Hadoop. Simon Prewo. Simon Prewo

Save this PDF as:
 WORD  PNG  TXT  JPG

Größe: px
Ab Seite anzeigen:

Download "Hadoop. Simon Prewo. Simon Prewo"

Transkript

1 Hadoop Simon Prewo Simon Prewo 1

2 Warum Hadoop? SQL: DB2, Oracle Hadoop? Innerhalb der letzten zwei Jahre hat sich die Datenmenge ca. verzehnfacht Die Klassiker wie DB2, Oracle usw. sind anders konzeptioniert Die Lösung für einiges, was heute zusätzlich gespeichert wird: Hadoop 2

3 Hadoop als Basistechnologie für Big Data Was ist Hadoop? Hadoop Was ist das? Eine Middleware zur Nutzung großer Computercluster Hadoop macht nichts Neues; nur die Masse ist neu Open Source Java Framework Hadoop umfasst zwei Grundkomponenten MapReduce: Verteilungskonzept für große Batch-Jobs HadoopDataFileSystem (HDFS): Ein verteiltes Dateisystem 3

4 HDFS - allgemein Hadoop Data File System (HDFS) = Ein verteiltes Dateisystem Zentrale Features: Spiegelung der Daten auf mehreren Knoten Sequentieller Zugriff auf Daten (Gegenbsp.: Öffnen von Word- Datei) 4

5 Vor dem Einfügen HDFS Redundanz PC 1 40 GB von 40 GB frei PC 2 40 GB von 40 GB frei PC 3 40 GB von 40 GB frei Nach dem Einfügen: PC 1 20 GB von 40 GB Datei frei Ort 1 20 GB groß Datei 20 GB groß PC 2 20 Datei GB von Ort 402 GB frei 20 GB groß PC 3 40 GB von 40 GB frei 5

6 HDFS Die Details HDFS wird als Filesystem-im-Filesystem installiert Idee: HDFS = Anstecken eines USB-Sticks Zwei Arten von Knoten: Namenode Speichert Metadaten, verteilt, balanciert Last usw. Datanode Speichert stupide ab (wird mit 64MB großen Blöcken zugetackert ) 6

7 Die wesentlichen Befehle: HDFS Live Demo Von Linux Maschine in HDFS kopieren: bin/hadoop dfs put <Lokale-Datei> <Zielverzeichnis-im-HDFS> Von HDFS in Linux downloaden : bin/hadoop dfs -copyfromlocal <Datei-im-HDFS> <Lok.- Zielverzeichnis> Verzeichnis vom HDFS anzeigen: bin/hadoop dfs -ls Im Grunde alles, was ein normales Unix-Dateisystem bietet. Aber 7

8 HDFS Grundlegende Eigenschaften HDFS basiert auf Grundannahmen: Die Daten im HDFS werden häufig ergänzt und wachsen ständig selten gelöscht oder verändert Daher gibt es im HDFS keine Möglichkeit Dateien zu ändern oder Teile zu löschen HDFS basierenden BigData-Datenbanksysteme können nie einzelne Datensätze löschen, ändern usw. 8

9 HDFS Architekturrelevante Eigentschaften Die HDFS-Idee: Daten werden häufig ergänzt und wachsen ständig selten gelöscht oder verändert Wo trifft sie zu? Log-Files (z. Bsp. Web-Server-Logs: Wie oft wurde Website besucht?) Usage-Daten (z. Bsp. Sensoren im Auto: Wie viel Zeit verbringt ein Auto im Leerlauf?) 9

10 HDFS Architekturrelevante Eigentschaften Vorteile für Betrieb/Hardware Auslagerung der Redundanz in die Software Keine teuren RAID-Controller mehr notwendig Keine teuren Enterprise-Festplatten mehr notwendig 10

11 MapReduce Was MapReduce macht Verteilung einer sehr großen Aufgabe über ein Cluster mit unbeschränkter Erweiterbarkeit des Cluster (10 PC, 100 PC ) mit unterschiedlicher Hardware im Cluster mit enorme Fehlertoleranz MapReduce (und ein großes Computercluster) im Dialog MapReduce: Gib mir zwei Funktionen Map und Reduce. Ich: Map-Funktion lautet und Reduce-Funktion lautet MapReduce: Sehr gut. Ich verteile die Aufgabe über das Cluster. 11

12 MapReduce und HDFS im Zusammenspiel Beispiel Word Count Problemstellung: Von allen vorkommenden Wörtern, die Anzahl zählen Beispiel-Text: Ich finde Pizza toll. Pizza ist super. Pizza ist toll. Wie könnte man dieses Problem aufteilen? (2 Arbeiter) Arbeiter A: Ich finde Pizza toll. 1x ich, 1x finde, 1x Pizza, 1x toll Arbeiter B: Pizza ist super. Pizza ist toll. 2x sie, 2x ist, 1x toll, 1x super Arbeiter A zusammenführen: (1+0)x finde, (1+0)x Pizza, (1+1)x toll, (0+2)x ist, Map- und Reduce-Funktionen dazu Map(String EingabeTeil) { return Wörter, Anzahl(Wörter); } Reduce(String Wort, Int[] values) { return sumuparray(values);} 12

13 MapReduce und HDFS im Zusammenspiel Beispiel Word Count Map Ich finde Pizza toll 1x ich 1x finde 1x Pizza 1x toll Reduce 1x ich 1x finde 1x die 3x Pizza Pizza ist super. Pizza ist toll. 2x Pizza 2x ist 1x toll 1x super 2x toll 2x ist 2x super 13

14 Lösung mit MapReduce Eine sogenannte Map-Funktion MapReduce Idee Jeder Texteil wird unabhängig durchgezählt Map-Funktion fühlt sich lokal Eine sogenannte Reduce-Funktion Ergebnisse der einzelnen Textteile werden zusammengefasst Reduce-Funktion schrumpft den Output der Map-Funktion zusammen Bereitstellung von diesen Funktionen Hadoop erledigt den Rest 14

