Operational Intelligence

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Operational Intelligence"

Transkript

1 Operational Intelligence Eric Müller Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt werden!

2 Einleitung Operational Intelligence Architektur Advanced Analytics Outlook

3 Mitarbeitende - Informatik Zofingen 120 Bern 410 Insgesamt 530 Leistung Transaktionen (Mio/Jahr) ~1 100 E-Finance Kunden (Mio) 1.7 Spitzenwert Buchung(Trx./Sek.) Nutzdaten TB Zahlen und Fakten Applikationen / Teilapplikationen 2012 > 500

4 Internet (Public / CUG) Beratung (CRM / CI) Mobile Kartengeld (Debit, Kredit, FPOS) Analytik, Risk, Compliance Digital Commerce Filialen und Poststellen Informatiklösungen für selbständige Kundinnen und Kunden

5 Motivation zur Operational Intelligence Hypothese zu Fraud Management, AML, Embargo-Prüfung Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt werden!

6 Gestaltung von Fraud Lösungen Wie sollen wir weiterfahren? Online Online Anomalieerkennung Kanal Kartengeld Kartensicherheit Name Matching Entry- OKAUT OKAUT E-Finance E-Finance EPA EPA ISS ACQISS ACQ EDWH KOBE NAMA Server PostFinance OKAUT Entry- Server E-Finance Fraud-Detection Fraud-Detection Fraud-Detection Fraud-Detection Transaktionssicherheit ZV Weitere.. AML Weitere XYZ ACQ KUDA KOBE KOBE X EDWH Y YKOBE AML Fraud-Detection X Y Y TCS Core TCS Securities Fraud-Detection Fraud-Detection Fraud-Detection Fraud-Detection

7 Motivation Ähnliche fachliche Prozesse - Hoher IT & Analytik/Regel Anteil

8 Operational Intelligence Aufgaben Korrelation von Events Real-time Monitoring Real-time Situationserkennung Real-time Dashboards Branchen-/Themen-Spezifische Dashboards Ursachen-Analysen Zeitserien und Trendanalysen Multidimensionale Analysen

9 Infrastruktur Applikationen Daten

10 Operational Intelligence - Architektur Entwicklung eines Zielbild Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt werden!

11 Beispiel DKP Logisches Zielbild

12 Digital Operational Intelligence Channels Case- Management Rule- Management Statistics New Rules Action New Basic/Complex Complex Events Events Case Results Complex Event Actions, Decisions and Reaction Processing (CEP) (CEP and Ruleread Engine) Streams Short-Term Storage update update DWH Core Banking

13

14

15 Analytics in der Operational Intelligence Spielt Analytics eine Rolle? Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt werden!

16 Digital Operational Intelligence Channels Case- Management Rule- Management Statistics New Rules Action New Basic/Complex Complex Events Events Case Results Complex Event Actions, Decisions and Reaction Processing (CEP) (CEP and Ruleread Engine) Streams Short-Term Storage update? update DWH Core Banking

17 Advanced Analytics Experten Wissen Domänen Know How Intuition Trial and Error Fokus: Finden akzeptabler Lösung Lernen durch Analyse Daten getrieben Grosse Datenräume Erstellt mathematische Modelle Analytik treibt Entscheidungen Fokus: Finden der optimalen Lösung

18 Analytics im Fraud-Umfeld Ausgangslage: Data Science auf bestehenden Transaktionsdaten Aus Data Science (Advanced Analytics) Analysen wissen wir, dass das Transaktionsverhalten bis zu einem gewissen Grad vorhersagbar ist. Hypothese: Abweichungen wie z.b. Fraud können analytisch erkannt werden Vorgehen: Integration der Fraud-Daten (True Positives, False Positives, False Negatives, True Negatives) in Mining Umfeld (Hadoop / Oracle) Machine Learning auf diesen Daten mit IBM SPSS Evaluation der Modelle

19 Analytics im Fraud-Umfeld Datengrundlage Alert F d u a r Keine Auffälligkeit

20 Analytics im Fraud-Umfeld Machine Learning Resultate 1/2: Modell (das Prinzip) Land Vermögenswerte Vermögenswerte Konto Art Konto Art Anzahl TRX Anzahl TRX Fraud = NEIN Fraud = JA Fraud = NEIN Fraud = JA

21 Analytics im Fraud-Umfeld Konklusion: Chancen und Risiken Chancen: Die Ergebnisse sind besser als erwartet Bisher nur wenige Algorithmen angewendet Eine Kombination aus Regeln und Modellen kann die Anzahl der Alerts reduzieren Es macht Sinn komplexere Modelle zu entwickeln Risiken: Eine Erfolgskontrolle über längeren Zeitraum ausstehend Die Modelle sind noch nicht so ausgereift, dass man sie produktiv stellen könnte

22 Outlook Wie geht es weiter? Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt werden!

23 Outlook Wie geht es weiter Aufbau einer Operational Intelligence Plattform für Anomalieerkennung im Onlinekanal Transaktionsmonitoring im Core Banking Aufbau eines zentralen Case Managements Priorisierungsmodell z.b. für RT und Express Zahlungen Prüfung weiterer Use-Cases (AML, Embargo Listen )

24 Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt werden! Zu guter Letzt

25 Daten beinhalten Informationen Geldbezüge am Postomat Informatik Transaktionen?? Normaler Postomat Verarbeitungstag Bundesratswahl Fussball WM Final h 1200h 1800h 2400h

