ( t 2 ) x x u y ( t 2 ) Abbildung 3: Entstehung des Bildes im XY-Betrieb Der XY-Betrieb ist besonders zur Darstellung der Relation wie Phasenverschiebung oder Korrelation zweier Signale geeignet. Bei der Darstellung zweier Sinussignale der gleichen Frequenz entsteht im XY-Betrieb eine elliptische Kurve. Beträgt die Phasenverschiebung ϕ der beiden Signale 90, dann wird die Ellipse bei zusätzlich gleicher Skalierung zu einem Kreis gemäß Abbildung 4. Die Figuren, die beim XY-Betrieb auftreten, werden als Lissajous- Figuren bezeichnet. Gibt es nun bei den gemessenen Signalen Verzerrungen, dann werden diese dadurch sichtbar, dass die Ellipse von ihrer runden Form abweicht und zunehmend Spitzen oder Ecken bekommt. ϕ 0 ϕ 45 ϕ 90 ϕ 135 Abbildung 4: Lissajous-Figuren in Abhängigkeit von der Phasenverschiebung ϕ (bei Sinussignalen gleicher Frequenz, gleicher Amplitude und gleicher Skalierung) Versuch 3 Induktion 3-5
6 a) U-Kerne ohne Luftspalt, direkter Kontakt der beiden Kernhälften î max Generatorspannungsamplitude dazu: û 0 max b) U-Kerne mit einer Foliendicke Abstand zwischen den î max beiden Kernhälften Generatorspannungsamplitude dazu: û 0 max Welche Erkenntnis lässt sich daraus ableiten? Führen Sie die folgende Messung für den Kern ohne Luftspalt durch. Stellen Sie die Generatorspannung auf u ss 4V. Einstellungen am Oszilloskop: Kanal 1 1V/DIV, Kanal 2 50mV/DIV. Schalten Sie am Generator die Funktion DC OFFSET ein und skizzieren Sie die Kurvenformen des Spulenstromes für die verschiedenen Fälle: negativer Offset kein Offset positiver Offset Begründen Sie die Messergebnisse mit Hilfe der Hysteresekurve. Versuch 3 Induktion 3-6
7 3. Transformator V Ersatzschaltbild Verinnerlichen Sie das T-Ersatzschaltbild eines Übertragers und klären Sie die Bedeutung von L, L und h s1 L s2. Wie können diese Größen durch Messungen bestimmt werden? Welche Werte von L, L und h s1 L s2 erwarten sie bei einer sekundärseitigen Wicklung. 3.1 Transformator mit kurzgeschlossener Sekundärseite Als Sekundärwicklung eines Transformators wird nun eine Kurzschlusswindung gemäß Abbildung 5 um den oberen U-Teil des Ferritkerns gelegt. Generator Transformator Oszilloskop i CH 1 CH 2 TRIG u0 R 1Ω u1 Abbildung 5: Transformator mit kurzgeschlossener Sekundärwicklung Die eingangsseitige Induktivität L p dieses sekundärseitig kurzgeschlossenen Transformators soll für die beiden unterschiedlichen Fälle a) ohne Luftspalt und b) mit Folie realisierte Luftspaltbreite gemessen werden. Der Trafo besteht aus der Primärwicklung mit 100 Windungen Kupferlackdraht und der kurzgeschlossenen Sekundärwicklung mit nur einer Windung. Triggern Sie auf die anliegende Spannung und unterdrücken Sie bei der Messung den Gleichanteil der Signale. Versuch 3 Induktion 3-7
8 Generatoreinstellungen: Schalten Sie den DC OFFSET wieder ab Sinussignal, Frequenz f 10 khz Generatorstrom i ˆ 10mA a) U-Kerne ohne Luftspalt, direkter Kontakt der beiden Kernhälften L p b) U-Kerne mit einer Foliendicke Abstand zwischen den beiden Kernhälften L p Vergleichen Sie die so gemessenen Induktivitätswerte mit den entsprechenden Messwerten für sekundärseitigen Leerlauf (Abschnitt 1.2). Wie lässt sich dieser große Unterschied zu den Messwerten aus Abschnitt 1.2 erklären? Warum hat hier der Luftspalt praktisch keinen Einfluss auf die Induktivität? Hinweis: Erklärung Sie den Effekt mit Hilfe des Trafo-Ersatzschaltbilds aus 3.1 und weiterer bisheriger Messergebnisse. Verändern Sie bei konstant gehaltener Generatorspannung die Position der Kurzschlusswindung auf dem Ferritkern und beobachten Sie den Wert des Stromes. Warum nimmt der Strom ab, wenn der Abstand zwischen Kurzschlussring und Primärwicklung vergrößert wird? Versuch 3 Induktion 3-8