15 Map Map MapReduce und HDFS im Zusammenspiel PC 1 Ich finde die Pizza toll. PC 2 Sie ist super. Sie ist toll. nur wenige Programmcode transferieren Master MapReduce & HDFS bei WordCount Eine ganze Bibliothek (Text aller Bücher ins HDFS) laden Dann soll MapReduce benutzt werden Für Map-Funktionen muss nun kein Input mehr transferiert werden 15

16 Hadoop Fundamentals Moving Computation is Cheaper than Moving Data 16

17 MapReduce und HDFS im Zusammenspiel Moving Computation is Cheaper than Moving Data Idee SQL: SELECT AVG(Erloes) FROM Verkauf (Größe ca. 30 Byte) Daten: Datensätze (Größe MB) Skript Wirkt auf Daten 17

18 MapReduce und HDFS im Zusammenspiel public static class MapClass extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> { } private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(longwritable key, Text value, } OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { String line = value.tostring(); StringTokenizer itr = new StringTokenizer(line); while (itr.hasmoretokens()) { } word.set(itr.nexttoken()); output.collect(word, one); public static class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, IntWritable> { } public void reduce(text key, Iterator<IntWritable> values, } int sum = 0; OutputCollector<Text, IntWritable> output, Reporter reporter) throws IOException { while (values.hasnext()) { } sum += values.next().get(); output.collect(key, new IntWritable(sum)); 18

19 Hadoop-Datenbanken Klassische Datenbanken: Datenbankmanagementsystem z. Bsp. MySQL Datenbank Storage-Engine z. Bsp. InnoDB oder MyISAM Hadoop-Datenbanken Systeme: Datenbank z. Bsp. Pig Dateien im HDFS z. Bsp. kunden.txt (Name, Vorname... Tab-separiert) 19

20 Hadoop-Datenbanken Pig OK. Aber wie funktioniert das jetzt? Ein kurzes Beispiel in Pig: LOAD: K = LOAD kunde.txt' USING PigStorage('\t') AS (name, umsatz ); PROCESS: G = FILTER K BY umsatz > 100; STORE: STORE G into gutekunden.txt' USING PigStorage(); 20

21 Pig So sitzt Pig auf Hadoop Generiert Java Code Verteilt Programm auf Cluster 21

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes

Hadoop. Eine Open-Source-Implementierung von MapReduce und BigTable. von Philipp Kemkes Hadoop Eine Open-Source-Implementierung von MapReduce und BigTable von Philipp Kemkes Hadoop Framework für skalierbare, verteilt arbeitende Software Zur Verarbeitung großer Datenmengen (Terra- bis Petabyte)

Mehr

APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER

APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER APACHE PIG SEMINARARBEIT SSE - WS12/13 SEBASTIAN WALTHER INHALT Das Hadoop Framework Hadoop s Distributed File System (HDFS) MapReduce Apache Pig Was ist Apache Pig & Pig Latin Anwendungsumgebungen Unterschied

Mehr

Universität Karlsruhe (TH)

Universität Karlsruhe (TH) Universität Karlsruhe (TH) Forschungsuniversität gegründet 1825 Software Engineering für moderne, parallele Plattformen 10. MapReduce Dr. Victor Pankratius Agenda Motivation Der MapReduce-Ansatz Map- und

Mehr

Verteilte Systeme. Map Reduce. Secure Identity Research Group

Verteilte Systeme. Map Reduce. Secure Identity Research Group Verteilte Systeme Map Reduce Map Reduce Problem: Ein Rechen-Job (meist Datenanalyse/Data-Mining) soll auf einer riesigen Datenmenge ausgeführt werden. Teile der Aufgabe sind parallelisierbar, aber das

Mehr

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop Demo HDFS, Pig & Hive in Action. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop Demo HDFS, Pig & Hive in Action Oracle DWH Konferenz 2014 Carsten Herbe Wir wollen eine semi-strukturierte Textdatei in Hadoop verarbeiten und so aufbereiten, dass man die Daten relational speichern

Mehr

Map Reduce. Programmiermodell. Prof. Dr. Ingo Claÿen. Motivation. Modell. Verarbeitungsablauf. Algorithmen-Entwurf. Map-Reduce in Java

Map Reduce. Programmiermodell. Prof. Dr. Ingo Claÿen. Motivation. Modell. Verarbeitungsablauf. Algorithmen-Entwurf. Map-Reduce in Java Map Reduce Programmiermodell Prof. Dr. Ingo Claÿen Hochschule für Technik und Wirtschaft Berlin Motivation Modell Verarbeitungsablauf Algorithmen-Entwurf Map-Reduce in Java Motivation Was ist Map-Reduce

Mehr

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer

Einführung in Hadoop & MapReduce. Dr. Kathrin Spreyer Big Data Engineer Einführung in Hadoop & MapReduce Dr. Kathrin Spreyer Big Data Engineer München, 19.06.2013 Agenda Einleitung 1. HDFS 2. MapReduce 3. APIs 4. Hive & Pig 5. Mahout Tools aus Hadoop-Ökosystem 6. HBase 2 Worum

Mehr

MapReduce mit Hadoop 08.11.12 1

MapReduce mit Hadoop 08.11.12 1 MapReduce mit Hadoop 08.11.12 1 Lernziele / Inhalt Wiederholung MapReduce Map in Hadoop Reduce in Hadoop Datenfluss Erste Schritte Alte vs. neue API Combiner Functions mehr als Java 08.11.12 2 Wiederholung

Mehr

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015

Hadoop & Spark. Carsten Herbe. 8. CC-Partner Fachtagung 2015 Hadoop & Spark Carsten Herbe 8. CC-Partner Fachtagung 2015 29.04.2015 Daten & Fakten 25 Jahre Erfahrung, Qualität & Serviceorientierung garantieren zufriedene Kunden & konstantes Wachstum 25 Jahre am Markt

Mehr

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014

Hadoop in a Nutshell Einführung HDFS und MapReduce. Oracle/metafinanz Roadshow Februar 2014 Hadoop in a Nutshell Einführung HDFS und MapReduce Oracle/metafinanz Roadshow Februar 2014 Head of Data Warehousing DWH Principal Consultant DWH Senior Consultant Wir fokussieren mit unseren Services die