26 Kontakt: oder auf LinkedIn Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter die Fläche gelegt werden!

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland

Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen. Frank Irnich SAP Deutschland Echtzeiterkennung von Cyber-Angriffen auf IT-Infrastrukturen Frank Irnich SAP Deutschland SAP ist ein globales Unternehmen... unser Fokusgebiet... IT Security für... 1 globales Netzwerk > 70 Länder, >

Mehr

Big Data im Bereich Information Security

Big Data im Bereich Information Security Der IT-Sicherheitsverband. TeleTrusT-interner Workshop Bochum, 27./28.06.2013 Big Data im Bereich Information Security Axel Daum RSA The Security Division of EMC Agenda Ausgangslage Die Angreifer kommen

Mehr

Ereignisgesteuertes Marketing bei PostFinance Von der Outbound- zur Inbound-Orientierung

Ereignisgesteuertes Marketing bei PostFinance Von der Outbound- zur Inbound-Orientierung Ereignisgesteuertes Marketing bei PostFinance Von der Outbound- zur Inbound-Orientierung Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen.

Mehr

Adobe FSI Breakfast. Frankfurt, 09.06.2015. 2015 icompetence

Adobe FSI Breakfast. Frankfurt, 09.06.2015. 2015 icompetence Adobe FSI Breakfast Frankfurt, 09.06.2015 2015 icompetence Gründung 1994 Firmensitz: Quickborn bei Hamburg 200 Mio Page Impressions/Monat mehr als 1,8 Millionen Privatkunden. über 2,8 Millionen Kunden

Mehr

IDM XL bei PostFinance Projekt Erhöhung Verfügbarkeit. Informieren

IDM XL bei PostFinance Projekt Erhöhung Verfügbarkeit. Informieren IDM XL bei PostFinance Projekt Erhöhung Verfügbarkeit Informieren Inhaltsverzeichnis Einleitung PostFinance E-Finance Projekt-Motivation & Ziele Motivation Projektziele Sollbild & Integration Highlevel

Mehr

Die innovative Lösung. Dokumentenmanagement PostFinance

Die innovative Lösung. Dokumentenmanagement PostFinance Die innovative Lösung. Dokumentenmanagement PostFinance Wenn Sie diesen Text lesen können, müssen Sie die Folie im Post-Menü mit der Funktion «Folie einfügen» erneut einfügen. Sonst kann kein Bild hinter

Mehr

SOA im Zeitalter von Industrie 4.0

SOA im Zeitalter von Industrie 4.0 Neue Unterstützung von IT Prozessen Dominik Bial, Consultant OPITZ CONSULTING Deutschland GmbH Standort Essen München, 11.11.2014 OPITZ CONSULTING Deutschland GmbH 2014 Seite 1 1 Was ist IoT? OPITZ CONSULTING

Mehr

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers.

IT-Services. Business und IT. Ein Team. Aus Sicht eines Retailers. Business und IT. Ein Team. Aus Sicht eines Retailers. Hier steht ein Bild randabfallend. Wenn kein Bild vorhanden ist, bitte Folie 2 benutzen. IT-Services Club of Excellence. Das CIO Forum der IBM vom

Mehr

Infrastructure Analytics mit idh logging Framework ILF

Infrastructure Analytics mit idh logging Framework ILF mit idh logging Framework ILF Roger Zimmermann Consulting Informatik Projektleiter FA Tel +41 52 366 39 01 Mobile +41 79 932 18 96 roger.zimmermann@idh.ch www.idh.ch IDH GmbH Lauchefeld 31 CH-9548 Matzingen

Mehr

Digital. Digital Customer Experience Management Ein integrierter Lösungsansatz mit der Adobe Marketing Cloud

Digital. Digital Customer Experience Management Ein integrierter Lösungsansatz mit der Adobe Marketing Cloud Digital Digital Customer Experience Management Ein integrierter Lösungsansatz mit der Adobe Marketing Cloud Jürgen Kübler, Leiter Realisierung Digitales Leistungsangebot #digitaljourney Inhaltsverzeichnis

Mehr

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired

Data. Guido Oswald Solution Architect @SAS Switzerland. make connections share ideas be inspired make connections share ideas be inspired Data Guido Oswald Solution Architect @SAS Switzerland BIG Data.. Wer? BIG Data.. Wer? Wikipedia sagt: Als Big Data werden besonders große Datenmengen bezeichnet,

Mehr

AML mit SAP Fraud Management

AML mit SAP Fraud Management AML mit SAP Fraud Management am Beispiel unüblicher Transaktionen 2015 Cellent Finance Solutions GmbH Agenda Unternehmen AML V0.3 SAP Fraud Management SMARAGD Suite Demo 2015 Cellent Finance Solutions

Mehr

Data Science & Big Data, made in Switzerland Thilo Stadelmann, ZHAW School of Engineering Frank Ihringer, Serwise AG. 2013 IBM Corporation

Data Science & Big Data, made in Switzerland Thilo Stadelmann, ZHAW School of Engineering Frank Ihringer, Serwise AG. 2013 IBM Corporation Data Science & Big Data, made in Switzerland Thilo Stadelmann, ZHAW School of Engineering Frank Ihringer, Serwise AG 2013 IBM Corporation Agenda Data Science made in Switzerland Case Study 1: Social Media