9 3.2 Spannungsübersetzung beim Transformator Der 1 Ω Widerstand im Primärkreis wird jetzt durch einen Kurzschluss ersetzt. Als Sekundärwicklung des Transformators wird nun die Strippe gemäß Abbildung 6 um den oberen U- Teil des Ferritkerns gelegt, mit dem einen Ende an Masse gelötet und mit dem anderen Ende an den Tastkopf des Oszilloskops angeschlossen. Generator Transformator Oszilloskop u p CH 1 CH 2 TRIG u0 us Abbildung 6: Transformator mit leerlaufender Sekundärwicklung Mit dieser Messanordnung soll das Amplitudenverhältnis der Transformatorspannungen ü uˆ p / uˆ s bestimmt werden, und zwar für verschiedene Kombinationen von Luftspaltbreite und sekundärseitiger Windungszahl. Generatoreinstellungen: Sinussignal, Frequenz f 10 khz, Generatorspannung u ˆ0 2V Primär: 100 Windungen Kupferlackdraht, sekundär: ein oder zwei Windungen einer Strippe a) Ferritkern ohne Luftspalt, eine Windung sekundärseitig: ü b) Ferritkern mit einer Foliendicke Abstand zwischen den U-Hälften, eine Windung sekundärseitig: ü c) Ferritkern ohne Luftspalt, zwei Windungen sekundärseitig: ü d) Ferritkern mit einer Foliendicke Abstand zwischen den U-Hälften, zwei Windungen sekundärseitig: ü Versuch 3 Induktion 3-9
10 Warum weicht das gemessene Übersetzungsverhältnis ü in den Fällen b) und d) stärker von dem Verhältnis der Windungszahlen ab? Nutzen Sie wiederum das Ersatznetzwerk des Transformators zur Erklärung. Welche Phasenbeziehung herrscht zwischen primärseitiger- und sekundärseitiger Spannung? 4. Zusammenfassung Fassen Sie die wesentlichen Erkenntnisse des Versuchs stichpunktartig zusammen. Versuch 3 Induktion 3-10
Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 1: Oszilloskop und Wickelkondensator
Lehrstuhl für Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Prof. Dr.-Ing. Manfred Albach Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 1: Oszilloskop und Wickelkondensator
Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 2: Magnetfeldmessung
Lehrstuhl für Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Prof. Dr.-Ing. anfred Albach Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 2: agnetfeldmessung Datum:
Praktikum Transformatoren und Übertrager
Praktikum 4.1 - Transformatoren und Übertrager In diesem zweiten Teil des Praktikums soll die Übertragung von Leistung oder Signalen über eine galvanisch getrennte Verbindung mittels des Magnetfelds von
Grundlagenpraktikum Elektrotechnik Teil 1 Versuch 4: Reihenschwingkreis
ehrstuhl ür Elektromagnetische Felder Friedrich-Alexander-Universität Erlangen-Nürnberg Vorstand: Pro. Dr.-Ing. Manred Albach Grundlagenpraktikum Elektrotechnik Teil Versuch 4: eihenschwingkreis Datum:
Grundpraktikum der Physik. Versuch Nr. 25 TRANSFORMATOR. Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators
Grundpraktikum der Physik Versuch Nr. 25 TRANSFORMATOR Versuchsziel: Bestimmung der physikalischen Eigenschaften eines Transformators 1 1. Einführung Für den Transport elektrischer Energie über weite Entfernungen
Ferromagnetische Hysteresis
Auswertung Ferromagnetische Hysteresis Stefan Schierle Carsten Röttele 6. Dezember 2011 Inhaltsverzeichnis 1 Induktion und Verlustwiderstand einer Luftspule 2 1.1 Messung.....................................
Spule mit und ohne ferromagnetischen Kern
Spule mit und ohne ferromagnetischen Kern Auf Basis der in der Vorlesung gelernten theoretischen Grundlagen sollen nun die Eigenschaften einer Luftspule und einer Spule mit ferromagnetischem Kern untersucht
Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 02/2002 Laborunterlagen
Institut für Elektrotechnik Übungen zu Elektrotechnik I Version 3.0, 0/00 7 Magnetismus 7. Grundlagen magnetischer Kreise Im folgenden wird die Vorgehensweise bei der Untersuchung eines magnetischen Kreises
BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND.
Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND KAPAZITIVEM WIDERSTAND. Bestimmung des Wechselstromwiderstandes
Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis
Auswertung des Versuchs P1-83,84 : Ferromagnetische Hysteresis Marc Ganzhorn Tobias Großmann Bemerkung Alle in diesem Versuch aufgenommenen Hysteresis-Kurven haben wir gesondert im Anhang an diese Auswertung
GRUNDLAGEN DER ELEKTROTECHNIK
GRUNDLAGEN DER ELEKTROTECHNIK Versuch 4: Messungen von Kapazitäten und Induktivitäten 1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand X C eines Kondensators
BESTIMMUNG DES WECHSELSTROMWIDERSTANDES IN EINEM STROMKREIS MIT IN- DUKTIVEM UND OHMSCHEM WIDERSTAND.