Mehr

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen

Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Hadoop aus IT-Operations Sicht Teil 1 Hadoop-Grundlagen Brownbag am Freitag, den 26.07.2013 Daniel Bäurer inovex GmbH Systems Engineer Wir nutzen Technologien, um unsere Kunden glücklich zu machen. Und

Mehr

Einführung in Hadoop

Einführung in Hadoop Einführung in Hadoop Inhalt / Lern-Ziele Übersicht: Basis-Architektur von Hadoop Einführung in HDFS Einführung in MapReduce Ausblick: Hadoop Ökosystem Optimierungen Versionen 10.02.2012 Prof. Dr. Christian

Mehr

Spark, Impala und Hadoop in der Kreditrisikoberechnung

Spark, Impala und Hadoop in der Kreditrisikoberechnung Spark, Impala und Hadoop in der Kreditrisikoberechnung Big Data In-Memory-Technologien für mittelgroße Datenmengen TDWI München, 22. Juni 2015 Joschka Kupilas, Data Scientist, Adastra GmbH 2 Inhalt Vorwort

Mehr

MapReduce in der Praxis

MapReduce in der Praxis MapReduce in der Praxis Rolf Daniel Seminar Multicore Programmierung 09.12.2010 1 / 53 Agenda Einleitung 1 Einleitung 2 3 Disco Hadoop BOOM 4 2 / 53 1 Einleitung 2 3 Disco Hadoop BOOM 4 3 / 53 Motivation

Mehr

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration

June 2015. Automic Hadoop Agent. Data Automation - Hadoop Integration June 2015 Automic Hadoop Agent Data Automation - Hadoop Integration + Aufbau der Hadoop Anbindung + Was ist eigentlich ist MapReduce? + Welches sind die Stärken von Hadoop + Welches sind die Schwächen

Mehr

Software Engineering Software Frameworks. am Beispiel Ruby on Rails Hendrik Volkmer WWI2010G

Software Engineering Software Frameworks. am Beispiel Ruby on Rails Hendrik Volkmer WWI2010G Software Engineering Software Frameworks am Beispiel Ruby on Rails Hendrik Volkmer WWI2010G Vorstellung Plan für heute Donnerstag Freitag Montag Softwareframeworks Wiederholung Wiederholung Webframeworks

Mehr

Hadoop in a Nutshell HDFS, MapReduce & Ecosystem. Oracle DWH Konferenz 2014 Carsten Herbe

Hadoop in a Nutshell HDFS, MapReduce & Ecosystem. Oracle DWH Konferenz 2014 Carsten Herbe Hadoop in a Nutshell HDFS, MapReduce & Ecosystem Oracle DWH Konferenz 2014 Carsten Herbe Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT. Business Intelligence

Mehr

Datenbanktechnologien für Big Data

Datenbanktechnologien für Big Data Datenbanktechnologien für Big Data Oktober 2013 Prof. Dr. Uta Störl Hochschule Darmstadt Big Data Technologien Motivation Big Data Technologien NoSQL-Datenbanksysteme Spaltenorientierte Datenbanksysteme

Mehr

MySQL Queries on "Nmap Results"

MySQL Queries on Nmap Results MySQL Queries on "Nmap Results" SQL Abfragen auf Nmap Ergebnisse Ivan Bütler 31. August 2009 Wer den Portscanner "NMAP" häufig benutzt weiss, dass die Auswertung von grossen Scans mit vielen C- oder sogar

Mehr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr

Peter Dikant mgm technology partners GmbH. Echtzeitsuche mit Hadoop und Solr Peter Dikant mgm technology partners GmbH Echtzeitsuche mit Hadoop und Solr ECHTZEITSUCHE MIT HADOOP UND SOLR PETER DIKANT MGM TECHNOLOGY PARTNERS GMBH WHOAMI peter.dikant@mgm-tp.com Java Entwickler seit

Mehr

Eclipse 3.0 (Windows)

Eclipse 3.0 (Windows) Eclipse Seite 1 Eclipse 3.0 (Windows) 1. Eclipse installieren Eclipse kann man von der Webseite http://www.eclipse.org/downloads/index.php herunterladen. Eclipse ist für Windows, Mac und Linux erhältlich.

Mehr

Neue Ansätze der Softwarequalitätssicherung

Neue Ansätze der Softwarequalitätssicherung Neue Ansätze der Softwarequalitätssicherung Googles MapReduce-Framework für verteilte Berechnungen am Beispiel von Apache Hadoop Universität Paderborn Fakultät für Elektrotechnik, Informatik und Mathematik

Mehr

Ich liebe Java && Ich liebe C# Rolf Borst

Ich liebe Java && Ich liebe C# Rolf Borst Ich liebe Java && Ich liebe C# Rolf Borst Java oder C#? Einführung public class Einfuehrung { private int gesamtzahl = 0; /* Ermittelt die Anzahl der geraden und durch drei teilbaren Zahlen */ public String

Mehr

MATERNA GmbH 2014 www.materna.de 1

MATERNA GmbH 2014 www.materna.de 1 MATERNA GmbH 2014 www.materna.de 1 Agenda Herausforderungen BigData Größeres Pferd oder Pferdegespann? Apache Hadoop Geschichte, Versionen, Ökosystem Produkte HDFS Daten speichern und verteilen Map/Reduce

Mehr

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.

Apache Hadoop. Distribute your data and your application. Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache. Apache Hadoop Distribute your data and your application Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache The Apache Software Foundation Community und

Mehr

Windows 7 Winbuilder USB Stick

Windows 7 Winbuilder USB Stick Windows 7 Winbuilder USB Stick Benötigt wird das Programm: Winbuilder: http://www.mediafire.com/?qqch6hrqpbem8ha Windows 7 DVD Der Download wird in Form einer gepackten Datei (7z) angeboten. Extrahieren

Mehr

Datenanalyse mit Hadoop

Datenanalyse mit Hadoop Gideon Zenz Frankfurter Entwicklertag 2014 19.02.2014 Datenanalyse mit Hadoop Quelle: Apache Software Foundation Agenda Hadoop Intro Map/Reduce Parallelisierung des Datenflows Exkurs: M/R mit Java, Python,

Mehr

Folgendes PL/SQL Codefragment zeigt das grundlegende Statement für diesen Test: Java. http://www.trivadis.com/images/javaperf_tcm16-7133.