Mehr

PRODATIS CONSULTING AG. Folie 1

PRODATIS CONSULTING AG. Folie 1 Folie 1 Führend im Gartner Magic Quadranten für verteilte, interagierende SOA Projekte Oracle ist weltweit auf Rang 1 auf dem Markt der Enterprise Service Bus Suiten (ESB) für SOA Software 2010 26,3 %

Mehr

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014

Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Betrugserkennung mittels Big Data Analyse Beispiel aus der Praxis TDWI München, Juni 2014 Beratung Business Analytics Software Entwicklung Datenmanagement AGENDA Der Kreislauf für die Betrugserkennung

Mehr

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH

Management Cockpits. Business Intelligence für Entscheider. Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH Management Cockpits Business Intelligence für Entscheider Oliver Röniger EMEA Business Intelligence ORACLE Deutschland GmbH email: oliver.roeniger@oracle.com Tel.: 0211 / 74839-588 DOAG, Mannheim, 15.

Mehr

LOG AND SECURITY INTELLIGENCE PLATFORM

LOG AND SECURITY INTELLIGENCE PLATFORM TIBCO LOGLOGIC LOG AND SECURITY INTELLIGENCE PLATFORM Security Information Management Logmanagement Data-Analytics Matthias Maier Solution Architect Central Europe, Eastern Europe, BeNeLux MMaier@Tibco.com

Mehr

SAP Fraud Management Compliance

SAP Fraud Management Compliance SAP Fraud Management Compliance am Beispiel Customer Onboarding und der AML Strategie unüblicher Transaktionen 2015 Cellent Finance Solutions GmbH Agenda Unternehmen Demo SAP Fraud Management Compliance

Mehr

Internet of things. Copyright 2016 FUJITSU

Internet of things. Copyright 2016 FUJITSU Internet of things 0 Fujitsu World Tour 2016 Human Centric Innovation in Action Wie das Internet der Dinge den Handel verändert Ralf Schienke Leitung Vertrieb Handel Deutschland 1 2X Cost of SENSORS Past

Mehr

Big Data & High-Performance Analytics

Big Data & High-Performance Analytics Big Data & High-Performance Analytics Wolfgang Schwab, Senior Business Advisor Berlin 20.4.2012 PROJECTING THE GROWTH OF BIG DATA Source: IDC Digital Universe Study, sponsored by EMC, May 2010 THRIVING

Mehr

Business rules management im Bereich Compliance der PostFinance

Business rules management im Bereich Compliance der PostFinance Business rules management im Bereich Compliance der PostFinance Berner Architektentreffen BAT 14.03.2008 Thomas Fries, Innovations Softwaretechnologie GmbH Elmar Boschung, Die Schweizerische Post, PostFinance

Mehr

Erfolgreicher Umgang mit heutigen und zukünftigen Bedrohungen

Erfolgreicher Umgang mit heutigen und zukünftigen Bedrohungen Erfolgreicher Umgang mit heutigen und zukünftigen Bedrohungen Das Zusammenspiel von Security & Compliance Dr. Michael Teschner, RSA Deutschland Oktober 2012 1 Trust in der digitalen Welt 2 Herausforderungen

Mehr

Phänomen Digitalisierung Pflicht oder Kür erfolgreicher Unternehmen. Hannover, Timm Grosser, Senior Analyst

Phänomen Digitalisierung Pflicht oder Kür erfolgreicher Unternehmen. Hannover, Timm Grosser, Senior Analyst Phänomen Digitalisierung Pflicht oder Kür erfolgreicher Unternehmen Hannover, 15.03.2016 Timm Grosser, Senior Analyst 18.03.2016 BARC 2016 2 BARC: Expertise für datengetriebene Unternehmen 18.03.2016 BARC

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS HERZLICH WILLKOMMEN ZUR VERANSTALTUNG VISUAL ANALYTICS AGENDA VISUAL ANALYTICS 9:00 09:30 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT

Mehr

Big Data Anwendungen Chancen und Risiken

Big Data Anwendungen Chancen und Risiken Big Data Anwendungen Chancen und Risiken Dr. Kurt Stockinger Studienleiter Data Science, Dozent für Informatik Zürcher Hochschule für Angewandte Wissenschaften Big Data Workshop Squeezing more out of Data

Mehr

Decision Management am Beispiel einer Kreditautobahn Dr. Olaf Weinmann, Bosch Software Innovations GmbH

Decision Management am Beispiel einer Kreditautobahn Dr. Olaf Weinmann, Bosch Software Innovations GmbH InnovationsForum Banken & Versicherungen 2013 Zürich, 28. November 2013 Decision Management am Beispiel einer Kreditautobahn Dr. Olaf Weinmann, GmbH 1 InnovationsForum 2013 INST/PRV-BI 28.11.2013 GmbH

Mehr

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016

Trends im Markt für Business Intelligence. Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 Trends im Markt für Business Intelligence Patrick Keller, Senior Analyst & Prokurist CeBIT 2016 18.03.2016 BARC 2016 2 IT Meta-Trends 2016 Digitalisierung Consumerization Agilität Sicherheit und Datenschutz

Mehr

Präsentation idh logging Framework ILF

Präsentation idh logging Framework ILF Präsentation idh logging Framework ILF Roger Zimmermann Consulting Informatik Projektleiter FA Tel +41 52 366 39 01 Mobile +41 79 932 18 96 roger.zimmermann@idh.ch www.idh.ch IDH GmbH Lauchefeld 31 CH-9548