Elektrizitätslehre Gleich- und Wechselstrom Wechselstromwiderstände BESTIMMUNG DES WECHSELSTOMWIDESTANDES IN EINEM STOMKEIS MIT IN- DUKTIVEM UND OHMSCHEM WIDESTAND. Bestimmung von Amplitude und Phase des
Laborübung, Diode. U Ri U F
8. März 2017 Elektronik 1 Martin Weisenhorn Laborübung, Diode 1 Diodenkennlinie dynamisch messen Die Kennlinie der Diode kann auch direkt am Oszilloskop dargestellt werden. Das Oszilloskop bietet nämlich
TR Transformator. Blockpraktikum Herbst Moritz Stoll, Marcel Schmittfull (Gruppe 2b) 25. Oktober 2007
TR Transformator Blockpraktikum Herbst 2007 (Gruppe 2b) 25 Oktober 2007 Inhaltsverzeichnis 1 Grundlagen 2 11 Unbelasteter Transformator 2 12 Belasteter Transformator 3 13 Leistungsanpassung 3 14 Verluste
Praktikum II TR: Transformator
Praktikum II TR: Transformator Betreuer: Dr. Torsten Hehl Hanno Rein praktikum2@hanno-rein.de Florian Jessen florian.jessen@student.uni-tuebingen.de 30. März 2004 Made with L A TEX and Gnuplot Praktikum
Physikalisches Grundpraktikum II Oszilloskop II
Oszilloskop II () (Autor) Raphael Hobbiger(0555094) 8. März 2007 1 Inhaltsverzeichnis 1 Grundlagen 2 1.1 Ziel des Versuches............................................ 2 1.2 Versuchszubehör.............................................
Musterloesung. 2. Klausur Grundlagen der Elektrotechnik I-B 17. Juni Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten
2. Klausur Grundlagen der Elektrotechnik I-B Name:... Vorname:... Matr.-Nr.:... Bearbeitungszeit: 90 Minuten Trennen Sie den Aufgabensatz nicht auf. Benutzen Sie für die Lösung der Aufgaben nur das mit
Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik
Ostfalia Hochschule für angewandte Wissenschaften Fakultät Elektrotechnik Labor Mess- und Elektrotechnik Laborleiter: Prof. Dr. Ing. Prochaska Versuch 5: Laborbetreuer: Schwingkreise 1. Teilnehmer: Matrikel-Nr.:
Der Transformator - Gliederung. Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen
Der Transformator Der Transformator - Gliederung Aufgaben Bestandteile eines Transformators Funktionsweise Der ideale Transformator Der reale Transformator Bauformen Der Transformator - Aufgaben Transformieren
Praktikum EE2 Grundlagen der Elektrotechnik Teil 2
Praktikum EE2 Grundlagen der Elektrotechnik Teil 2 Name: Studienrichtung: Versuch 6 Messen der magnetischen Flussdichte Versuch 7 Transformator Versuch 8 Helmholtzspulen Versuch 9 Leistungsmessung Testat
Hochschule für angewandte Wissenschaften Hamburg, Department F + F. Versuch 4: Messungen von Kapazitäten und Induktivitäten
1 Versuchsdurchführung 1.1 Messen des Blindwiderstands eines Kondensators Der Blindwiderstand C eines Kondensators soll mit Hilfe einer spannungsrichtigen Messschaltung (vergleiche Versuch 1) bei verschiedenen
Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert:
Versuch 18: Der Transformator Name: Telja Fehse, Hinrich Kielblock, Datum der Durchführung: 28.09.2004 Hendrik Söhnholz Gruppe: B-02 Mitarbeiter: Assistent: Martin Leven testiert: 1 Einleitung Der Transformator
Komplexe Widerstände
Komplexe Widerstände Abb. 1: Versuchsaufbau Geräteliste: Kondensator 32μ F 400V, Kapazitätsdekade, Widerstandsdekade, Widerstand ( > 100Ω), Messwiderstand 1Ω, verschiedene Spulen, Funktionsgenerator Speicheroszilloskop,
TR - Transformator Blockpraktikum - Herbst 2005
TR - Transformator, Blockpraktikum - Herbst 5 8. Oktober 5 TR - Transformator Blockpraktikum - Herbst 5 Tobias Müller, Alexander Seizinger Assistent: Dr. Thorsten Hehl Tübingen, den 8. Oktober 5 Vorwort
Repetitionen Magnetismus
TECHNOLOGISCHE GRUNDLAGEN MAGNETISMUS Kapitel Repetitionen Magnetismus Θ = Θ l m = H I I N H µ µ = 0 r N B B = Φ A M agn. Fluss Φ Verfasser: Hans-Rudolf Niederberger Elektroingenieur FH/HTL Vordergut 1,
Technische Universität Clausthal
Technische Universität Clausthal Klausur im Wintersemester 2012/2013 Grundlagen der Elektrotechnik I Datum: 18. März 2013 Prüfer: Prof. Dr.-Ing. Beck Institut für Elektrische Energietechnik Univ.-Prof.