Folgendes PL/SQL Codefragment zeigt das grundlegende Statement für diesen Test: Java. http://www.trivadis.com/images/javaperf_tcm16-7133. Page 1 of 7 Betrifft: Java oder PL/SQL? Art der Info: Technische Background Info Autor: Guido Schmutz (guido.schmutz@trivadis.com) Quelle: Aus unserer Schulungs- und Beratungstätigkeit Mit Oracle8.1 besteht

Mehr

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse

NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse NoSQL-Datenbanken und Hadoop im Zusammenspiel mit dem Data Warehouse Carsten Czarski Oracle Deutschland B.V. & Co KG Big Data Betrachten von Daten die bislang nicht betrachtet wurden

Mehr

Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE

Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE Institut für Kartographie und Geoinformatik Leibniz Universität Hannover Generalisierung von großen Datenbeständen am Beispiel der Gebäudegeneralisierung mit CHANGE Frank Thiemann, Thomas Globig Frank.Thiemann@ikg.uni-hannover.de

Mehr

Projektbericht Gruppe 12. Datenbanksysteme WS 05/ 06. Gruppe 12. Martin Tintel Tatjana Triebl. Seite 1 von 11

Projektbericht Gruppe 12. Datenbanksysteme WS 05/ 06. Gruppe 12. Martin Tintel Tatjana Triebl. Seite 1 von 11 Datenbanksysteme WS 05/ 06 Gruppe 12 Martin Tintel Tatjana Triebl Seite 1 von 11 Inhaltsverzeichnis Inhaltsverzeichnis... 2 1. Einleitung... 3 2. Datenbanken... 4 2.1. Oracle... 4 2.2. MySQL... 5 2.3 MS

Mehr

MapReduce. www.kit.edu. Johann Volz. IPD Snelting, Lehrstuhl Programmierparadigmen

MapReduce. www.kit.edu. Johann Volz. IPD Snelting, Lehrstuhl Programmierparadigmen MapReduce Johann Volz IPD Snelting, Lehrstuhl Programmierparadigmen KIT Universität des Landes Baden-Württemberg und nationales Großforschungszentrum in der Helmholtz-Gemeinschaft www.kit.edu Wozu MapReduce?

Mehr

Der lokale und verteilte Fall

Der lokale und verteilte Fall Lokale Beans Der lokale und verteilte Fall RemoteClient Lokaler Client (JSP) RemoteSession/Entity-Bean Lokale Session/Entity-Bean 2 Lokale Beans Die bisher vorgestellten EJBswaren immer in der Lage auf

Mehr

Evaluation von Hadoop mit der Talend Big Data Sandbox. Michael Pretsch Pre-Sales Talend Germany GmbH

Evaluation von Hadoop mit der Talend Big Data Sandbox. Michael Pretsch Pre-Sales Talend Germany GmbH Evaluation von Hadoop mit der Talend Big Data Sandbox Michael Pretsch Pre-Sales Talend Germany GmbH 2015 Talend Inc. 1 Talend Überblick Die wichtigsten Fakten Gegründet im Jahr 2006 480+ Mitarbeiter in

Mehr

Semantik und konzeptionelle Modellierung

Semantik und konzeptionelle Modellierung Semantik und konzeptionelle Modellierung Verteilte Datenbanken Christoph Walesch Fachbereich MNI der FH Gieÿen-Friedberg 18.1.2011 1 / 40 Inhaltsverzeichnis 1 Verteiltes Rechnen MapReduce MapReduce Beispiel

Mehr

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim

Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Cloud-Computing Seminar Hochschule Mannheim WS0910 1/23 Datenbearbeitung in der Cloud anhand von Apache Hadoop Hochschule Mannheim Tobias Neef Fakultät für Informatik Hochschule Mannheim tobnee@gmail.com

Mehr

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011

Hadoop. High Performance Batches in der Cloud. Hadoop. Folie 1 25. Januar 2011 High Performance Batches in der Cloud Folie 1 Alles geht in die Cloud Image: Chris Sharp / FreeDigitalPhotos.net Cloud und Batches passen zusammen Batches Cloud Pay-per-Use Nur zeitweise genutzt Hohe Rechenkapazitäten

Mehr

!! Waldemar Reger Köln,

!! Waldemar Reger Köln, Analyse und Evaluierung von Parameterabhängigkeiten anhand der Laufzeit von MapReduce-Jobs zur Konzeptionierung von Hadoop-Clustern Waldemar Reger Köln, 23.07.2014 Agenda 1. Hadoop Grundlagen 2. Cluster

Mehr

Hadoop I/O. Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen. 14.02.2012 Prof. Dr. Christian Herta 1/29

Hadoop I/O. Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen. 14.02.2012 Prof. Dr. Christian Herta 1/29 Hadoop I/O Datenintegrität Kompression Serialisierung Datei-basierte Datenstrukturen 14.02.2012 Prof. Dr. Christian Herta 1/29 Data I/O und Hadoop Allgemeine Techniken Data I/O Datenintegrität Kompression

Mehr

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER

DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER DATENBANKEN SQL UND SQLITE VON MELANIE SCHLIEBENER INHALTSVERZEICHNIS 1. Datenbanken 2. SQL 1.1 Sinn und Zweck 1.2 Definition 1.3 Modelle 1.4 Relationales Datenbankmodell 2.1 Definition 2.2 Befehle 3.

Mehr

JDBC. Es kann z.b. eine ODBC-Treiberverbindung eingerichtet werden, damit das JAVA-Programm auf eine ACCESS-DB zugreifen kann.