Mehr

ADVANCED ANALYTICS. Auswirkungen auf das Controlling und Unternehmenssteuerung

ADVANCED ANALYTICS. Auswirkungen auf das Controlling und Unternehmenssteuerung ADVANCED ANALYTICS Auswirkungen auf das Controlling und Unternehmenssteuerung Unternehmen im Zeitalter der Digitalisierung Was bedeutet Digitalisierung der Welt? Digitale Fußabdrücke in allen Branchen

Mehr

Mobile Analytics mit Oracle BI

Mobile Analytics mit Oracle BI Mobile Analytics mit Oracle BI Was steckt in den Apps? Gerd Aiglstorfer G.A. itbs GmbH Christian Berg Dimensionality GmbH Das Thema 2 Oracle BI Mobile: HD App für Apple ios Oracle BI Mobile App Designer

Mehr

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics

Oracle BI&W Referenz Architektur Big Data und High Performance Analytics DATA WAREHOUSE Oracle BI&W Referenz Architektur Big Data und High Performance Analytics Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen

Mehr

Nr. 33. NoSQL Databases

Nr. 33. NoSQL Databases Nr. 33 NoSQL Databases Das Berner-Architekten-Treffen Das Berner-Architekten-Treffen ist eine Begegnungsplattform für an Architekturfragen interessierte Informatikfachleute. Partner Durch Fachvorträge

Mehr

SAP BI Fokustage 2015

SAP BI Fokustage 2015 SAP BI Fokustage 2015 Agenda 13:30 Uhr Begrüßung 13:45 Uhr Quo vadis SAP BW? Die Backend-Strategie der SAP Windhoff Software Services GmbH 14:30 Uhr Projektvortrag: Mobile Dashboard-Anwendung mit SAP Design

Mehr

interaktiv GUIs Heute und Morgen in PostFinance Eclipse RCP als Fundament für eine offene Architektur für zukünftige Bankenarbeitsplätze?

interaktiv GUIs Heute und Morgen in PostFinance Eclipse RCP als Fundament für eine offene Architektur für zukünftige Bankenarbeitsplätze? GUIs Heute und Morgen in PostFinance Eclipse RCP als Fundament für eine offene Architektur für zukünftige Bankenarbeitsplätze? Volkert Barr PostFinance - Informatik Strategie & Architektur interaktiv Inhalt

Mehr

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014

Mit In-Memory Technologie zu neuen Business Innovationen. Stephan Brand, VP HANA P&D, SAP AG May, 2014 Mit In-Memory Technologie zu neuen Business Innovationen Stephan Brand, VP HANA P&D, SAP AG May, 2014 SAP Medical Research Insights : Forschung und Analyse in der Onkologie SAP Sentinel : Entscheidungsunterstützung

Mehr

Direktmarketing im Zentrum digitaler Vertriebsstrategien

Direktmarketing im Zentrum digitaler Vertriebsstrategien Direktmarketing im Zentrum digitaler Vertriebsstrategien Standortbestimmung und Key Learnings für Verlage Hamburg, September 2014 Im Zentrum digitaler Vertriebsstrategien steht zunehmend die Analyse komplexer

Mehr

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link

Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Die Bedeutung der Prozessmodellierung bei der Weiterentwicklung des DWHs der DAK Der Innovator als Missing Link Konrad Linner, solvistas GmbH Nürnberg, 20.November 2012 Inhaltsverzeichnis Vorstellung solvistas

Mehr

Vertrauen und Sicherheit im Banking 2.0

Vertrauen und Sicherheit im Banking 2.0 Ole Petersen Partner, IBM Global Business Services Executive, IBM Deutschland GmbH Vertrauen und Sicherheit im Banking 2.0 Frankfurt, 16. November 2010 im Rahmen der Euro Finance Week 2010 / Retail Banking

Mehr

RSA INTELLIGENCE DRIVEN SECURITY IN ACTION

RSA INTELLIGENCE DRIVEN SECURITY IN ACTION RSA INTELLIGENCE DRIVEN SECURITY IN ACTION So schützen Sie einheitlich Ihre Benutzeridentitäten im Unternehmen und in der Cloud! Mathias Schollmeyer Assoc Technical Consultant EMEA 1 AGENDA Überblick RSA

Mehr

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle

Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle Technologischen Rahmenbedingungen und Werkzeuge für eine wertschöpfende Controller-Rolle 40. Congress der Controller, Themenzentrum C, München Steffen Vierkorn, Geschäftsführer Qunis GmbH, Neubeuern Die

Mehr

Wird BIG DATA die Welt verändern?

Wird BIG DATA die Welt verändern? Wird BIG DATA die Welt verändern? Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Big Data Entmythisierung von Big Data. Was man über Big Data wissen sollte. Wie

Mehr

Complex Event Processing. Sebastian Schmidbauer 18.01.2011

Complex Event Processing. Sebastian Schmidbauer 18.01.2011 Complex Event Processing Sebastian Schmidbauer 18.01.2011 Cirquent im Profil Zahlen Kompetenzen 350 300 250 200 150 100 50 0 1748 1747 1722 1515 1041 1180 286 266 247 260 165 139 2003 2004 2005 2006 2007

Mehr

Spezialisierungskatalog

Spezialisierungskatalog Spezialisierungskatalog Inhaltsverzeichnis: 1. Friedrich Schiller Universität 2. TU Ilmenau 3. FH Erfurt 4. FH Jena 5. FH Nordhausen 6. FH Schmalkalden 7. BA Gera 8. BA Eisenach 1. Friedrich-Schiller-Universität