Fachpraktikum Elektrische Maschinen. Versuch 4: Transformatoren
Fachpraktikum Elektrische Maschinen Versuch 4: Transformatoren Versuchsanleitung Basierend auf den Unterlagen von LD Didactic Entwickelt von Thomas Reichert am Institut von Prof. J. W. Kolar November 2013
Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2
Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop Lernziel: Dieser Praktikumsversuch
Praktikumsteam: Von der Studentin bzw. dem Studenten auszufüllen. Name / Vorname. Matrikelnummer. Unterschrift
Praktikumsteam: Dr.-rer.nat. Michael Pongs Dipl.-Ing. Aline Kamp B. Eng. B.Eng. Alphonsine Bindzi Effa Von der Studentin bzw. dem Studenten auszufüllen Name / Vorname Matrikelnummer Unterschrift Von einem
2 Oszilloskop - Grundlagen
2-1 2 Lernziele - Kennt den Aufbau eines Oszilloskops - Kennt die Eingangseigenschaften, Triggermöglichkeiten, die Steuerelemente und Anzeige - Kann ein Oszilloskops kalibrieren und mit dem Cursor Signaleigenschaften
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung.
Verwandte Begriffe Maxwell-Gleichungen, elektrisches Wirbelfeld, Magnetfeld von Spulen, magnetischer Fluss, induzierte Spannung. Prinzip In einer langen Spule wird ein Magnetfeld mit variabler Frequenz
Praktikum EE2 Grundlagen der Elektrotechnik. Name: Testat : Einführung
Fachbereich Elektrotechnik Ortskurven Seite 1 Name: Testat : Einführung 1. Definitionen und Begriffe 1.1 Ortskurven für den Strom I und für den Scheinleistung S Aus den Ortskurven für die Impedanz Z(f)
Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom
Aufgaben 13 Elektromagnetische Induktion Induktionsgesetz, Lenz'sche Regel, Generator, Wechselstrom Lernziele - aus einem Experiment neue Erkenntnisse gewinnen können. - sich aus dem Studium eines schriftlichen
Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1
Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 1 Magnetisches Feld Lernziel:
1 Leistungsanpassung. Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6. b) Z i = 3 exp(+j π 6 ) Ω = (2,598 + j 1,5) Ω, Z L = Z i
Leistungsanpassung Es ist eine Last mit Z L (f = 50 Hz) = 3 Ω exp ( j π 6 ) gegeben. Welchen Wert muss die Innenimpedanz Z i der Quelle annehmen, dass an Z L a) die maximale Wirkleistung b) die maximale
Transformator und Gleichrichtung
Studiengang Elektrotechnik/Informationstechnik Labor Elektrotechnik Labor 3 13. November 001 Revision 1 Transformator und Gleichrichtung Martin Strasser, 88 741 Patrick Kulle, 88 545 Inhalt 1 Vorbereitung,
Name:... Vorname:... Matr.-Nr.:...
2. Klausur Grundlagen der Elektrotechnik I-B 16. Juni 2003 berlin Name:... Vorname:... Matr.-Nr.:... Bitte den Laborbeteuer ankreuzen Reyk Brandalik Björn Eissing Steffen Rohner Karsten Gänger Lars Thiele
Versuch P1-83,84 Ferromagnetische Hysteresis. Auswertung. Von Ingo Medebach und Jan Oertlin. 4. Januar 2010
Versuch P1-83,84 Ferromagnetische Hysteresis Auswertung Von Ingo Medebach und Jan Oertlin 4. Januar 2010 Inhaltsverzeichnis 1. Induktivität und Verlustwiderstand einer Luftspule...2 1.1. Induktivität und
4 Oszilloskop - Erweiterung
4-1 4 Lernziele - Auswirkungen des AC-DC-Modus - Messen von Einzelsignalen - Auswirkungen der Abtastung - Automatische Messungen mit dem Oszilloskop - Messung von Signallauf-, Anstiegs- und Abfallszeiten
Transformator einschalten ohne Einschaltstromstoß. Ganz ohne Elektronik, aber mit einer Hilfswicklung!