JDBC. Es kann z.b. eine ODBC-Treiberverbindung eingerichtet werden, damit das JAVA-Programm auf eine ACCESS-DB zugreifen kann. JDBC in 5 Schritten JDBC (Java Database Connectivity) ist eine Sammlung von Klassen und Schnittstellen, mit deren Hilfe man Verbindungen zwischen Javaprogrammen und Datenbanken herstellen kann. 1 Einrichten

Mehr

MySQL 101 Wie man einen MySQL-Server am besten absichert

MySQL 101 Wie man einen MySQL-Server am besten absichert MySQL 101 Wie man einen MySQL-Server am besten absichert Simon Bailey simon.bailey@uibk.ac.at Version 1.1 23. Februar 2003 Change History 21. Jänner 2003: Version 1.0 23. Februar 2002: Version 1.1 Diverse

Mehr

MySQL Installation. AnPr

MySQL Installation. AnPr Name Klasse Datum 1 Allgemeiner Aufbau Relationale Datenbank Management Systeme (RDBMS) werden im Regelfall als Service installiert. Der Zugriff kann über mehrere Kanäle durchgeführt werden, wobei im Regelfall

Mehr

Festplatte defragmentieren Internetspuren und temporäre Dateien löschen

Festplatte defragmentieren Internetspuren und temporäre Dateien löschen Festplatte defragmentieren Internetspuren und temporäre Dateien löschen Wer viel mit dem Computer arbeitet kennt das Gefühl, dass die Maschine immer langsamer arbeitet und immer mehr Zeit braucht um aufzustarten.

Mehr

Spark das neue MapReduce?

Spark das neue MapReduce? Spark das neue MapReduce? Oracle Data Warehouse Konferenz 2015 Carsten Herbe Business Intelligence Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT Themenbereiche

Mehr

Groovy und CouchDB. Ein traumhaftes Paar. Thomas Westphal

Groovy und CouchDB. Ein traumhaftes Paar. Thomas Westphal Groovy und CouchDB Ein traumhaftes Paar Thomas Westphal 18.04.2011 Herzlich Willkommen Thomas Westphal Software Engineer @ adesso AG Projekte, Beratung, Schulung www.adesso.de thomas.westphal@adesso.de

Mehr

Starthilfe für C# Inhaltsverzeichnis. Medien- und Kommunikationsinformatik (B.Sc.) Alexander Paharukov. Informatik 3 Praktikum

Starthilfe für C# Inhaltsverzeichnis. Medien- und Kommunikationsinformatik (B.Sc.) Alexander Paharukov. Informatik 3 Praktikum Starthilfe für C# Inhaltsverzeichnis Allgemeines... 2 Bezugsquellen... 2 SharpDevelop... 2.NET Runtime... 2.NET SDK... 2 Installation... 2 Reihenfolge... 2 Vorschlag für eine Ordnerstruktur... 3 Arbeit

Mehr

Gebundene Typparameter

Gebundene Typparameter Gebundene Typparameter interface StringHashable { String hashcode(); class StringHashMap { public void put (Key k, Value v) { String hash = k.hashcode();...... Objektorientierte

Mehr

ACHTUNG: Es können gpx-dateien und mit dem GP7 aufgezeichnete trc-dateien umgewandelt werden.

ACHTUNG: Es können gpx-dateien und mit dem GP7 aufgezeichnete trc-dateien umgewandelt werden. Track in Route umwandeln ACHTUNG: Ein Track kann nur dann in eine Route umgewandelt werden, wenn der Track auf Wegen gefahren wurde. Ein Querfeldein-Track kann nicht in eine Route umgewandelt werden, da

Mehr

Complex Hosting. Whitepaper. Autor.: Monika Olschewski. Version: 1.0 Erstellt am: 14.07.2010. ADACOR Hosting GmbH

Complex Hosting. Whitepaper. Autor.: Monika Olschewski. Version: 1.0 Erstellt am: 14.07.2010. ADACOR Hosting GmbH Complex Hosting Autor.: Monika Olschewski Whitepaper Version: 1.0 Erstellt am: 14.07.2010 ADACOR Hosting GmbH Kaiserleistrasse 51 63067 Offenbach am Main info@adacor.com www.adacor.com Complex Hosting

Mehr

Überblick. Einführung Graphentheorie

Überblick. Einführung Graphentheorie Überblick Einführung Graphentheorie Graph-Algorithmen mit Map Kurzeinführung Graphentheorie Algorithmus zum Finden von Cliquen Graphen bestehen aus Knoten (englisch: Node, Vertex, Mehrzahl Vertices) Kanten

Mehr

MGS S PA ACCOUNT CONVERTER

MGS S PA ACCOUNT CONVERTER MGS S PA ACCOUNT CONVERTER Eine Software die aus einer beliebigen Datenbank die Accounts anpasst! Diese Software hilft bei der Konvertierung Ihrer Accounts den IBAN und BIC Code zu erstellen! MGS S PA

Mehr

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2.

Cloud-Computing. 1. Definition 2. Was bietet Cloud-Computing. 3. Technische Lösungen. 4. Kritik an der Cloud. 2.1 Industrie 2. Cloud Computing Frank Hallas und Alexander Butiu Universität Erlangen Nürnberg, Lehrstuhl für Hardware/Software CoDesign Multicorearchitectures and Programming Seminar, Sommersemester 2013 1. Definition

Mehr

Java Einführung Abstrakte Klassen und Interfaces

Java Einführung Abstrakte Klassen und Interfaces Java Einführung Abstrakte Klassen und Interfaces Interface Interface bieten in Java ist die Möglichkeit, einheitliche Schnittstelle für Klassen zu definieren, die später oder/und durch andere Programmierer

Mehr

Grundlagen der Informatik 2

Grundlagen der Informatik 2 Grundlagen der Informatik 2 Dipl.-Inf., Dipl.-Ing. (FH) Michael Wilhelm Hochschule Harz FB Automatisierung und Informatik mwilhelm@hs-harz.de Raum 2.202 Tel. 03943 / 659 338 1 Gliederung 1. Einführung