Mehr

Neuer Antrieb für BI Konsolidierung 03. Feb 2010

Neuer Antrieb für BI Konsolidierung 03. Feb 2010 Neuer Antrieb für BI Konsolidierung 03. Feb 2010 Stefan Meyer, Vice President Deutsche Bank AG Neuer Antrieb für BI Konsolidierung Seite 2 Agenda 1 Mission für den Entscheidungsprozess 2 Typisches BI-Application

Mehr

Sicherheits- & Management Aspekte im mobilen Umfeld

Sicherheits- & Management Aspekte im mobilen Umfeld Sicherheits- & Management Aspekte im mobilen Umfeld Einfach war gestern 1 2012 IBM Corporation Zielgerichtete Angriffe erschüttern Unternehmen und Behörden 2 Source: IBM X-Force 2011 Trend and Risk Report

Mehr

R im Enterprise-Modus

R im Enterprise-Modus R im Enterprise-Modus Skalierbarkeit, Support und unternehmensweiter Einsatz Dr. Eike Nicklas HMS Konferenz 2014 Was ist R? R is a free software environment for statistical computing and graphics - www.r-project.org

Mehr

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15

Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics 10.45 11.15 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

DER INTELLIGENTE POS DER ZUKUNFT

DER INTELLIGENTE POS DER ZUKUNFT DER INTELLIGENTE POS DER ZUKUNFT MARKUS EICHINGER I HEAD OF MOBILE SERVICES Internetworld München, 01./02.03.2016 2 2016 Wirecard AG TAUSCHHANDEL Tauschpartner (Produzent) Tauschpartner (Produzent) 3 2016

Mehr

vinsight BIG DATA Solution

vinsight BIG DATA Solution vinsight BIG DATA Solution München, November 2014 BIG DATA LÖSUNG VINSIGHT Datensilos erschweren eine einheitliche Sicht auf die Daten...... und machen diese teilweise unmöglich einzelne individuelle Konnektoren,

Mehr

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch

Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch Business Intelligence Architektur im Umfeld von Big Data (IDAREF) [D2] Bernd Meister Uetliberg, 16.09.2014 www.boak.ch In dieser Session wird IDAREF, ein Framework, dass auf logischer Ebene eine analytische

Mehr

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI

TRACK II Datenmanagement Strategien & Big Data Speicherkonzepte. TRACK I Big Data Analytics & Self Service BI 9.30 10.15 Kaffee & Registrierung 10.15 10.45 Begrüßung & aktuelle Entwicklungen bei QUNIS 10.45 11.15 11.15 11.45 Von Big Data zu Executive Decision BI für den Fachanwender bis hin zu Advanced Analytics

Mehr

Complex Event Processing für intelligente mobile M2M- Kommunikation

Complex Event Processing für intelligente mobile M2M- Kommunikation Complex Event Processing für intelligente mobile 2- Kommunikation Hochschule Hannover arcel etzdorf, Prof. Dr. Ralf Bruns, Prof. Dr. Jürgen Dunkel, Henrik asbruch Inside 2 Ilja Hellwich, Sven Kasten 2

Mehr

Compliance erlaubt keine Wartezeit

Compliance erlaubt keine Wartezeit Compliance erlaubt keine Wartezeit Schnelle Analyse-Verfahren bei der HVB Unicredit AG Anwarul Haq Khan, 26. Mai 2015 Agenda (Stichpunkte) Wer ist Unicredit-HVB AG Compliance - Was ist das? Was waren die

Mehr

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015

Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 Big-Data and Data-driven Business KMUs und Big Data Imagine bits of tomorrow 2015 b Wien 08. Juni 2015 Stefanie Lindstaedt, b Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center

Mehr

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle

DATA WAREHOUSE. Big Data Alfred Schlaucher, Oracle DATA WAREHOUSE Big Data Alfred Schlaucher, Oracle Scale up Unternehmensdaten zusammenfassen Noch mehr Informationen aus Unternehmens- Daten ziehen! Datenmengen, Performance und Kosten Daten als Geschäftsmodell

Mehr

USER CASE: SCOUT ALS FRAMEWORK FÜR FINANCIAL TECH

USER CASE: SCOUT ALS FRAMEWORK FÜR FINANCIAL TECH USER CASE: 2. Scout User Group Meeting eclipsecon Unconference 2015 LUDWIGSBURG, 2. NOVEMBER 2015» DAVID KLEIN, ENRION GMBH Content 1. Kurzvorstellung Enrion 2. Die Suche nach einem passenden Framework

Mehr

Willkommen im Haifischbecken:

Willkommen im Haifischbecken: Willkommen im Haifischbecken: Strategien der vier Megavendoren Zürich 18. November 2009 Wolf K. Müller Scholz Business Intelligence Magazine wms@bi-magazine.net 1 Business Intelligence: Tastsinn Lehre

Mehr

Monitoringvon Workflows in einer BPEL-Engine

Monitoringvon Workflows in einer BPEL-Engine Monitoringvon Workflows in einer BPEL-Engine Autor: Stefan Berntheisel Datum: 23. Februar 2010 Stefan Berntheisel Hochschule RheinMain Management Verteilter Systeme und Anwendungen WS 09/10 Agenda Was