Thema Transformator einschalten ohne Einschaltstromstoß. Ganz ohne Elektronik, aber mit einer Hilfswicklung! Im August 2014 zum Patent angemeldet. Autor: Michael Konstanzer, Erfinder der Trafoschaltrelais
Ersatzschaltbild und Zeigerdiagramm
8. Betriebsverhalten des Einphasentransformators Seite Ersatzschaltbild und Zeigerdiagramm Jeder Transformator besteht grundsätzlich aus zwei magnetisch gekoppelten Stromkreisen. Bild 8.-: Aufbau und Flusslinien
Physikalisches Anfaengerpraktikum. Hysteresie
Physikalisches Anfaengerpraktikum Hysteresie Ausarbeitung von Constantin Tomaras & David Weisgerber (Gruppe 10) Montag, 28. November 2005 email: Weisgerber@mytum.de 1 (1) Einleitung Eines der interessantesten
Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 630 Windungen. Ihr magnetischer Fluss ist momentan
TECHNOLOGISCHE GRUNDLAGEN INDUKTION, EINPHASEN-WECHSELSTROM REPETITIONEN INDUKTION DER RUHE 1 RE 2. 21 Induzierte Spannung in einer Spule (Induktion der Ruhe) Eine Spule hat 30 Windungen. Ihr magnetischer
Physik LK 12, 3. Kursarbeit Induktion - Lösung
Physik K 1, 3. Kursarbeit Induktion - ösung.0.013 Aufgabe I: Induktion 1. Thomson ingversuch 1.1 Beschreibe den Thomson'schen ingversuch in Aufbau und Beobachtung und erkläre die grundlegenden physikalischen
Das stationäre Magnetfeld Grundlagen der Elektrotechnik Kapitel 1 Kapitel 5 Das stationäre Magnetfeld
Kapitel Pearson Folie: Kapitel 5 Das stationäre Folie: 2 Lernziele Kapitel Pearson Folie: 3 5. Magnete Kapitel Pearson Folie: 4 5. Magnete Kapitel Pearson S N Folie: 5 5.2 Kraft auf stromdurchflossene
Seite 1 von 8 FK 03. W. Rehm. Name, Vorname: Taschenrechner, Unterschrift I 1 U 1. U d U 3 I 3 R 4. die Ströme. I 1 und I
Diplomvorprüfung GET Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2011 Fach: Grundlagen der Elektrotechnik,
Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte
30 38 Transformator Gesetze, Ersatzschaltungen, Zeigerbilder, Kennwerte Die elektrotechnischen Grundlagen des Transformators (Selbstinduktion, Gegeninduktion) sind in Kapitel 8 dargestellt. Die Wirkungsweise
Praktikum ETiT 1. Grundlagen der Elektrotechnik
Musterprotokoll zum Versuch : Kapazitäten & Induktivitäten Praktikum ETiT Grundlagen der Elektrotechnik Versuch Kapazitäten & Induktivitäten Musterprotokoll Aufgabe.5.6.7.8 (Vorbereitung) Punkte 4 4 44
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P]
3.7 Gesetz von Biot-Savart und Ampèresches Gesetz [P] B = µ 0 I 4 π ds (r r ) r r 3 a) Beschreiben Sie die im Gesetz von Biot-Savart vorkommenden Größen (rechts vom Integral). b) Zeigen Sie, dass das Biot-Savartsche
Grundlagen der Elektrotechnik II Übungsaufgaben
1) Lorentz-Kraft Grundlagen der Elektrotechnik II Übungsaufgaben Ein Elektron q = e = 1.602 10 19 As iegt mit der Geschwindigkeit v = (v x, v y, v z ) = (0, 35, 50) km/s durch ein Magnetfeld mit der Flussdichte
Praktikum Elektrotechnik
Messbericht, ergab die Note 6.0 Rot = Kommentare von Martin Schlup (Professor für elektrotechnische Fächer an der ZHW) Praktikum Elektrotechnik Versuch 2.4 Magnetischer Fluss und Induktionsgesetz Zusammenfassung
GRUNDLAGEN DER ELEKTROTECHNIK
GRUNDLAGEN DER ELEKTROTECHNIK Versuch 3: Messungen mit dem Oszilloskop 1 Versuchsdurchführung Dieser Versuch soll Sie an die grundlegenden Funktionen eines digitalen Oszilloskops heranführen. Lesen Sie
Praktikum 2: Diode, Logische Schaltungen mit Dioden und Feldeffekttransistoren
PraktikantIn 1 Matrikelnr: PraktikantIn 2 Matrikelnr: Datum: Aufgabe 2 durchgeführt: Aufgabe 3 durchgeführt: Aufgabe 4a durchgeführt: Aufgabe 4b durchgeführt: Aufgabe 4c durchgeführt: Aufgabe 4d durchgeführt:
Induktionsgesetz (E13)
Induktionsgesetz (E13) Ziel des Versuches Es soll verifiziert werden, dass die zeitliche Änderung eines magnetischen Flusses, hervorgerufen durch die Änderung der Flussdichte, eine Spannung induziert.