Mehr

Übung 1 mit C# 6.0 MATTHIAS RONCORONI

Übung 1 mit C# 6.0 MATTHIAS RONCORONI Übung 1 mit C# 6.0 MATTHIAS RONCORONI Inhalt 2 1. Überblick über C# 2. Lösung der Übung 1 3. Code 4. Demo C# allgemein 3 aktuell: C# 6.0 mit.net-framework 4.6: Multiparadigmatisch (Strukturiert, Objektorientiert,

Mehr

Java Database Connectivity (JDBC) 14.07.2009 Walther Rathenau Gewerbeschule 1

Java Database Connectivity (JDBC) 14.07.2009 Walther Rathenau Gewerbeschule 1 Java Database Connectivity (JDBC) 14.07.2009 Walther Rathenau Gewerbeschule 1 Was ist JDBC? Hauptsächlich eine Sammlung von Java Klassen und Schnittstellen für eine einfache Verbindung von Java Programmen

Mehr

Javadoc. Programmiermethodik. Eva Zangerle Universität Innsbruck

Javadoc. Programmiermethodik. Eva Zangerle Universität Innsbruck Javadoc Programmiermethodik Eva Zangerle Universität Innsbruck Überblick Einführung Java Ein erster Überblick Objektorientierung Vererbung und Polymorphismus Ausnahmebehandlung Pakete und Javadoc Spezielle

Mehr

Einführung in Javadoc

Einführung in Javadoc Einführung in Javadoc Johannes Rinn http://java.sun.com/j2se/javadoc Was ist Javadoc? Javadoc ist ein Werkzeug, dass eine standardisierte Dokumentation für die Programmiersprache Java unterstützt. Vorteil:

Mehr

Ogre Einführung Teil 1

Ogre Einführung Teil 1 Inhalt -Einleitung -Installieren und Einrichten von Ogre -Die erste Anwendung Ogre Einführung Teil 1 Einleitung Eine 3D Engine ist eine sehr komplexe Software und besteht aus mehreren tausend Zeilen Programmcode.

Mehr

SEMT. Prof. G. Bengel. Searching as a Service (Programming Model: MapReduce)

SEMT. Prof. G. Bengel. Searching as a Service (Programming Model: MapReduce) Hochschule Mannheim Fakultät für Informatik SEMT Prof. G. Bengel Sommersemester 2009 Semester 8I Searching as a Service (Programming Model: MapReduce) Michel Schmitt (520361) 1.06.2009 Inhalt 1. Einführung...

Mehr

Fachbericht zum Thema: Anforderungen an ein Datenbanksystem

Fachbericht zum Thema: Anforderungen an ein Datenbanksystem Fachbericht zum Thema: Anforderungen an ein Datenbanksystem von André Franken 1 Inhaltsverzeichnis 1 Inhaltsverzeichnis 1 2 Einführung 2 2.1 Gründe für den Einsatz von DB-Systemen 2 2.2 Definition: Datenbank

Mehr

Hadoop. Seminararbeit. Autor: Thomas Findling (Mat.-Nr. 1740842) Studiengang: Master Informatik (3. Semester)

Hadoop. Seminararbeit. Autor: Thomas Findling (Mat.-Nr. 1740842) Studiengang: Master Informatik (3. Semester) Universität Leipzig Institut für Informatik Abteilung Datenbanken Seminararbeit Hadoop Autor: Thomas Findling (Mat.-Nr. 1740842) Studiengang: Master Informatik (3. Semester) Betreuer: Gutachter: Lars Kolb

Mehr

Migration Howto. Inhaltsverzeichnis

Migration Howto. Inhaltsverzeichnis Migration Howto Migration Howto I Inhaltsverzeichnis Migration von Cobalt RaQ2 /RaQ3 Servern auf 42goISP Server...1 Voraussetzungen...1 Vorgehensweise...1 Allgemein...1 RaQ...1 42go ISP Manager Server...2

Mehr

Eclipse 3.0 (Mac) 1. Eclipse installieren. 2. Welcome Projekt schliessen

Eclipse 3.0 (Mac) 1. Eclipse installieren. 2. Welcome Projekt schliessen Eclipse Seite 1 Eclipse 3.0 (Mac) 1. Eclipse installieren Eclipse kann man von der Webseite http://www.eclipse.org/downloads/index.php herunterladen. Eclipse ist für Windows, Mac und Linux erhältlich.

Mehr

Seminar Map/Reduce Algorithms on Hadoop. Topics. Alex, Christoph

Seminar Map/Reduce Algorithms on Hadoop. Topics. Alex, Christoph Seminar Map/Reduce Algorithms on Hadoop Topics Alex, Christoph Organisatorisches Prioritisierte Liste mit allen vorgestellten Themen bis heute 23:59 an Alexander.Albrecht@hpi.uni-potsdam.de Vergabe der

Mehr

Einführung in die Hadoop-Welt HDFS, MapReduce & Ökosystem. Big Data für Oracle Entwickler September 2014 Carsten Herbe

Einführung in die Hadoop-Welt HDFS, MapReduce & Ökosystem. Big Data für Oracle Entwickler September 2014 Carsten Herbe HDFS, MapReduce & Ökosystem Big Data für Oracle Entwickler September 2014 Carsten Herbe Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT. Business Intelligence

Mehr

Datenbanken. Proseminar Objektorientiertes Programmieren mit.net und C# Sebastian Pintea. Institut für Informatik Software & Systems Engineering

Datenbanken. Proseminar Objektorientiertes Programmieren mit.net und C# Sebastian Pintea. Institut für Informatik Software & Systems Engineering Datenbanken Proseminar Objektorientiertes Programmieren mit.net und C# Sebastian Pintea Institut für Informatik Software & Systems Engineering Agenda 1. Datenbanken 2. SQL 3. ADO.NET DataProvider (providerabhängig)

Mehr

! " # $ " % & Nicki Wruck worldwidewruck 08.02.2006

!  # $  % & Nicki Wruck worldwidewruck 08.02.2006 !"# $ " %& Nicki Wruck worldwidewruck 08.02.2006 Wer kennt die Problematik nicht? Die.pst Datei von Outlook wird unübersichtlich groß, das Starten und Beenden dauert immer länger. Hat man dann noch die.pst