Mehr

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM

ibpm - intelligent Business Process Management: WWW.AXONIVY.COM ibpm - intelligent Business Process Management: ein neues Zeitalter bricht an. Peter Wiedmann 14.11.2014 WWW.AXONIVY.COM AGENDA 2 Vorstellung und Einführung Produktvorstellung ibpm die neue Dimension Anwendungsszenario

Mehr

Self Service BI der Anwender im Fokus

Self Service BI der Anwender im Fokus Self Service BI der Anwender im Fokus Frankfurt, 25.03.2014 Dr. Carsten Bange, Gründer und Geschäftsführer BARC 1 Kernanforderung Agilität = Geschwindigkeit sich anpassen zu können Quelle: Statistisches

Mehr

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria

Analyse von unstrukturierten Daten. Peter Jeitschko, Nikolaus Schemel Oracle Austria Analyse von unstrukturierten Daten Peter Jeitschko, Nikolaus Schemel Oracle Austria Evolution von Business Intelligence Manuelle Analyse Berichte Datenbanken (strukturiert) Manuelle Analyse Dashboards

Mehr

Fortgeschrittene Analysetechnologien: Abgrenzung, Produktübersicht, Erfolgsfaktoren

Fortgeschrittene Analysetechnologien: Abgrenzung, Produktübersicht, Erfolgsfaktoren Fortgeschrittene Analysetechnologien: Abgrenzung, Produktübersicht, Erfolgsfaktoren BI, Big Data, CRM Forum @ CeBIT 2015, Hannover, 19.03.2015 Patrick Keller, Senior Analyst Status Quo Business Intelligence

Mehr

Microsoft Business Intelligence und Corporate Performance Management 37. Der richtige Produkt-Mix am Beispiel eines effizienten Kundendienstes 154

Microsoft Business Intelligence und Corporate Performance Management 37. Der richtige Produkt-Mix am Beispiel eines effizienten Kundendienstes 154 Vorwort des Herausgebers 11 Wichtige Hinweise der Autoren und des Verlags 17 Teil A Produktübergreifende Themen 19 Aktuelle Herausforderungen an eine moderne Informationstechnologie 21 Microsoft Business

Mehr

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann

Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Cloud und Big Data als Sprungbrett in die vernetzte Zukunft am Beispiel Viessmann Adam Stambulski Project Manager Viessmann R&D Center Wroclaw Dr. Moritz Gomm Business Development Manager Zühlke Engineering

Mehr

Die IBM SPSS Risk & Fraud Roadshow 2013:

Die IBM SPSS Risk & Fraud Roadshow 2013: Die IBM SPSS Risk & Fraud Roadshow 2013: Mit Data Mining Risiken managen, Betrug verhindern Einladung zu der kostenlosen IBM SPSS Risk & Fraud Roadshow Einladung zur kostenlosen IBM SPSS Risk & Fraud Roadshow

Mehr

SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN

SOZIALES BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN SOZIALES" BRANCHENGEFLÜSTER ANALYSIERT DER SOCIAL MEDIA-MONITOR FÜR BANKEN CHRISTIAN KÖNIG BUSINESS EXPERT COMPETENCE CENTER CUSTOMER INTELLIGENCE Copyr i g ht 2012, SAS Ins titut e Inc. All rights res

Mehr

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm

Open Source BI Trends. 11. Dezember 2009 Wien Konstantin Böhm Open Source BI Trends 11. Dezember 2009 Wien Konstantin Böhm Profil Folie 2 JAX 2009 11.12.2009 Gründung 2002, Nürnberg 50 Mitarbeiter Innovative Kunden Spezialisiert auf Open Source Integration Open Source

Mehr

Lyubomir Yordanov byteletics OHG, Ralf Ernst - IT-Systemhaus der BA. Wiederverwendbare UIs in einer Enterprise SOA mit Oracle ADF

Lyubomir Yordanov byteletics OHG, Ralf Ernst - IT-Systemhaus der BA. Wiederverwendbare UIs in einer Enterprise SOA mit Oracle ADF Lyubomir Yordanov byteletics OHG, Ralf Ernst - IT-Systemhaus der BA Wiederverwendbare UIs in einer Enterprise SOA mit Oracle ADF IT Systemhaus der BA über uns BA = Bundesagentur für Arbeit Deutschlands

Mehr

Maximieren Sie Ihr Informations-Kapital

Maximieren Sie Ihr Informations-Kapital Maximieren Sie Ihr Informations-Kapital Zürich, Mai 2014 Dr. Wolfgang Martin Analyst, Mitglied im Boulder BI Brain Trust Maximieren des Informations-Kapitals Die Digitalisierung der Welt: Wandel durch

Mehr

The Connected. 05. - 09. Mai 2014. Invited by

The Connected. 05. - 09. Mai 2014. Invited by The Connected Society 05. - 09. Mai 2014 Invited by Montag in Zürich 05. Mai Data Science Day A1 Move Bändliweg 20 8048 Zürich 16.15 Data and Apps - The New Assets Andrè Münger Pivotal 16.45 Beyond Business

Mehr

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise

Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Unternehmen und IT im Wandel: Mit datengetriebenen Innovationen zum Digital Enterprise Software AG Innovation Day 2014 Bonn, 2.7.2014 Dr. Carsten Bange, Geschäftsführer Business Application Research Center

Mehr

Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose.

Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose. Machine Learning in Azure Hätte ich auf der Titanic überlebt? Olivia Klose Technical Evangelist, Microsoft @oliviaklose oliviaklose.com 13.06.20 15 SQLSaturday Rheinland 2015 1. Zu komplex: Man kann

Mehr

Thementisch Anwendungsgebiete und

Thementisch Anwendungsgebiete und Thementisch Anwendungsgebiete und b Erfolgsgeschichten KMUs und Big Data Wien 08. Juni 2015 Hermann b Stern, Know-Center www.know-center.at Know-Center GmbH Know-Center Research Center for Data-driven

Mehr

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch

IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch IBM Smart Analytics System und IBM Cognos BI: Vom Single Point of Truth zum mobilen Cockpit - ein Praxisbericht beim Unternehmen Theo Förch Markus Ruf, Geschäftsführer mip GmbH Jens Kretzschmar, Senior

Mehr

Business Intelligence im Mittelstand Erfolgsfaktoren

Business Intelligence im Mittelstand Erfolgsfaktoren Business Intelligence im Mittelstand Erfolgsfaktoren Koch, Neff & Volckmar GmbH Edgar Kaemper Edgar Kaemper Folie 1 Vorstellung KNV Familienunternehmen seit 6 Generationen Kernkompetenz in der Distribution

Mehr

OPERATIONAL SERVICES. Beratung Services Lösungen. At a glance 2015

OPERATIONAL SERVICES. Beratung Services Lösungen. At a glance 2015 OPERATIONAL SERVICES Beratung Services Lösungen At a glance 2015 »Wir implementieren und betreiben für unsere Kunden komplexe, hochkritische Anwendungen und Systeme. Unsere Experten sorgen dafür, dass

Mehr

Spezialisierung Business Intelligence

Spezialisierung Business Intelligence Spezialisierung Business Intelligence Peter Becker Fachbereich Informatik Hochschule Bonn-Rhein-Sieg peter.becker@h-brs.de 10. Juni 2015 Was ist Business Intelligence? Allgemein umfasst der Begriff Business

Mehr

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze

Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze Proaktive Entscheidungsunterstützung für Geschäftsprozesse durch neuronale Netze INAUGURALDISSERTATION zur Erlangung des akademischen Grades eines Doktors der Wirtschaftswissenschaften an der Wirtschaftswissenschaftlichen

Mehr

ETL in den Zeiten von Big Data

ETL in den Zeiten von Big Data ETL in den Zeiten von Big Data Dr Oliver Adamczak, IBM Analytics 1 1 Review ETL im Datawarehouse 2 Aktuelle Herausforderungen 3 Future of ETL 4 Zusammenfassung 2 2015 IBM Corporation ETL im Datawarehouse

Mehr

Bedeutung von Integrationsarchitekturen im Zeitalter von Mobile, IoT und Cloud

Bedeutung von Integrationsarchitekturen im Zeitalter von Mobile, IoT und Cloud Bedeutung von Integrationsarchitekturen im Zeitalter von Mobile, IoT und Cloud OPITZ CONSULTING Deutschland GmbH 2015 Seite 1 Sven Bernhardt n Solution architect @OPITZ CONSULTING Deutschland GmbH n Oracle

Mehr

Mobile Analytics mit Oracle BI - was steckt in den Apps?

Mobile Analytics mit Oracle BI - was steckt in den Apps? Mobile Analytics mit Oracle BI - was steckt in den Apps? Schlüsselworte Oracle BI, OBIEE, Mobile, Analytics Einleitung Gerd Aiglstorfer G.A. itbs GmbH Eching Oracle erweiterte im Laufe dieses Jahres das

Mehr

Step 0: Bestehende Analyse-Plattform

Step 0: Bestehende Analyse-Plattform Die Themen 09:30-09:45 Einführung in das Thema (Oracle) 09:45-10:15 Hadoop in a Nutshell (metafinanz) 10:15-10:45 Hadoop Ecosystem (metafinanz) 10:45-11:00 Pause 11:00-11:30 BigData Architektur-Szenarien

Mehr

Small Solutions bei der Deutschen Bahn Eine Erfolgsstory. DB Systel GmbH André Monson, Matthias Nöll Small Solutions 18.11.2014

Small Solutions bei der Deutschen Bahn Eine Erfolgsstory. DB Systel GmbH André Monson, Matthias Nöll Small Solutions 18.11.2014 Small Solutions bei der Deutschen Bahn Eine Erfolgsstory DB Systel GmbH André Monson, Matthias Nöll Small Solutions 18.11.2014 DB Systel GmbH Das Unternehmen Die DB Systel GmbH mit Sitz in Frankfurt am

Mehr

SAP Predictive Maintenance and Service. Gero Bieser, IBU Utilities, SAP AG Februar 2015

SAP Predictive Maintenance and Service. Gero Bieser, IBU Utilities, SAP AG Februar 2015 SAP Predictive Maintenance and Service Gero Bieser, IBU Utilities, SAP AG Februar 2015 Agenda Warum Predictive Maintenance? Die SAP Lösung Predictive Maintenance and Service Ausblick auf weitere Entwicklungen

Mehr

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht

Big-Data-Technologien - Überblick - Prof. Dr. Jens Albrecht Big-Data-Technologien - Überblick - Quelle: http://www.ingenieur.de/panorama/fussball-wm-in-brasilien/elektronischer-fussball-smartphone-app-helfen-training Big-Data-Anwendungen im Unternehmen Logistik

Mehr

Business Intelligence - Wie passt das zum Mainframe?