Versuch P1-83 Ferromagnetische Hysteresis Auswertung
Versuch P1-83 Ferromagnetische Hysteresis Auswertung Gruppe Mo-19 Yannick Augenstein Patrick Kuntze Versuchsdurchführung: Montag, 24.10.2011 1 Inhaltsverzeichnis 1 Induktivität und Verlustwiderstand einer
Magnetische Induktion
Magnetische Induktion 5.3.2.10 In einer langen Spule wird ein Magnetfeld mit variabler Frequenz und veränderlicher Stärke erzeugt. Dünne Spulen werden in der langen Feldspule positioniert. Die dabei in
Hysteresekurve und magnetische Suszeptbilität
M.Links & R.Garreis Hysteresekurve und magnetische Suszeptbilität Anfängerpraktikum SS 2013 Martin Link und Rebekka Garreis 10.06.2013 Universtität Konstanz bei Phillip Knappe 1 M.Links & R.Garreis Inhaltsverzeichnis
Fachhochschule Kiel Fachbereich Informatik und Elektrotechnik Labor für Grundlagen der Elektrotechnik
Fachhochschule Kiel Fachbereich Informatik und Elektrotechnik Labor für Grundlagen der Elektrotechnik Laborbericht zur Aufgabe Nr. 132 Messungen mit dem Oszilloskop Name: Name: Name: Bewertung: Bemerkungen
Mechatronik und elektrische Antriebe
Prof. Dr. Ing. Joachim Böcker Mechatronik und elektrische Antriebe 03.09.2014 Name: Matrikelnummer: Vorname: Studiengang: Aufgabe: (Punkte) 1 (30) 2 (18) 3 (22) Gesamt (60) Note Bearbeitungszeit: 120 Minuten
1. 2 1.1. 2 1.1.1. 2 1.1.2. 1.2. 2. 3 2.1. 2.1.1. 2.1.2. 3 2.1.3. 2.2. 2.2.1. 2.2.2. 5 3. 3.1. RG58
Leitungen Inhalt 1. Tastköpfe 2 1.1. Kompensation von Tastköpfen 2 1.1.1. Aufbau eines Tastkopfes. 2 1.1.2. Versuchsaufbau.2 1.2. Messen mit Tastköpfen..3 2. Reflexionen. 3 2.1. Spannungsreflexionen...3
V11 - Messungen am Transformator
V11 - Messungen am Transformator Michael Baron, Frank Scholz 21.12.2005 Inhaltsverzeichnis 1 Aufgabenstellung 1 2 Physikalischer Hintergrund 1 3 Versuchsaufbau 3 4 Versuchsdurchführung 3 4.1 Leerlauf-Spannungs-Übersetzung................
VET4 Eigenschaften von RL-Kombinationen
VET4 Eigenschaften von RL-Kombinationen Transformatoren und Induktivitäten /Spulen gehören zu den wichtigsten Bauelementen der modernen Elektrotechnik. Wenn in der Energieversorgung immer noch der Leistungstransformator
Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld
(2013-06-07) P3.4.3.1 Elektrizitätslehre Elektromagnetische Induktion Induktion durch ein veränderliches Magnetfeld Messung der Induktionsspannung in einer Leiterschleife bei veränderlichem Magnetfeld
V 401 : Induktion. Gruppe : Versuchstag: Namen, Matrikel Nr.: Vorgelegt: Hochschule Düsseldorf. Fachbereich EI Testat : Physikalisches Praktikum
Fachbereich El Gruppe : Namen, Matrikel Nr.: Versuchstag: Vorgelegt: Hochschule Düsseldorf Testat : V 401 : Induktion Zusammenfassung: 01.04.16 Versuch: Induktion Seite 1 von 6 Gruppe : Korrigiert am:
1 Allgemeine Angaben. 2 Vorbereitungen. Gruppen Nr.: Name: Datum der Messungen: 1.1 Dokumentation
1 Allgemeine Angaben Gruppen Nr.: Name: Datum der Messungen: 1.1 Dokumentation Dokumentieren Sie den jeweiligen Messaufbau, den Ablauf der Messungen, die Einstellungen des Generators und des Oscilloscopes,
Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen. LD Handblätter Physik P3.6.3.
Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Spulen und ohmschen Widerständen Versuchsziele
Versuch 16 Der Transformator
Physikalisches A-Praktikum Versuch 16 Der Transformator Praktikanten: Gruppe: Julius Strake Niklas Bölter B006 Betreuer: Johannes Schmidt Durchgeführt: 10.09.2012 Unterschrift: E-Mail: niklas.boelter@stud.uni-goettingen.de
Praktikum GEE Grundlagen der Elektrotechnik Teil 3
Grundlagen der Elektrotechnik Teil 3 Jede Gruppe benötigt zur Durchführung dieses Versuchs einen USB-Speicherstick! max. 2GB, FAT32 Name: Studienrichtung: Versuch 11 Bedienung des Oszilloskops Versuch
Fachhochschule Wilhelmshaven Seite : 1 Fachbereich Elektrotechnik Datum : 18. Januar 1994 Grundlagen der Elektrotechnik III Prof. Dr.-Ing. H.
Fachhochschule Wilhelmshaven Seite : 1 Fachbereich Elektrotechnik Datum : 18. Januar 1994 Grundlagen der Elektrotechnik III Prof. Dr.-Ing. H. Ahlers Klausur zugelassene Hilfsmittel : alle eigenen, Literatur.