Mehr

DduP - Towards a Deduplication Framework utilising Apache Spark

DduP - Towards a Deduplication Framework utilising Apache Spark - Towards a Deduplication Framework utilising Apache Spark utilising Apache Spark Universität Hamburg, Fachbereich Informatik Gliederung 1 Duplikaterkennung 2 Apache Spark 3 - Interactive Big Data Deduplication

Mehr

SSH Authentifizierung über Public Key

SSH Authentifizierung über Public Key SSH Authentifizierung über Public Key Diese Dokumentation beschreibt die Vorgehensweise, wie man den Zugang zu einem SSH Server mit der Authentifizierung über öffentliche Schlüssel realisiert. Wer einen

Mehr

SINT Rest App Documentation

SINT Rest App Documentation SINT Rest App Documentation Release 1.0 Florian Sachs 08.04.2014 Inhaltsverzeichnis 1 REST Service 3 1.1 Application................................................ 3 1.2 Konfiguration...............................................

Mehr

Sozio- Technische Systeme

Sozio- Technische Systeme Soziotechnische Informationssysteme 7. Skalierbarkeit 2013 757 Millionen melden sich täglich an (12/2013) 802 DAUs laut FB (1 Quartal 2014) 1.23 Milliarden Nutzer im Monat (12/2013) 556 Millionen täglich

Mehr

TCP/IP Programmierung. C# TimeServer Java6 TimeClient

TCP/IP Programmierung. C# TimeServer Java6 TimeClient TCP/IP Programmierung C# TimeServer Java6 TimeClient Stand 19.10.11 21:24:32 Seite 1 von 16 Inhaltsverzeichnis Erläuterung...3 Software...3 C#TimeServer...4 Klasse ServerThread...6 Starten und Beenden...7

Mehr

How To Einbinden von Kartendiensten in eine Java Applikation mit Hilfe des JXMapKit

How To Einbinden von Kartendiensten in eine Java Applikation mit Hilfe des JXMapKit How To Einbinden von Kartendiensten in eine Java Applikation mit Hilfe des JXMapKit Einleitung Zunächst sollte man sich mit dem SwingX-WS Projekt von SwingLabs 1 vertraut machen. Dieses bietet viele nützliche

Mehr

Einstieg in die Informatik mit Java

Einstieg in die Informatik mit Java Vorlesung vom 18.4.07, Grundlagen Übersicht 1 Kommentare 2 Bezeichner für Klassen, Methoden, Variablen 3 White Space Zeichen 4 Wortsymbole 5 Interpunktionszeichen 6 Operatoren 7 import Anweisungen 8 Form

Mehr

How To: Wie entwickle ich mit SharpDevelop Anwendungen für die PocketPC-Platform

How To: Wie entwickle ich mit SharpDevelop Anwendungen für die PocketPC-Platform How To: Wie entwickle ich mit SharpDevelop Anwendungen für die PocketPC-Platform 0. Benötigt werden folgende Softwarepakete:.NET Framework Software Development Kit (http://www.microsoft.com/downloads/details.aspx?familyid=4fe5bdb5-c7a7-4505-9927-2213868a325b&displaylang=en)

Mehr

Installationsanleitung für die netzbasierte Variante Bis Version 3.5. KnoWau, Allgemeine Bedienhinweise Seite 1

Installationsanleitung für die netzbasierte Variante Bis Version 3.5. KnoWau, Allgemeine Bedienhinweise Seite 1 1 Installationsanleitung für die netzbasierte Variante Bis Version 3.5 Copyright KnoWau Software 2013 KnoWau, Allgemeine Bedienhinweise Seite 1 2 Seite absichtlich leer KnoWau, Allgemeine Bedienhinweise

Mehr

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org

Apache Lucene. Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org Apache Lucene Mach s wie Google! Bernd Fondermann freier Software Architekt bernd.fondermann@brainlounge.de berndf@apache.org 1 Apache Apache Software Foundation Software free of charge Apache Software

Mehr

Brainfuck. 1 Brainfuck. 1.1 Brainfuck Geschichte und Umfeld. 1.2 Esoterische Programmiersprachen

Brainfuck. 1 Brainfuck. 1.1 Brainfuck Geschichte und Umfeld. 1.2 Esoterische Programmiersprachen Brainfuck 1 Brainfuck 1.1 Brainfuck Geschichte und Umfeld Brainfuck ist eine sogenannte esoterische Programmiersprache. Sie wurde 1993 vom Schweizer Urban Müller entworfen mit dem Ziel, eine Sprache mit

Mehr

Spark das neue MapReduce?

Spark das neue MapReduce? Spark das neue MapReduce? Oracle Data Warehouse Konferenz 2015 Carsten Herbe Business Intelligence Wir fokussieren mit unseren Services die Herausforderungen des Marktes und verbinden Mensch und IT Themenbereiche

Mehr

Applets Belebung von Webseiten. Dipl.-Ing. Wolfgang Beer

Applets Belebung von Webseiten. Dipl.-Ing. Wolfgang Beer Applets Belebung von Webseiten Dipl.-Ing. Wolfgang Beer Was sind Applets? Java Klassen, die spezielle Richtlinien befolgen, um: "in Internet-Browsern lauffähig zu sein" Somit ist, komplexere Funktionalität,

Mehr

Tutorial: Erstellen einer vollwertigen XP Home CD aus der EEE 901 Recover DVD

Tutorial: Erstellen einer vollwertigen XP Home CD aus der EEE 901 Recover DVD Tutorial: Erstellen einer vollwertigen XP Home CD aus der EEE 901 Recover DVD Von SpecialK für www.eee-pc.de Stand:Version 1.0 vom 25.08.2008 Vorwort: Mit Hilfe dieses Tutorials wird aus der beim EEE 901

Mehr

WebService in Java SE und EE

WebService in Java SE und EE Schlüsselworte Java, JAX-WS, JAX-RS, JAXB, XML. Einleitung WebService in Java SE und EE Wolfgang Nast MT AG Ratingen Es werden die Mölichkeiten von WebServices in Java SE und EE, mit SOAP und REST gezeigt.