Business Intelligence - Wie passt das zum Mainframe? Business Intelligence - Wie passt das zum Mainframe? IBM IM Forum, 15.04.2013 Dr. Carsten Bange, Gründer und Geschäftsführer BARC Ressourcen bei BARC für Ihr Projekt Durchführung von internationalen Umfragen,

Mehr

Intelligent Business Operations Semi-automatische Feedback Zyklen im Customer Experience Management

Intelligent Business Operations Semi-automatische Feedback Zyklen im Customer Experience Management Intelligent Business Operations Semi-automatische Feedback Zyklen im Customer Experience Management Qualysoft IVENT Innovation & Event Wien 16. Oktober 2014 Christoph F. Strnadl Chief Technical Officer

Mehr

Technische Seminarreihe Empowering Business Intelligence

Technische Seminarreihe Empowering Business Intelligence PRESSEMITTEILUNG / Veranstaltungshinweis Technische Seminarreihe Empowering Business Intelligence Trivadis bietet für Entwickler, Projektleiter, Datenbank-Administratoren sowie DWHund BI-Interessierte

Mehr

Nr. 29. Big Data / Information Management

Nr. 29. Big Data / Information Management Nr. 29 Big Data / Information Management Das Berner-Architekten-Treffen Das Berner-Architekten-Treffen ist eine Begegnungsplattform für an Architekturfragen interessierte Informatikfachleute. Durch Fachvorträge

Mehr

Prozess- und Datenmanagement Kein Prozess ohne Daten

Prozess- und Datenmanagement Kein Prozess ohne Daten Prozess- und Datenmanagement Kein Prozess ohne Daten Frankfurt, Juni 2013 Dr. Wolfgang Martin Analyst und Mitglied im Boulder BI Brain Trust Prozess- und Datenmanagement Erfolgreiche Unternehmen sind Prozessorientiert.

Mehr

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden

In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden In-Memory & Real-Time Hype vs. Realität: Maßgeschneiderte IBM Business Analytics Lösungen für SAP-Kunden Jens Kaminski ERP Strategy Executive IBM Deutschland Ungebremstes Datenwachstum > 4,6 Millarden

Mehr

Data Driven Performance Marketing

Data Driven Performance Marketing Data Driven Performance Marketing 2 INTRODUCTION ÜBER METAPEOPLE Sven Allmer seit 2009 bei metapeople Business Development Manager verantwortlich für New Business, Markt- und Trendanalysen, Geschäftsfeld-Entwicklung

Mehr

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP

Copyr i g ht 2014, SAS Ins titut e Inc. All rights res er ve d. HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP HERZLICH WILLKOMMEN ZUR VERANSTALTUNG HADOOP AGENDA HADOOP 9:00 09:15 Das datengetriebene Unternehmen: Big Data Analytics mit SAS die digitale Transformation: Handlungsfelder für IT und Fachbereiche Big

Mehr

TV Sync: Der Einsturz der Silos - wie wir Fernsehen mit Digital verbinden

TV Sync: Der Einsturz der Silos - wie wir Fernsehen mit Digital verbinden TV Sync: Der Einsturz der Silos - wie wir Fernsehen mit Digital verbinden 11. November 2015 Volker Ballueder VP Sales and Activation, EMEA 2015 4C Insights 1 Wer wir sind 1982 2011 2013 2014 2015 DATA

Mehr

Vom Data Mining zur effektiven Entscheidungsunterstützung mit IBM SPSS Modeler und Analytical Decision Management

Vom Data Mining zur effektiven Entscheidungsunterstützung mit IBM SPSS Modeler und Analytical Decision Management Vom Data Mining zur effektiven Entscheidungsunterstützung mit IBM SPSS Modeler und Analytical Decision Management Martin Herzog 06/07.11.2012 Data Mining als Herzstück von Predictive Analytics Data Mining

Mehr

BARC-Studie Data Warehousing und Datenintegration

BARC-Studie Data Warehousing und Datenintegration Ergebnisse der BARC-Studie Data Warehouse Plattformen Dr. Carsten Bange BARC-Studie Data Warehousing und Datenintegration Data-Warehouse -Plattformen und Datenintegrationswerkzeuge im direkten Vergleich

Mehr

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice.

Copyright 2015 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice. Schritt für Schritt in das automatisierte Rechenzentrum Converged Management Michael Dornheim Mein Profil Regional Blade Server Category Manager Einführung Marktentnahme Marktreife Bitte hier eigenes Foto

Mehr

O-BIEE Einführung mit Beispielen aus der Praxis

O-BIEE Einführung mit Beispielen aus der Praxis O-BIEE Einführung mit Beispielen aus der Praxis Stefan Hess Business Intelligence Trivadis GmbH, Stuttgart 2. Dezember 2008 Basel Baden Bern Lausanne Zürich Düsseldorf Frankfurt/M. Freiburg i. Br. Hamburg

Mehr

SOA-enabled Business Intelligence

SOA-enabled Business Intelligence SOA-enabled Business Intelligence 5. IIR Forum BI, Mainz, Sept. 2006 Dr. Wolfgang Martin Analyst, ibond Partner, Ventana Research Advisor und Research Advisor am Institut für Business Intelligence Agilität

Mehr

Big Data in Marketing und IT

Big Data in Marketing und IT Big Data in Marketing und IT Chancen erkennen, Strategien entwickeln und Projekte erfolgreich umsetzen T-Systems Hacker Day 30. September 2015 Prof. Dr. Alexander Rossmann Reutlingen University Big Data

Mehr