1. Drehstrom. 1.1 Effektivwertmessung
1. Drehstrom 1.1 Effektivwertmessung 1.1.1 Aufgabenstellung Messen Sie die Amplitude U^ und den Effektivwert U einer Sinusspannung und einer symmetrischen Rechteckspannung bei ca. 50 Hz. Verwenden Sie
Komplexe Zahlen und ihre Anwendung in der Elektrotechnik
Praktikum für die Schüler der BOB Rosenheim im Rahmen des Workshops Komplexe Zahlen und ihre Anwendung in der Elektrotechnik SCHALTUNG 1 I ein Gegeben ist die Reihenschaltung eines Widerstandes R 10 k
Praktikum 5, Transformator
23. November 206 Elektrizitätslehre 3 Martin Weisenhorn Praktikum 5, Transformator Lernziele In diesem Versuch sollen die Parameter des symmetrischen T-Ersatzmodells eines Einphasentransformators (single-phase
Diplomvorprüfung SS 2010 Fach: Grundlagen der Elektrotechnik Dauer: 90 Minuten
Diplomvorprüfung Grundlagen der Elektrotechnik Seite 1 von 8 Hochschule München FK 03 Zugelassene Hilfsmittel: Taschenrechner, zwei Blatt DIN A4 eigene Aufzeichnungen Diplomvorprüfung SS 2010 Fach: Grundlagen
Friedrich-Alexander Universität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 19. September 2005
Lehrstuhl für Elektromagnetische Felder Prof Dr-Ing T Dürbaum Friedrich-Alexander niversität Erlangen-Nürnberg Klausur in Grundlagen der Elektrotechnik für Maschinenbauer 9 September 2005 Bearbeitungszeit:
IK Induktion. Inhaltsverzeichnis. Sebastian Diebold, Moritz Stoll, Marcel Schmittfull. 25. April Einführung 2
IK Induktion Blockpraktikum Frühjahr 2007 25. April 2007 Inhaltsverzeichnis 1 Einführung 2 2 Theoretische Grundlagen 2 2.1 Magnetfelder....................... 2 2.2 Spule............................ 2
1 Allgemeine Grundlagen
Allgemeine Grundlagen. Gleichstromkreis.. Stromdichte Die Stromdichte in einem stromdurchflossenen Leiter mit der Querschnittsfläche A ist definiert als: j d d :Stromelement :Flächenelement.. Die Grundelemente
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn. Probeklausur
Technische Universität Kaiserslautern Lehrstuhl Entwurf Mikroelektronischer Systeme Prof. Dr.-Ing. N. Wehn 22.02.200 Probeklausur Elektrotechnik I für Maschinenbauer Name: Vorname: Matr.-Nr.: Fachrichtung:
Inhaltsverzeichnis. 1. Einleitung
Inhaltsverzeichnis 1. Einleitung 1.1 Das Analogoszilloskop - Allgemeines 2. Messungen 2.1 Messung der Laborspannung 24V 2.1.1 Schaltungsaufbau und Inventarliste 2.2.2 Messergebnisse und Interpretation
AfuTUB-Kurs. Technik Klasse E 06: Spule und Transformator. Amateurfunkgruppe der TU Berlin. https://dk0tu.de. AfuTUB-Kurs. Einleitung.
Technik Klasse E 06: Spule und Amateurfunkgruppe der TU Berlin https://dk0tu.de WiSe 2017/18 SoSe 2018 cbea This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License.
Praktikum Grundlagen der Elektrotechnik
Praktikum Grundlagen der Elektrotechnik 1. Versuch GET : Schaltverhalten an und 2. Standort Helmholtzbau H 2546 und 2548 Fakultät für Elektrotechnik und Informationstechnik Institut für Informationstechnik
Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: Abb Verknüpfung von elektrischem Strom und Magnetfeld
37 3 Transformatoren 3. Magnetfeldgleichungen 3.. Das Durchflutungsgesetz Ein Stromfluss ist immer mit einem Magnetfeld verbunden und umgekehrt: H I Abb. 3..- Verknüpfung von elektrischem Strom und Magnetfeld
Labor für Grundlagen der Elektrotechnik. EE1- ETP1 Labor 4. Weitere Übungsteilnehmer: Messung von Kapazitäten und Induktivitäten
Department Informations- und Elektrotechnik Studiengruppe: Übungstag: Professor: abor für Grundlagen der Elektrotechnik EE1- ETP1 abor 4 Testat: Protokollführer (Name, Vorname): Weitere Übungsteilnehmer:
Elektrizitätslehre. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen. LD Handblätter Physik
Elektrizitätslehre Gleich- und Wechselstromkreise Wechselstromwiderstände LD Handblätter Physik P3.6.3. Bestimmung des Wechselstromwiderstandes in Stromkreisen mit Kondensatoren und ohmschen Widerständen
Ferromagnetische Hysteresis
Physikalisches Anfängerpraktikum 1 Gruppe Mo-16 Wintersemester 2005/06 Julian Merkert (1229929) Versuch: P1-83 Ferromagnetische Hysteresis - Vorbereitung - Vorbemerkung Als Hinführung zum Thema Ferromagnetismus
Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2
Werner-v.-Siemens-Labor für elektrische Antriebssysteme Prof. Dr.-Ing. Dr. h.c. H. Biechl Prof. Dr.-Ing. E.-P. Meyer Praktikum Grundlagen der Elektrotechnik 2 (GET2) Versuch 2 Messungen mit dem Oszilloskop
Praktikum. Grundlagen der Elektrotechnik
Institut für Elektrische Energiewandlung Praktikum Grundlagen der Elektrotechnik Versuch 4 Magnetische Gleich- und Wechselfeldmessungen MSTERPROTOKOLL Farblegende für das : Blau: in der Durchführung aufgenommene
Name:...Vorname:... Seite 1 von 8. Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009
Name:...Vorname:... Seite 1 von 8 Hochschule München, FK 03 Grundlagen der Elektrotechnik WS 2008/2009 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A
PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER. E 5 - Magnetfeld
Universität - GH Essen Fachbereich 7 - Physik PHYSIKALISCHES PRAKTIKUM FÜR ANFÄNGER Versuch: E 5 - Magnetfeld 1. Grundlagen Magnetfeld einer Kreisspule (magnetische Feldstärke, magnetische Induktion, Biot-Savartsches
Laborübung, Funktionsgenerator und Oszilloskop
22. Februar 2016 Elektronik 1 Martin Weisenhorn Laborübung, Funktionsgenerator und Oszilloskop 1 Funktionsgenerator In dieser Aufgabe sollen Sie die Bedienung des Funktionsgenerators kennlernen und die
Praktikum, Bipolartransistor als Verstärker
18. März 2015 Elektronik 1 Martin Weisenhorn Praktikum, Bipolartransistor als Verstärker Einführung Die Schaltung in Abb. 1 stellt einen Audio Verstärker dar. Damit lassen sich die Signale aus einem Mikrofon
UET-Labor Analogoszilloskop 24.10.2002
Inhaltsverzeichnis 1. Einleitung 2. Inventarverzeichnis 3. Messdurchführung 3.1 Messung der Laborspannung 24V 3.2 Messung der Periodendauer 3.3 Messung von Frequenzen mittels Lissajousche Figuren 4. Auswertung
Versuch 6 Oszilloskop und Funktionsgenerator Seite 1. û heißt Scheitelwert oder Amplitude, w = 2pf heißt Kreisfrequenz und hat die Einheit 1/s.
Versuch 6 Oszilloskop und Funktionsgenerator Seite 1 Versuch 6: Oszilloskop und Funktionsgenerator Zweck des Versuchs: Umgang mit Oszilloskop und Funktionsgenerator; Einführung in Zusammenhänge Ausstattung
1. Frequenzverhalten einfacher RC- und RL-Schaltungen
Prof. Dr. H. Klein Hochschule Landshut Fakultät Elektrotechnik und Wirtschaftsingenieurwesen Praktikum "Grundlagen der Elektrotechnik" Versuch 4 Wechselspannungsnetzwerke Themen zur Vorbereitung: - Darstellung
Kondensator und Spule
Hochschule für angewandte Wissenschaften Hamburg Naturwissenschaftliche Technik - Physiklabor http://www.haw-hamburg.de/?3430 Physikalisches Praktikum ----------------------------------------------------------------------------------------------------------------
Technische Universität Clausthal
Technische Universität Clausthal Klausur im Wintersemester 2014/2015 Grundlagen der Elektrotechnik I&II Datum: 9. Februar 2015 Prüfer: Prof. Dr.-Ing. H.-P. Beck Institut für Elektrische Energietechnik
Praktikum Elektronik 1. 1. Versuch: Oszilloskop, Einführung in die Meßpraxis
Praktikum Elektronik 1 1. Versuch: Oszilloskop, Einführung in die Meßpraxis Versuchsdatum: 0. 04. 00 Allgemeines: Empfindlichkeit: gibt an, welche Spannungsänderung am Y- bzw. X-Eingang notwendig ist,
Name:...Vorname:... Seite 1 von 8. Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:...
Name:...Vorname:... Seite 1 von 8 FH München, FB 03 Grundlagen der Elektrotechnik SS 2005 Matrikelnr.:... Hörsaal:...Platz:... Stud. Gruppe:... Zugelassene Hilfsmittel: beliebige eigene A 1 2 3 4 Σ N Aufgabensteller:
Übung 3: Oszilloskop
Institut für Elektrische Meßtechnik und Meßsignalverarbeitung Institut für Grundlagen und Theorie der Elektrotechnik Institut für Elektrische Antriebstechnik und Maschinen Grundlagen der Elektrotechnik,
Learn4Vet. Magnete. Man kann alle Stoffe in drei Klassen einteilen:
Magnete Die Wirkung und der Aufbau lassen sich am einfachsten erklären mit dem Modell der Elementarmagneten. Innerhalb eines Stoffes (z.b. in ein einem Stück Eisen) liegen viele kleine Elementarmagneten