Mehr

WCF Services in InfoPath 2010 nutzen

WCF Services in InfoPath 2010 nutzen WCF Services in InfoPath 2010 nutzen Abstract Gerade wenn man schreibend von InfoPath aus auf eine SQL-Server Datenbank zugreifen will, kommt man quasi um einen Web Service nicht herum. In diesem Post

Mehr

NoSQL-Datenbanksysteme: Revolution oder Evolution?

NoSQL-Datenbanksysteme: Revolution oder Evolution? NoSQL-Datenbanksysteme: Revolution oder Evolution? Kolloquium Institut für Informatik, Universität Rostock 24.01.2013 Prof. Dr. Uta Störl Hochschule Darmstadt uta.stoerl@h-da.de NoSQL: DAS aktuelle Datenbank-Buzzword

Mehr

Data Mining und Machine Learning

Data Mining und Machine Learning Data Mining und Machine Learning Teil 7: Verteiltes Rechnen mit Map Reduce Dr. Harald König, FHDW Hannover 30. November 2015 Inhalt 1 Verteiltes Rechnen 2 Map Reduce 3 Anwendungen 4 Map Reduce: Weiterführende

Mehr

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs])

Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Datenbanken II Speicherung und Verarbeitung großer Objekte (Large Objects [LOBs]) Hochschule für Technik, Wirtschaft und Kultur Leipzig 06.06.2008 Datenbanken II,Speicherung und Verarbeitung großer Objekte

Mehr

Speicherung und Analyse von BigData am Beispiel der Daten des FACT-Teleskops

Speicherung und Analyse von BigData am Beispiel der Daten des FACT-Teleskops Bachelorarbeit Speicherung und Analyse von BigData am Beispiel der Daten des FACT-Teleskops Niklas Wulf Bachelorarbeit am Fachbereich Informatik der Technischen Universität Dortmund Dortmund, 16. Dezember

Mehr

Oracle: Abstrakte Datentypen:

Oracle: Abstrakte Datentypen: Oracle: Abstrakte Datentypen: Oracle bietet zwei mögliche Arten um abstrakte Datentypen zu implementieren: Varying Array Nested Table Varying Array (kunde) kdnr kdname gekaufteart 1 Mustermann 1 4 5 8

Mehr

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D.

Java Application 1 Java Application 2. JDBC DriverManager. JDBC-ODBC Br idge. ODBC Driver Manager. Dr iver C. Dr iver D. 1 Copyright 1996-1997 by Axel T. Schreiner. All Rights Reserved. 7 Datenbankzugriff Prinzip Dieser Abschnitt beschäftigt sich mit dem Paket java.sql, das eine SQL-Schnittstelle für Java verkapselt. Java-Programme

Mehr

Oracle Multitenant Verwaltung von Pluggable Databases Handling und Besonderheiten

Oracle Multitenant Verwaltung von Pluggable Databases Handling und Besonderheiten Oracle Multitenant Verwaltung von Pluggable Databases Handling und Besonderheiten Ralf Lange Oracle Deutschland B.V. & Co KG Besonderheiten und Eigenschaften von Oracle Multitenant Dateien in der CDB Namespaces

Mehr

Drei-Schichten-Architektur. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 16: 3-Schichten-Architektur 1 Fachkonzept - GUI

Drei-Schichten-Architektur. Informatik B - Objektorientierte Programmierung in Java. Vorlesung 16: 3-Schichten-Architektur 1 Fachkonzept - GUI Universität Osnabrück Drei-Schichten-Architektur 3 - Objektorientierte Programmierung in Java Vorlesung 6: 3-Schichten-Architektur Fachkonzept - GUI SS 2005 Prof. Dr. F.M. Thiesing, FH Dortmund Ein großer

Mehr

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer

Big Data in Azure. Ein Beispiel mit HD Insight. Ralf Stemmer Big in Azure Ein Beispiel mit HD Insight Ralf Stemmer Agenda owas ist Big? Was ist HD Insight? owelche Probleme kann man damit lösen? odemo Was ist Big? Was ist HD Insight? Datenexplosion - Rasanter Zuwachs

Mehr

Sind Cloud Apps der nächste Hype?

Sind Cloud Apps der nächste Hype? Java Forum Stuttgart 2012 Sind Cloud Apps der nächste Hype? Tillmann Schall Stuttgart, 5. Juli 2012 : Agenda Was sind Cloud Apps? Einordnung / Vergleich mit bestehenden Cloud Konzepten Live Demo Aufbau

Mehr

Teamprojekt & Projekt

Teamprojekt & Projekt 18. Oktober 2010 Teamprojekt & Projekt Veranstalter: Betreuer: Prof. Dr. Georg Lausen Thomas Hordnung, Alexander Schätzle, Martin Przjyaciel-Zablocki dbis Studienordnung Master: 16 ECTS 480 Semesterstunden

Mehr

Ohne Build geht's besser: Makeloses Java mit dem z 2 -Environment. Henning Blohm 5.7.2012

Ohne Build geht's besser: Makeloses Java mit dem z 2 -Environment. Henning Blohm 5.7.2012 Ohne Build geht's besser: Makeloses Java mit dem z 2 -Environment Henning Blohm 5.7.2012 1 Z2 ist ein radikal neuer* Ansatz für System Life-Cycle Management in Java * jedenfalls für Java Ein Builtool?

Mehr

Ein reales Testumfeld bereitstellen - basierend auf einer Produktionsdatenbank (ohne eine neue Kopie zu erstellen)

Ein reales Testumfeld bereitstellen - basierend auf einer Produktionsdatenbank (ohne eine neue Kopie zu erstellen) Ein reales Testumfeld bereitstellen - basierend auf einer Produktionsdatenbank (ohne eine neue Kopie zu erstellen) Auch in früheren Versionen als der 11.2, konnte man eine Standby Datenbank abhängen, sie

Mehr